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ABSTRACT 

The results of a new calculation of the @(a) corrections to the 

decay rate of orthopositronium are presented. The rate is 

r=r” 1 
II 

- 9 (10.348 f 0.070) = 7.0379 f 0.0012 x lo6 set-‘. This 1 
is substantially below all measured rates as well as previous theo- 

retical estimates. 

(Submitted for publication.) 
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The decay rate of orthopositroniurn into three photons is the only decay rate 

of a purely quantum electrodynamic system that has been measured to an accu- 

racy of better than 1%. The possibility suggested by recent experiments 2y3 of 

as much as a 2% discrepancy between existing theory and experiment necessitates 

a critical reexamination of the theory. In this letter we present the results of a 

new calculation of all order a! corrections to this decay rate. The complete 
. 

problem was first considered by Stroscio and Holt. ’ Although we agree with the 

method of computation employed by these authors, our final result is considerably 

lower than their rate. We obtain 

r d-33y 
= r” - $ (10.348 * 0.070) 1 
= 7.0379 5 0.0012 x lo6 set -1 

where I” is the lowest order rate: 

r” = a6 :c2 2i.$.9 = 7.2112 x lo6 set-l 

The measured rates are presented in Table I. The theoretical rate quoted above 

is inconsistent with all of the experimental rates, except possibly the rate meas- 

ured in vacua3 However the experimental situation is inconclusive at present 

because of the substantial difference between the rate measured in Si02 powder2 

and those measured in gases. 495 Should the difference between theory and experi- 

ment persist it will be necessary to compute corrections of orders a! 
2 

In Q! and 

cY2. _ 

The three photon decay amplitude for positronium is 

(1) 
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where eBs is the Bethe -Salpeter wave function and &Z is the two particle irre- 

ducible electron-positron decay kernel. Adopting the usual perturbative treat- 
C ment, we replace eBs by +Bs, the solution of the Bethe-Salpeter equation with 

an instantaneous Coulomb kerne16: 

i +k+Id-m,)(ti-$k-me) &$(K,p) = -ie2/h*qC (K,q) . 
(27f)4 Ii;‘-Cl2 BS 

(2) 

For I’ji;*l -CC me, #Es b ecomes (in the atom’s rest frame where K” = 2m e - a2me/4)7 

C 
#BS(K,P) = i 27r 6 PO -g JzKou(p3 q-3 ?+bNRip3 

( ) e 

where zjNR is the nonrelativistic Schrcedinger wave function: 

e. = q&iq = P [I 1’2 ?T 
and y=a! m,/2. 

The lowest and first order terms in the orthopositronium decay rate result 

from the kernels in Fig. 1. It is important that the decay kernel contains all 

interactions not already included in the wave function. Thus graph (g) in which 

a transverse photon is exchanged by the electron and positron must be considered. 

The instantaneous Coulomb interaction is part of the wave function. 

The only contributions to order olI” from graphs (b) through (g) come from 

the region-of small relative momentum (p -6?‘(y)) in Eq. (1). Also, the effects 

of binding in the decay kernel are negligible here. Thus the decay amplitude may 

be expressed in terms of the nonrelativistic wave function and the real part of the 

electron-positron annihilation amplitude (which includes the spin factors) 
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evaluated on mass shell: 

= (4me) l/2 

where K” has been replaced by 2me. The imaginary part of the amplitude van- 

ishes below threshold and therefore should be omitted. Also, & 
b-g 

is well be- 

haved for p - a(y) << me and may be replaced by its value at threshold ($= 0) to 

the relevant order in CL!. 

The lowest order contribution to the decay rate comes from graph (a) which 

gives I” in the small p regime. Contrary to the statements made in Ref. 1, 

relativistic corrections from the wave function and from the propagators in this 

graph give corrections of order Q! to the amplitude. Generally these corrections 

take the form 

6Ta a (J? )l” /-d3F (3) 

where f(p) has no explicit dependence on ~11. As argued in Ref. 1, f(p) may be 

expanded in a power series in F/m, for p - 6(y) << me. As terms linear in F 

integrate to zero, the leading contribution to f(‘) -f(O) is proportional to 
-2 
P /me2 N @(a2) for p nonrelativistic. Thus for p N b(y) there is only an @(a2) 

correction to the amplitude. However the operator s2/rnt leads to a linear 

divergence as p -+to when introduced in 6T,. This indicates that the dominant 

contribution to ?jTa comes from the relativistic regime (p - @(me)) where a 

Taylor expansion is inappropriate. For p - @(me), the integrand in Eq. (1) is 

of order o/m: and d3p is of order rni. Therefore 6Ta is of order 0 l/2 a!(I’ ) 

resulting in an @(a) correction ID the rate. 
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These @(cr) corrections from graph (a) are most easily computed in con- 

junction with those from graph (g). 8 Simple power counting arguments, similar 

to those used above, together with the Bethe-Salpeter equation (Eq. (2)) assure 

that evaluating kernels (a) and (g) with the Bethe-Salpeter wave function is 

completely equivalent in our order of approximation to evaluating graph (g’) on 

mass shell with the nonrelativistic wave function (Fig. 1). Graph (g’) is identical 

to (g) but with the transverse photon propagator replaced by the complete photon 

propagator . Binding corrections in .AV 
g’ 

are @(a2) and may be safely ignored. 

Thus the entire decay amplitude including radiative corrections of @(a) can 

be expressed in terms of electron-positron annihilation amplitudes evaluated on 

mass shell and the nonrelativistic Schrcedinger wave function: 

T@-3y i (k ) = (4m,) u2 

Clearly this method of computation is gauge independent to this order and we are 

free to evaluate .AV in the Feynman gauge. 

The @(a) corrections to the rate from graphs (b), (c) and (d) are 

lYb= 

r = cd 

%I0 

$I” 

These agree with the results in Ref. 1, exhibited here in Table II. The diagrams 

were renormalized on mass shell in the usual fashion. 

Kernels (e), (f) and (g’)were computed independently by each of the authors. 

Two methods were employed to perform the loop integrations. In one, standard 

Feynman parameter techniques were used, while in the other,integrations over 

the loop momenta (k) were performed directly. For the latter technique, the 
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k” contour was closed at infinity and the residues of the propagator poles com- 

puted. All results agreed. The contributions from graphs (e) and (f) are: 

re = [-3.562 & 0.0043 +I-' 

rf = LO.809 f 0.0041 fro 

These numbers are in slight disagreement with Ref. 1. The second rate also 

disagrees slightly with that quoted in Ref. 9. 

In computing graph (f) it is necessary to regulate the loop integration if gauge 

invariance is to be satisfied. Pauli-Villars regulation was used as well as the 

technique described in Ref. 10 where the vacuum polarization tensor is replaced 

l-i cLvpcklk2k3k4) - -ky a 
,?@ 

11 
uvpO 

(kkkk) 
1 2 3 4 

. 

1 

As a check, the rate due to a heavy fermion (M) loop was computed and found to 

agree with the analytic result’: 

Graph (g’) has both a logarithmic singularity and a l/ I$[ singularity at thres- 

hold. These may be removed from &Z g, by subtracting the quantity 

dP =ie 2 
I- 

- d4k 1 1 1 
g’ L (2d4 k2-h2+it. k2+2plek+ie k2-2p20k+it 

4rn~&MS($0, k.) 
1 

where pl=$K+p and p2=iK-p. For reasons discussed above, the imaginary 

Coulomb phase is omitted. The amplitude Jtl IR 
g’ 

contributes 
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to the rate. The subtracted amplitude, though finite, is difficult to evaluate 

numerically because of the branch point at threshold due to electron-positron 

intermediate states. To overcome this difficulty in the Feynman parameter 

treatment, the amplitude was evaluated at several points below threshold and 

an extrapolation to threshold made. When the loop momenta were integrated 

directly, the problem was avoided by cutting off the integration in the small k 

region. The final result was computed by extrapolating to zero cutoff. Again 

all results agreed, the subtracted rate being 

rz,= c-5.90 f o.07]fr" 

Thus the total contribution from graph g’ is 

rg,=ro+ 2 In + 
[ 0 

- 7.90 f 0.07 
e 1 

fro 

The numerical constant is in disagreement with that of Ref. 1. 

All gamma matrix manipulations were performed by A. C. Hearn’s program 

REDUCE. I1 The integrals were evaluated numerically using Monte Carlo inte- 

gration programs by Sheppey, 12 and by Lepage . 13 The uncertainties quoted 

above for the theoretical rate are the standard deviations computed by these 

programs. 

The authors thank Dr. S. J. Brodsky for his many helpful comments and 

suggestions. 



-8- 

REFERENCES 

1. M. A. Stroscio and J. M. Holt, Phys. Rev. A 2, 749 (1974); and 

M. A. Stroscio, Physics Reports C 22, 217 (1974). 

2. D. W. Gidley, K. A. Marko, and A. Rich, Phys. Rev. Lett. 36, 395 (1976). 

3. D. W. Gidley, P. W. Zitzewitz, K. A. Marko, and A. Rich, Phys. Rev. 

Lett. 37-, 729 (1976). 

4. P. G. Coleman and T. C. Griffith, J. Phys. B 6, 2155 (1973). 

5. V. W. Hughes, Physik 1973, Plenarvortrag Physikertaguag 37th (Physik 

Verlag, Weinheim, Germany, 1973)) pp. 123-155 (in English). 

6. Actually this procedure is poorly suited to positronium as the annihilation 

potential (-6(x)) leads to infinities when treated perturbatively (~/$~(x=O)=m). 

Annihilation should be incorporated into the unperturbed potential in some 

way. This modifies our treatment only at the d(a2F0) level and so is - 

irrelevant here. A more thorough examination of this problem is under way 

in collaboration with S. J. Brodsky. 

7. The conventions of J. D. Bjorken and S. D. Drell, Relativistic Quantum 

Mechanics (McGraw-Hill, New York, 1964)) have been adopted in this paper. 

8. This appears to be what was finally done in Ref. 1. 

9. P. Pascual and E. de Rafael, Nuovo Cimento Lett. 4, 1144 (1970). 

10. J. Aldins, S. J. Brodsky, A. J. Dufner, and T. Kinoshita, Phys. Rev. D 

I, 2378 (1970). 

11. A. C, Hearn, Stanford University Report No, ITP-247 (unpublished). 

12. A. J. Dufner, in Proceedings of the Colloquium on Computational Methods 

in Theoretical Physics, Marseille, 1970 (unpublished). 

13. G. P. Lepage, Stanford Linear Accelerator Center preprint SLAC-PUB- 

1839 (November 1976). 



-9- 

FIGURE CAPTION 

1. The orthopositronium decay kernel contributing to @(aF”). Graphs (a) 

and (g) may be replaced by (g’). 

TABLE CAPTIONS 

I. Experimental determinations of the decay rate of orthopositronium into 

three photons. 

II. Theoretical determinations of the Q’(o) corrections to the decay rate of 

orthopositronium (in units of $ I”). Infrared infinite terms have been 

omitted. 
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TABLE1 

Rate Deviation 
from Theory 

Ref. 2 7.104 f 0.006 x lo6 set-1 ( 3.9 rt 0.4) fro 

Ref. 3 7.09 f 0.02 x lo6 set-1 ( 3d $$r" 

Ref. 4 7.262 % 0.015 x lo6 set -1 (13.4 i 0.9) %r" 

Ref. 5 7.275 h 0.015 x lo6 set-' (14.b o.9)+r" 



TABLE11 

This Paper Stroscio and Halt' 

rb 4.791* 0.003 4.785 f 0.010 

r cd -2.868 h 0.003 -2.8716 zt 0.0036 

re -3.562 f 0.004 -3.355 f 0.003 

rfta) -0.809 ic 0.004 -0.5 f 0.2 

r gt -7.90 f 0.07 3.8 * 0.4 

Total I -10.348 f 0.070 ~ -1 1.86 f 0.45 

(a) _ rf - -0.7411t 0.017 is quotedinRef. 9. 


