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1. INTRODUCTION 

A decade after the introduction of the notion of quarks [ 11, the quark model 

continues to provide remarkable patterns and insights into almost every aspect 

of elementary particle physics; it also serves as the foundation of such sym- 

metries as SU3 (perhaps now SU4) and chiral symmetry. Aside from the funda- 

mental commutation relations, however, the initial development of the theory of 

chiral symmetry breaking [2,3] was independent of quark model considerations. 

In particular, the attractive (3,z) chiral breaking scheme proposed by Gell- 

Mann, Oakes , and Renner i3] (GMOR) predicts reasonably small chiral break- 

ing effects - in fact smaller than present phenomenology suggests in some 

cases [4,5], These predictions are based upon simple SU3 assumptions of 

certain chiral breaking meson matrix elements which appear to have no direct 

relation to the quark model itself. 

In order to refine the (3,s) chiral breaking model, which certainly gives a 

better qualitative account of the data than do other SU3 X SU3 breaking repre- 

sentations, we recently suggested [6] returning to the quark picture and in- 

corporating the scaling (quark-parton) structure of the deep inelastic scattering 

of baryons in a manner closely related to that suggested by Jaffe and Llewellyn- 

Smith [710 A consistent pattern emerges for many baryon processes such as 

for chiral breaking effects in pion photoproduction off nucleons [6] 0 In this 

paper we shall expand in detail upon the chiral breaking baryon matrix elements 

in our scheme and extend the approach to include chiral breaking meson matrix 

elements and electromagnetic (isospin breaking) effects as well, 

The distinction between our approach and that of GMOR is our use of the 

light cone transformation properties [ 7,8] for the chiral breaking “bad” quark 

operators [ 91 D The rationale for this procedure is the assumption of the 
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tlgoodness” of the light plane (or infinite momentum frame) SU3 and SU6 W 
, 

charges [lo], under which the hadron states are presumed to transform irre- 

ducibly, Alternative justification for our chiral breaking scheme comes from 

the behavior of “fixed poles” in Compton-like processes [ 7,11-13]., Such a uni- 

fied picture of chiral symmetry breaking points [6] to a non-strange quark 
h A 

mass m of size m N rn* (derivable from baryon matrix elements) and a quark 

mass ratio of ms/m N 5-6 (extracted from both baryon and meson matrix ele- 

ments), These values in turn imply that the partially conserved axial-current 

hypothesis (PCAC) for pions and kaons is on a somewhat different footing, Pion 

PCAC is found always to hold provided it is treated in a dispersion-theoretic 

sense [9] (neutral PCAC) rather than in an operator sense (strong-PCAC) since 

the chiral breaking parameter c turns out to be approximately -0.8 to -0,9 

rather than near the chiral SU2 X SU2 limit of -&Z as in the GMOR case. 

We begin this analysis by first reviewing in Set’, II the general- (3,s) theory 

of chiral symmetry breaking, the quark model, the light cone and Melosh trans- 

formations, scaling, fixed poles, and quark probability distribution integrals. 

In Sec. III we investigate all chiral symmetry breaking baryon matrix elements, 

including those in baryon mass formulae, baryon (T terms, threshold pion photo- 

production, and Goldberger-Treiman discrepancies, Meson matrix elements 

are analyzed in a similar manner in Set, IV, including a survey of PCAC con- 

straints , K P3 and 7~’ - 2y decay; a description of the ninth pseudoscalar meson 

state is also given. In Sec. V,. an isospin violating term is introduced in the 

quark mass matrix and its effect is explored in electromagnetic mass differ- 

ences and q3n decay for our chiral breaking scheme. Throughout this paper we 

contrast our results with those obtained in the GMOR chiral breaking approach. 
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11. THEORETICAL FOUNDATIONS 

A, Chiral Symmetry Breaking 

The theory of chiral symmetry as embodied in the chiral symmetric Hamil- 

tonian density Ho, where - 

l&i,‘01 = 0 iQ;,Hol = 0 (20 1) 

(i =l,,,, , 8), has stood up to a decade of analysis of its underlying charge alge- 

bra coupled with its implied approximate axial current conservation @ion PCAC). 

In recent years, therefore, it has become of interest to link together chiral 

symmetry breaking with the more conventional SU3 (Gell-Mann-Okubo) breaking 

via the (semi-strong) Hamiltonian density 

H =Ho+H’, (2.2) 

where H* does not commute with the vector and axial-vector charges . 

Qi = /d3x V;(& 0) , Q; = Jd3x A;(;, 0) . &3) 

The hope is to find H” such that it is simultaneously “small” compared to Ho in 

the SU3 sense and in the SU2 X SU2 sense. To this end, it was proposed [2,3] 

that H’ transform according to the (3,s) f (3,3) representation of SU3 X SU3 

(henceforth denoted as (3,s)) 

H’ = eOuO + e8u8 N u. + cu8 , (2.4) 

where the scalar densities ui are related to the pseudoscalar densities vi via the 

(3,g) commutation relations 

IQi>Ujl = if.. u ijk k [Qi,vj] = if.. qkVk (2.5a) 

[Q5ul = i’ j -id ijkVk iQ5 v I i’ j = id ijk’k ’ (2.5b) 
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This (3,s) representation is most compelling for four reasons : 

i) The quark model can be incorporated in this scheme because the quark 

mass matrix term &&q transforms according to the (3,5) representation. 

We shall discuss this possibility in greater detail shortly. 

ii) The pion mass and divergence of the axial-vector current become related 

in a simple manner (with f, M 93 MeV), 

(2.6) 

so that c = -& corresponds to the chiral SU2 X SU2 limit rnr = 0, 

iii) The chiral-broken value of c becomes linked to the chiral-broken meson 

mass ratio m 2 
nf m2 K r l/13 by comparing (2,6) and its kaon analog for 

vacuum to pseudoscalar matrix elements (taking f K=f* # 0): 

m2 
+ \ &+c 

<o Ivp> 

5 $2~$2 1 <O]vKIK> ’ 

iv) The pion matrix element of the ~7ro .term, defined as 

n-T 
(T = [Q)a+J = (E o/3)(&+@(&uo+u8) 

(20 7) 

(2.8) 

now appears to be experimentally [ 141 consistent with Weinberg’s low en- 

ergy or analysis (following from (2.8) coupled with pion PCAC), corre- 

sponding to the (3,s) value [ 15 ] 

ariI~?TT17rj> = aTn’s.. = mpij 
mr 1J (20 9) 

and independent of the value of c. 

In order to maximize the predictive power of the theory, it is necessary to 

make a further assumption as to the specific SU3 transformation properties of 

the pseudoscalar matrix elements of the densities ui and vi, so far unspecified 

in (2.5) - (2.9). Needless to say, GMOR made the simplest ansatz that the 
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matrix elements of the ui and vi have the simple SU3 structure (which we shall 

refer to as the “GMOR SU3 assumption”) 

<piluj IPk> - d.. 
1Jk 

<OIVj lPk’ N 6. 
Jk 

(2,lO) 

for i,j =l,..., 8 @ion PCAC implies that j = 0 can be included in (2,1-O) as 

well)., This assumption follows from the SU3 transformation law Qi I Pj> = 

ifijk I Pk> and (2,5a) applied to <Pi I [Qj ,u,] I I&>; i.e. , if the hadronic states 

are assumed to transform irreducibly under the static (spacelike) charges de- 

fined by (2,3) - a proposition most likely untrue [ 101 as we shall discuss in 

Sec. IIB. Given this GMOR SU3 assumption (2. lo), one concludes that 

<OIV~~~>/~O~~~IK> GMOR = 1 , I 
(2,ll) 

and consequently (2.7) then demands that 

’ GMOR = -4-i M -1.25 o (2.12) 

Since c is then near the chiral SU2 X SU2 limit - fi, pion PCAC becomes almost 

exact in an operational sense, and a chiral perturbation theory in the strong in- 

teraction parameters eO and e8 becomes feasible [ 16,171 D 

Unfortunately, however, all 7~ o terms are also then forced to be small, 

being proportional to &+c in (2.8)) and this is not always borne out by experi- 

ment. Of particular significance is the present phenomenological value of the 

nN aterm [ 181, 

G = <NItin%> M 65 * 5 MeV e (2e13) 

In the GMOR scheme, e8 (~~)~/2rn~ transforms like (h8)N and must therefore 

correspond to the nucleon-SU3 baryon-mass difference of -210 MeV. Further, 

the ratio (u~u~)~ ought to be near unity [4] (or smaller), for otherwise 
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STJ3 x SU3 breaking is not of the order of SU3 breaking for the baryons and 

higher order terms such as H 12 or H’ 3 would then have to be included in the 

strong interaction expansion of <N IH IN>. Moreover, the phenomenological 

value of the isoscalar direct channel KN o term, aQ,=O) M 0, reconfirms 

@+P~)N M 1 in the GMOR scheme [S, 191 (we will return to this point later). 

Consequently the GMOR SU3 assumption leads to the prediction [4] 

(2.14) 

substantially smaller than (2.13). We take this fact as a reasonable justifica- 

tion for questioning the GMOR SU3 assumption, but still prefer to work within a 

(3,s) formulation for the reasons (i) to (iv) already stated, . 

B, Quark Model, Light Cone, and Melosh Transformations 

The simplest description of quark dynamics is given by the free Lagrangian 

density [ZO] 

9 = i(i$ -&)q (2.15) 

where the quark field q is the SU3 triplet of up, down, and strange fields and ykl 

is the quark mass matrix, diag. (mu, md ,ms)’ Alternatively, one might sup- 

pose the quarks interact via vector gluons described by the quark Lagrangian 

2 = s’(itif- g@ -dd)q Q (2.16) 

In either case the chiral decomposition H =Ho + H’ obeys (2.1) with a chiral 

breaking part given by 

H’ =&& = &u + ad) + ms,% (2,17) 

where m =m 
U d = m in the SU2 conserving limit., 

In this quark language, the currents are V” = $$%q and A; =.@ypy5Aiq, 

and the scalar and pseudoscalar densities are 

ui =$Yq V i = ghiY59 * (2.18) 
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They satisfy the equal-time commutation relations (2,5) with, for example, 

u. = J” ‘3 (liu +dd +&) 

u8 = J i 3 (6.1 + iid - 2&s) o 

(2.19a) 

(2019b) 

_ It is then possible to write (2,17) in the form eOuo + e8u8 provided 

EO = J + (ms + 2&) 

E8 = - J L (ms - m) D 3 

(2.20a) 

(2.2Ob) 

Evidently, it is possible to express the chiral breaking parameter c = e8/e0 in 

terms of the quark mass ratio 

c =-+JT(g$) (2.21) 

where 

X = ms/m. (2.22) 

While the SU3 X SU3 chiral limit corresponds to ms = m = 0 and the SU3 limit 

to ms = m or X = 1, the chiral SU2 X SU2 limit means ms >> m and X -+ och For 

the GMOR value of c M -1,25, (2.21) implies XGMoR M 25. 

It is also natural to discuss the light plane representation of the quark 

fields [8,9,21]. For x+ = 1(x0+x3) = 0, the quark field q 
.$z 

+ =$+y q is deter- _ 

mined by the light plane generators but the field q- = $-y+q is dynamically re- 

lated to q, via the field equations corresponding to the Lagrangian densities 

(2,15) or (2,16). Choosing a representation for the y matrices which diag- 

onalizes the two quark fields q,, 

G q+= 0 ( ) 
0 

q- = * 0 (2.23) 

whereq =q++q , the two component dynamical constraint equation for the 
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quark-gluon Lagrangian (2,16) is [ 9,211 

(2024) 

where the BI term in (2.24) is absent for the free quark Lagrangian (2.15). It 

is then possible to express various chiral symmetry quark field operators on 

the light plane as, for example, the *‘good” operators 

sr’s - d$ (2.25a) 

sr+r,s - dJ3@ (2.25b) 

and the “bad” operators 

b-d, -x-Q (2.26a) 

crr,s ,.A $L3X + XL3G (2026b) 

QcylN &rlX *xc7--~ 0 (2026~) 

L ,’ L The light plane charges Q and Q 5,L can be expressed in terms of the good 

quark operators (2.25)) 
- 

Q; = /d4x 6 (x+)V+(x) N /dx-d2x1 &+$J (x) (2,27a) 

5,L = 
‘i )14x 6 (x+)A;(x) N j-dx- d2x1r$ “(x)kio3+ (x) , (2.27b) 

but the scalar and pseudoscalar densities, appearing in chiral symmetry break- 

ing theories, must be expressed in terms of the bad quark operators of (2.26), 

such as 

(2.28a) 

(20 28b) 

As to the type of commutation relations for the bad operators ui and vi, 

there are two cases: 
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(i) For commutation relations involving the static (spacelike) charges Qi and 

QF , the usual equal-time commutators (2.5) hold. 

L 5,L (ii) For commutation relations involving the light plane charges Qi and Qi , 

one must employ the fundamental light plane commutators obtained from 

(2.27) 

[QL,~I = -B’i~ i&syL ) ~ ] = -~~i”3~ , (2.29) 

along with the light plane expansions (2.28), 

Thus, commutators of the type [QF,uj] reveal that the first two terms of 

(2.28a) and (2.28b) transform as a normal SU3 octet plus singlet. Because of 

the additional quark mass matrix .A@, however, the third terms of (2.28a) and 

(2.28b) transform as octet plus singlet only when weighted by suitable quark 

mass factors ui/mq .,, where the i = 0,8 components are mixed. Commutators 

of the type [Qi 5’L, uj] indicate that the first two terms of (2,28a) and (2.28b) . 

have the usual (3,s) d-type commutation relations analogous to (2.5b) since 

(I } u ‘03 = 0; the third terms of (2.28a) and (2,28b), however, when weighted as 

Ui/m q’ 
are found to obey (1,8) f-type commutation relations since [ 1 ,c3] = 0. 

While the quark density transformation properties under the light plane 

charges Qi , L Q;lL are easily obtained, as above, knowledge of the transforma- 

tion properties of the hadron expectation values of these densities requires fur- 

ther input. It is well known that, even in free quark theories, Qi = Qr only for 

theories of unbroken SU3 symmetry [22] and that they are not equal [22,23] 

when m SrnsO However, at least in free quark theories, even with m # ms the 

hadron states continue to transform irreducibly under the light plane charges 

i23], i,e. , 

QF ]Pj> = ifijkl Pk> (2.30) 



- 11 - 

Indeed, in the free quark case, the full SU6 hadron multiplet continues to trans- 

form irreducibly under the SU6 generated by the light plane charges Qi , L QfsL, 

and the other 18 similar generators, when m # ms. In the real world, how- 

ever, the analytic structure of current matrix elements makes it impossible - 
[23] to identify exactly the QF with the operators (let us call them Wi, Wf , 

L 
etc, ) which in this real world classify the hadron states (Qi = Wi only for i = 1, 

2,3, and 8). However, this identification is clearly worst for the generators 

other than Qk which relate different SU3 multiplets within a given SU6 multiplet 

(equivalently, SU6 breaking is stronger than SU3 breaking). Thus we shall con- 

tinue to assume that light plane quark distributions as measured in deep in- 

elastic scattering, and their integrals, for hadrons in a given SU3-multiplet 

transform irreducibly (as represented in (2.30)) under the Qr. In particular, 

for consistency of our approach, this symmetry of the distribution integrals 
T 

under the Qt should be distinctly better than SU3 symmetry for hadron masses; 

to repeat, this has been shown to be the case in free quark models with m f msO 

The above distinctions become important for matrix elements of the bad 

operators ui and vi0 Thus the GMOR SU3 assumption (2.10) is invalidated if 

(2.30) is true and the third terms in (2.28a, b) dominate the matrix element; on 

the other hand, the GMOR SU3 would be approximately valid if the first two 

terms in (2,28a, b) dominate the matrix element. We shall see it is in fact 

likely that the third terms in (2.28a, b) dominate most matrix elements of the ui 

or v i0 Indeed, with relatively reasonable assumptions, this can be proven, as 

we show in a following section. In this case the SU3 structure of the uifs is ef- 

fectively altered so that (u,, u2,u3), [&1+X)]-1@4,u5 ,u6,u7), 3-‘(a u. + u,), 
1 

and 3-‘X-‘(u,-& u,), and notthe ui-themselves, transform as the SU3 octet 

plus singlet, A similar observation holds for the vi [24]. 
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5,L The distinction between Q: and Qi is also of significance. The dynam- 

ical PCAC assumption for pions naturally leads to commutators involving Qi 

5,L as in (2.5b) and not Qr which annihilates the vacuum [ 221 0 Since SU3 is 

broken (ms # m ), Qi f Qf’, and hence (2,30) indicates that if pion PCAC is 
- 

always good, kaon (and eta) PCAC may be, at times, bad. We shall return to 

this point again in Sec., IVB. 

Finally, since the light plane states do not have simple angular momentum 

properties [ 10,251, it has proved useful to search for a unitary transformation 

which relates the W-spin generators of the constituent quark states, 

SU(6&V,strong’ to the SU(6)w light plane charges associated with the quark cur- 

rents 0 For noninteracting quark states , Melosh obtained the unitary trans- 

formation [ 25 ] 

V free = exp (ijd4x 6 (x+)$? (x)tan-l(% 0 TL /K )@ (x)} ’ - (2.31) 

where K represents a quark:hadron mass scale. This unitary transformation 

has been successfully applied to (chiral symmetric) hadron decays 1261 and to 

other hadronic transitions [ 271 0 It has also been suggested as a tool to analyze 

the chiral symmetry breaking properties of H’ [ 28 ] 0 

C. Scaling, Fixed Poles , and Quark Probability Distribution Integrals 

As will be discussed in the next section, the baryon matrix elements of the 

bad operators ui are related to regulated integrals of the structure functions 

found in electron and neutrino deep inelastic scattering. Alternatively, the 

matrix elements of ui can be related to the a! = 0 fixed poles found in forward 

current-baryon scattering. We therefore review the interrelationships of these 

amplitudes and fixed poles in the present section, 

The conventionally defined structure amplitude for deep inelastic scattering 

off a spin-averaged nucleon target is 1291 
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W = 
P” 

$--Cl ye 4 iqoy 
<PI [J,$,, J;(O)1 ]P> = #12> v> 

+.m$--$q$(PY --$q,)W2(q2?.; ’ 

v _ i ‘PVIYPP W3K12A + qP;v w4(q2, y) +sqy+ pvqP ( ) 
2rni 

w5t2, v) (2.32) 
“N 2t-n; 

where v =qop, For electron scattering J = V EM - 
/J I-1 =“c,Z 1, 3 +lh )q, and J3 8 

parity and current conservation demand that WiN ,w;N = WgN = 0, For 

neutrino/antineutrino scattering, J ~ = (V-A),“’ =<~~(l-iy~$(~~ Fih2)q; in what 

VP follows only the isotopic even combination W: = WY’ + W. 
1 1 

will be important. 

An analysis using leading light cone singularities or the Bjorken-Johnson-Low 

limit [3O] yields the scaling properties 

lim Wl(q2, v)* = F1(x) 

lim +W 

“N 
2,3tq2sp) = F2,3(x) 

“N 
4,5tq2d’) = F4,50 (2033) 

in the scaling limit -q2, Y ---L o3 with x = -q2/2y fixed. Experimentally, this 

seems to be verified in the case of the well-measured functions WY” and WipO 

The deep inelastic structure functions Wi are, of course, the absorptive 

part of the structure functions for the forward scattering of currents off spin- 

averaged nucleon targets 0 For the latter, it is advantageous to employ a set of 

KSF (kinematic singularity free) covariants which are slightly different from the 

covariants employed in (2.32): 
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T =i CLV J - d4y elq:Y <P IT” (J/p J; (0)) ]P> 

ZX ( 
2 -q gpv + s qy) Al&12, v) 

- i ~p,,gpaqpA3tq2, v) +gpv A4tq2> v) 

+ (Ppqv +P q - “g/J A5(q2, ZJ I-L v) +PpPyA&4 (2.34) 

where, to avoid kinematic singularities in A2, one includes a sixth invariant 

amplitude, A6, which is independent of q2. For convenience, the isotopic spin 

notation for the A is taken to be the same as for the W. In addition to the Regge 

singularities known from purely hadronic amplitudes, the light cone structure 

of two-current amplitudes gives rise to fixed poles (i. e., Regge intercept 01 

not a function of momentum transfer) in T 
P’V 

; in particular, one can find Q! = 0 

fixed poles in the crossing symmetric amplitudes, It is commonly assumed 

and can, in fact, be proved [ 12,13,31] that the residues of fixed poles in kine- 

matic singularity free amplitudes are polynomials in q2 so that they are real and 

do not appear in the absorptive parts of the amplitudes (the deep inelastic struc- 

ture functions w). Thus, from the known Regge behavior of the amplitudes, one 

can isolate the part of Ai which corresponds to the a! = 0 fixed pole for large v [ 131 , 

AfP 1 = Cl(S2) Y0 

AfP = c2 (s2) v 
-2 

2 
AfP 3 = c3 cl21 v 

-1 

AfP 4 = C4(q2)v0 

AfP = c5 (s2) v 
-1 

5 
-2 

Aip=c6v , (2.35) 
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where Ci (q2) are polynomials in q2. If one further assumes that the Ai scale 

as their imaginary parts Wi, then one finds that vAl, v 2A2, vA3, v A4, p2A5, 

and v2A6 scale. When this scaling behavior is applied to G-35), one con- 

cludes that all the Ci are constants [ 311 and that Cl = C4 = C5 = 0. Writing 

dispersion relations for Ai, one then relates the fixed pole residues to integrals 

over the deep inelastic scaling functions. Thus [ 7, 13, 321 

c1=c4=c5=o (2. 36a) 

00 

c2 = 2 
I 

J& P,(x) 
X2 

0 

(2.36b) 

(2.36~) 

where the tilde indicates that all Regge behavior with a! > 0 has been subtracted; 

this Regge subtraction contributes to the integral in the interval 1 <x < 03 . The 

result for C2 in (2.36b) can also be derived by use of the DGS representation 

along with the scaling structure of v W2 [ 321 . Thus the a! = 0 fixed pole residues 

can be found either through a knowledge of the current-nucleon scattering ampli- 

tudes or via the deep inelasti c scaling functions for all x; the latter must be known 

extremely well, however, in order that the Regge subtracted integral yield a re- 

liable result. 

The fixed pole residue Cl” at q2 = 0 has been estimated from photoproduc- 

tion data [ 331: 

c” = ; c;p (0) 
t-O0 = 1+1 

2 7r2* ! z’ (V)dv “N 1 

0 

(2.37) 



- 16 - 

where z 
YP 

is the Regge subtracted photoproduction cross section. 

The value for the neutron fixed pole [ 341 is more poorly determined being 

consistent with 0 (as often guessed at from the v -. 0 Thomson limit which 

yields the result CYp z 1 in the case of the proton) but also consistent with the 

value required by our later analysis (CYn N 2 /3). 

The a! = 0 fixed poles in A6 are unknown since F5(x) is difficult to determine 

experimentally and since high energy axial current-nucleon scattering is unknown. 

Theoretically, one can show that F5(x) = 0 in parton and scalar gluon models; 

this is not the case, however, in vector gluon models (with spin l/2 quarks) 

where F5 is proportional to the quark-gluon coupling constant [ 131 . Nonetheless 

we shall present a number of arguments which imply that the fixed pole, C6, for 

strangeness nonchanging currents, proportional to a subtracted integral over F 5’ 
(2,36c), is zero. In particular, we show below that, assuming the validity of - 

pion PCAC, (2.6), C6 f 0 would lead to fixed poles in hadronic amplitudes in 

contradiction to bilinear unitarity. Later we shall argue for the phenomeno- 

logical necessity of C6 = 0. 

Beginning with the amplitude expansion, (2.34), we see that the amplitude 

for double axial divergence-scattering is given by 

qT p pvqy=q~A4+q2- vA5 + u2A 6 (2.38) 

From the results of (2.36) the fixed pole behavior of the double divergence 

scattering is then - C6 v ’ (independent of v and q2). Using PCAC (2,6), , 

double divergence scattering is proportional to the amplitude for TN scattering 

and hence if C6 # 0, this purely hadronic amplitude will have a fixed pole, not 

allowed by bilinear unitarity. An essentially equivalent argument considers the 

single divergence-current scattering amplitude and finds an a! = 0 fixed pole in 
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itfor C,#O. By the arguments of Cheng and Tung [ 351 this also implies the 

presence of o! = 0 fixed poles in purely hadronic amplitudes of the type Vp - @. 

Thus, subject to the limitations of PCAC, we conclude that C6 = 0. If the cor- 

rections to nPCAC are smaller than order rn: /rni or if the dispersive correc- 
- 

tions to PCAC cannot generate cancelling fixed pole behavior, then neglect of C6 

is justified. As we shall see, the quark masses must not be too small (i.e., they 

cannot be of GMOR size) if we are to trust our approximation of C6 = 0 in chiral 

breaking applications [ 361 D 

Several other arguments for a small value of C6 are possible. It was shown 

in ref. 13 that C6 is proportional to the quark-gluon coupling constant g (multi- 

plied by a quark mass). According to most analyses, in the context of asymptotic 

freedom, $-decay, etc., g is a relatively small number implying an unexpectedly 

small value for C6. The fact that g + 0 yields C6 = 0 is no surprise, since for 

free quarks, i. e. , in the weak binding approximation, F 5 = 0 identically and 

hence C6 = 0. Further, we remind the reader again that this discussion has been 

for AS = 0 currents. The AS = 1 case will be discussed in the next section. 

Finally, we will be discussing various probability distribution integrals of 

quarks in baryons . With the help of the formal definition in the quark-parton 

model, one can write 

F;’ tx) 
X 

= + (u(x)+U(x)) +$ (d(x)+;i(x)) +; (s(x)+;(x)) (2.39) 

where u(x) (‘;;(x)) is the probability of finding an up-quark (up-antiquark) in the 

proton between x and xf dx, etc. The valence values are well known in terms 

of the integrals 
J 

(u -ii) dx = 2, 
J 

(d -3) dx= 1, and / (s -s) dx=O. The prob- 

ability sums such as u(x) +u (x) , however, can be strongly affected by the pres- 

ence of quark-antiquark pairs in the baryons. The quark distributions of interest 
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in the following sections are ^fi where, for instance, 

(2.40) 

where R. s. indicates that Regge behavior with 01 > 0 has been subtracted. This 

subtraction includes the Pomeron, but even though the effect of quark-antiquark 

pairs is thereby suppressed, the result that T, Td, and ys turn out to be close 

to the valence values of 2, 1, and 0 is surprisingly simple. This will be dis- 

cussed further in later sections; the valence values are consistent with the fixed 

pole estimate [ 7, 11, 121 of (2.36b) and (2.37): 

0 

Fz 1 . (2.41) 

While the fixed pole scale C “yn- 1 en. - 5 C2 1s not well enough determined to further 

constrain the values of ?, it is the right order of magnitude so that valence-type 

values for the TVs are not ruled out [ 12,341 . 
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III. CHIRAL SYMMETRY BREAKING BARYON MATRIX ELEMENTS 

A. Relation Between Light Plane Behavior, Fixed Pole Assumptions and the 

Infinite Momentum Frame 

The connection between the matrix elements of the bad operators ui and the 
w 

fixed poles of the deep inelastic structure functions can most easily be seen in 

terms of the nucleon matrix elements of the sigma term written in quark lan- 

guage as 

2mN arN = m (‘;;u + Tid)NN . (3.1) 

Following the procedures outlined by Jaffe and Llewellyn-Smith [ 71 one first 

takes the double divergence of W 
I-1* 

in (2.32) for neutrino (or axial -vector) scat- 

tering and uses the divergence condition 8 . Ai = -mcy,. hiq for i = 1, 2, 3, to 

’ isolate the most singular term on the light,cone, . 

4xF4(x)-2F5(x) = (m2/mi)F2(x)/x2 . (3.2) 

Next one computes the single divergence of 

sum rule 

W to obtain the Regge subtracted q 
lJ* 

00 

1 uyN = zrnN 
I [ 

dx 4xFi (x) - F;(x) 1 , 
0 

which, when combined with (2.36b) and (3.2) can be rewritten as [ 71 

A2 co 00 

m 
%J =KN SF+(x) + +mN 

x2 2 
0 0 

N)++ (l/8 mN)Ci . 

(3.3) 

(3.4) 

Thus one sees that the nN sigma term can be expressed completely in terms 
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of the two a! = 0 fixed pole residues. Inverting (3.1) and similar expressions 

it is readily verified that the nucleon matrix elements of the bad operators u. 
1 

can be expressed in terms of m q.~ C2 and C6/mq 

The relation between the light cone expression (2.28a) for ui and the fixed 
- 

pole description is now apparent: the quark mass matrix third term in (2.28a) 

corresponds to m 
Q 

C2, while the first two terms in (2.28a) correspond to the 

C6/mq : (this latter term is actually independent of quark mass because C6 is 

proportional to m q [ 111). Put another way, setting C2 = 0 corresponds to the 

GMOR SU3 assumption; (2.37)) however, argues that C2 is not zero, although 

/\2 
tm lrnN) ‘2 would be suppressed if m << mN. The fact that orN is indeed 

large [ 181 indicates by (2.14) that the GMOR SU3 assumption is suspect and 

that the C2 term dominates (3.4). Finally it may be argued on the basis of the 

discussion in the previous section that it is perhaps a good approximation to 

neglect the non-current conserving fixed pole residue C6 especially as our quark 

masses turn out to be large. Hence we take as our fundamental assumption for 

r-like axial currents 

(3.5) 

so that in the scaling language of quark probability distribution integrals we ob- 

tain (pliu Ip> = 2mTu and <p I zd 1 p> = 2m?d from (3. l), (3.4), and 

(3.5) [6, 11, 121. 

As mentioned previously, this analysis applies only to AS = 0 currents; 

AS = 1 currents may be treated similarly to (3.1) i (3.5) with certain crucial 

differences: 

0) We consider only the axial parts of the AS = 1 currents (since the 
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vector parts also have non-zero divergence for m # ms) so that the 

R.H. S. of (3.2) becomes proportional to (m + ms)2 and all F’s refer 

to axial currents only. 

(ii) It is not plausible that F5 and, hence, C6 (AS = 1) = 0. Indeed naive 
- 

parton model traces show that F5 depends on the difference between 

initial and final quark masses. More precisely 

u-s A2 2 m -m 

F5 .g-‘;; = ( 1 
S 

$f,(x) \ 

2rni x t 1 -fs (xl 

(iii) Consequently the combination of (3.4) and (3.1) appropriate to kaons 

yields 

( uu\ 
tG+mJ /,pl ss, I@=. @,+a)’ 

i 
/+ (1 ’ /‘f 
-) ,\m2-mz, 1,~ , 

S 

so that we regain < p I cu I p> = 2 m Tu and obtain the new result 

(p Ix9 Ip ’ = 2m T i.e., s s’ the corresponding quark mass factor 

always appears multiplying the quark field distribution integral. 

Non-zero values for F5 do, of course, imply (following the argument in 

Section II) J = 0 fixed pole behavior in AS = 1 axial-divergence scattering. Strict 

application of kaon PCAC to AS= 1 axial current divergences would then imply 

a J = 0 fixed pole in the K-nucleon scattering amplitude. Thus if we trust the 

naive parton model (weak-binding) results, we must presume a breakdown of 

kaon PCAC for calculating J = 0 fixed pole residues. This is not implausible as 

corrections to kaon PCAC are, naively, as large as the value of F5 (and hence 

C6) calculated, for AS = 1, above. The opposite choice, i. e. , trusting kaon 

PCAC for the J = 0 fixed pole behavior, would lead to serious inconsistencies in 

the type of phenomenology which follows. 
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In summary, for nucleon matrix elements of the sq fields, we have 

(p 1% 1 p> = 2mu$ <p I zd I p> = 2mdFd <p IFS Ip) = 2ms$ 

(3.6) 

<nI% In> = 2mUTd <nl’;id in> = 2md?u (nlgs In> = 2msFs . - 

Equations (3. 6) are, of course, fully covariant [ 291 . However, an especially 

transparent alternate derivation employs the infinite momentum frame where 

5~~ q = qqpP/m in the forward direction leads immediately to (3.6) if Z diagram 

contributions are negligible [ 11, 121 . Thus, there are four interpretations of 

(3.6): 

(i) 

(ii) 

(iii) 

(iv) 

Dominance of the quark mass matrix term in the light-cone decom- 

position of the <N I ui I N) . 
Suppression of the pPpV o! = 0 fixed pole for AS= 0 axial-vector nucleon 

. 
scattering, and, hence, of a! = 0 fixed poles in hadronic TN scattering. 

Suppression of Z diagrams in the infinite momentum frame for 

<Nl$ydN> . 
Small quark gluon coupling constant, i. e. , the weak binding approxi- 

mation. 

Since the arguments leading to (3.6) can be repeated for hyperon targets, one 

can immediately obtain the hyperon SU3 analogs [ 121 of (3.6): 
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‘$’ 1;~ lz+> = 2muru, <z+ IJd I Z*> = 2mdTs, <z* lgs 1 $> = 2msrd 

< if IYiu I 23 = 2muYs, <z- Izd Iz-> = 2mdTu, <x- 1% I Z-> = 2msyd 

< z” IiYu I ~“>/mU=<~ol~dI~O>/md=~u+~ 
S’ 

<z” IFS I z”> = 2msFd 

~“l~ulAo>/mU= <A”I~dlAo>/md= $ <+4rd+Ts 

<A”l~sIAo>/mS= i 
i 
2?u-?d+2$) 

<$ I& I $> = 2muyd, <$ IJd I 8) = 2mdc, <$I% I $> = 2msTu 

<E- 1% I z- > = 2muTs, <z- Izd I $ ) = 2mdyd, <z- 1% I zd > = 2ms$ 

(3.7) 

We re-emphasize that in (3.6) and (3.7)) the quark masses are those which 

appear in the fully perturbed Lagrangian (and also in 2.23a). The results (3.7) 

are derived using the fact that the Ti for other baryons may be determined by 

SU3 symmetry from those we have defined for the proton, T, Td andT; that is, 

quark light cone distributions transform according to SU3 as implied by the 

simple state transformation properties under the light plane charges (2.30). 

The matrix elements (B I qq I B > , themselves are not directly related by 

SU3 but, rather, display the cq mq of the third term in (2.28a). 

It is perhaps also important to stress that in the present approach, as em- 

bodied in (3.6) and (3.7)) there is no inconsistency between the SU2 XSUi limit and 

C6 = 0 of the type discussed in ref. 13. The fundamental assumption behind the 

inconsistency proof was that the u8 part of H’ generated all SU3 splittings. Here 

uo, because of the unequal quark masses appearing in the strange and non-strange 

<Gq>B ‘s, also generates part of the SU3 mass splittings. 



- 24 - 

B. Baryon Mass Formulae 

Taking the octet baryon matrix elements of the strong interaction Hamil- 

tonian leads to the possible forms 

<B]H]B> = 2mE, 4ZBmB . - (3.8) 

Substituting Ho + H’ for H in (3.8)) leads to the Gell-Mann-Okubo octet-breaking 

form 

mi+ 3mn A = 2mG+2m2, 
L (3.9) 

for linear masses (n = I) or quadratic masses (n = 2). To decide between these 

alternatives in our quark model scheme, we parallel Caser and Testaqs argument 

for the pseudoscalar mesons [ 371 . The equation of motion for a . VK- implies, 

via (2.4) and (2.5), the relation 

’ ’ ‘K- = 
-iE. 

2 ‘8 ?c-’ 
(3.10) 

Even though the u’s are “bad” operators, u K- can transform only as hK- . Also, 

the Ademollo-Gatto theorem applied to the vector current between baryon spinors 

leadsto <Bf lV~lBi>=iffji~+... . Combining these two statements with 

(3.10) then gives the linear mass formula [ 381 in (3.9). 

While both the linear and quadratic forms of (3.9) are reasonably well 

satisfied phenomenologically, the average masses [ 391 mN = 939 MeV, rnz = 

1193 MeV and m 
E 

= 1318 MeV predict mA = 1107 MeV (1128 MeV) from the 

linear (quadratic) version of (3.9). In the quark model scheme where H’ is pure 

octet, such correctionsto m 
A can be interpreted as Hr2 terms arising from the 

perturbative expansion of (3.8) which include parts transforming as 27. When 

scaled to the octet part, this 27 part is 0 (3%) in either the linear or quadratic - 
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formulation [ 401 (but with opposite signs). Following (3. lo), we shall assume 

a linear mass dependence in (3.8) and account for the slight 27 contamination. - 

While such refinements have a marginal effect on the semi-strong mass differ- 

ence constraints presented in this section, they will have a bearing on the de- 
- 

termination of the ninth pseudoscalar mass discussed in Section IVE. 

In our quark model scheme, (2.17)) (3.6), (3.7) and the linear form of (3.1) 

can be combined to eliminate the 27 part in the octet d/f ratio, - 

(d/f)ss = 
ru - 21,+T 

S 

Yu -?s 
(3.11) 

3 = --- 3mZ-?&-mA-mg 
5 m 

E 
-m N 

The quadratic mass formula gives ( d/f)ss M -0.28. Then the singlet and octet 

masses 

2mX+ 2mN + mA + 3mz)= 1151 MeV 

(3.12) 
8 mB= $ 8m 

( E 
-2mN+3mA ;9m,) M 128MeV 

can be combined to form the only other (octet) constraint on the quark parameters, 

(rnf - m2)(fu - fd) = 2r?i,rni M 0.29 GeV2 . (3.13) 

If we now assume that the strange quarks are negligible in the proton so that fs = 0 

(later justified), then the proton Compton fixed pole scale (2.37) together with 

(3.11) determine f, andyd [ 6,121: 

(3.14) 

quite close indeed to the valence values 2, 1, and 0. Given the absence of an 
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accurate determination of the neutron fixed pole scale, it is possible to slightly 

alter Tas well as 7, in (3.14) from the valence values and still obey (2.37). 

However, the relevant quantity in (3.13)) TU - T,, then changes very little. In 

particular, given (3.14)) (3.13) then implies 

m2 _ G2 M 0.44 GeV2 
S 

r;l23m: , (3.15) 

which is an important constraint on the size of the quark masses [ 61 . 

A similar analysis also holds for the decuplet masses. Since no structure 

functions are accessible for decuplets, one can only apply the valence values in 

this case. This may not be too bad an approximation, however, because the de- 

viation of (3.14) from the valence values is a measure of the ,X -A mass differ- 

ence . For de cuplets, however, the equal splitting rule is consistent with (but 

does not imply) valence values for the distribution integrals. With this assurnp- 

tion, the octet mass combination analogous to (3.13) is (mD ~1380 MeV) 

m2-m2= ggD(mg+m,,-2mA)F;:0.42GeV2, 
S fi 

(3.16) 

very close indeed to the octet baryon value (3.15). 

If the baryon mass formulae were linear rather than quadratic at the quark 

level, i. e. , if C6 were non-vanishing and in fact dominated <B I cq I B> (rather 

than (3.6)) as in the GMOR scheme, then the octet mass differences would give 

m -f?l 
S 

N 190 MeV whereas the decuplet mass differences would imply 

m -6 
S 

N 140 MeV. Furthermore, a linear combination of the quadratic mass 

structure and linear mass structure would not lead to a simpler consistent so- 

lution than (3.14) - (3.16). One might then argue that this consistency is further 

indication that fixed pole (or Z diagram) corrections to (3.6) are in fact small 

and that (3.5) is approximately correct. 
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To complete the picture, the octet-decuplet mass difference of AmDB = 

1380 - 1150 M 230, which is an SU6 effect, presumably due to a quark spin-spin 

interaction in Ho satisfying (2.1)) may be explained in terms of the scaling func- 

tions which also (but independently) help specify chiral symmetry breaking ef- 

fects as in (3.6) and (3.7). For example, it has recently been argued [ 411 that 

this SU6 mass difference, when formulated as the difference between the A and 

N Regge trajectory spacings, is linked to the SU6 broken value of Fy/Fi’- $ 

(rather than the SU6 value of i) near x - 1. 

C. Baryon o Terms 

As was stressed earlier, the large experimental value of the TN uterm [ 181 

gave the first clue that the GMOR SU3 assumption for the bad operators ui and v. 
1 

may not be correct. This value is obtained from on-shell TN data (q2=qt2 = m2J, 

but extrapolated below threshold, via singly and doubly-subtracted dispersion 

relations, to [ 4,421 v = 0, t = 2mi, where the axial-vector-nucleon corrections 

to the Q term are O(m$ in the forward, isospin even TN amplitude, 

F (3 i v=O, t=2m “,:L gN/fi+O(m:) . (3. 17) 

Using the latest and most accurate data, fixed t and independently interior dis- 

persion relations, many analyses [ 181 have obtained values for (3.17) averaging 

(1.05 f 0.07) rni’, corresponding to (2.13) for fn M 93 MeV. Before 65 MeV 

is to be accepted as the true value of u.~, the subtle sign change in (3.17) 

must be appreciated. In the limit of both pion momenta being soft, the exact low 

energy theorem for F -t+) is 

F (+I 

( 

v = 0, t= 0; q2=q’2= 0) = -oyN/f”, (3. 18) 

The presence of the Adler zero [ 431 at 
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= 0 (3. 19) 

is what causes the sign change between (3.17) and (3.18). This zero is close 

to being satisfied at the on-shell point [ 441 v = 0, t = rnz. If c were near 
- 

- & , then pion PCAC could be invoked in an operational sense and an expan- 

sion in q2 and qv2 satisfying (3.19) would convert (3.18) to (3.17) provided cor- 

rection terms O(Hf2) were small [ 4, 451. Since, however, ayN is roughly 3 

times the GMOR value, it is not clear that pion PCAC is valid in such an opera- 

tional sense and this in turn would cast doubt on the validity of (3.17) and there- 

fore on the meaning of the large value of i? (+) (0, 2,:): 

There are in fact two arguments which reaffirm the correctness of (3. 17) 

and the validity of ayN M 65 MeV. Firstly, even if c is not near - fi , pion 

PCAC can always be tested in a dispersion-theoretic sense (neutral PCAC). In 

the case of TN scattering, the Adler zero is manifested to leading order in the 

invariants q2, qv2, and t via the analytic expansion. 

,(+j (v ) t; q2, qt2) = (T f; [P-P(y-i)+:.(~4)] 
(3.20) 

Phenomenologically it appears that [ 461 p M 0.4 and does not vanish as assumed 

in the formal chiral expansion with ar’ N fi + c manifestly small. Never- NN 

theless (3.20) still implies (3.17) - (3.19), with on-shell PCAC corrections to 

(3.19) measured to be -. 16 m ,’ or about 10% per pion [ 44, 471. 

A second argument in favor of (3.17) is an independent, but much less ac- 

curate, estimate of orN by the Fubini-Furlan extrapolation [48] of the soft 
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result (3.18) along the parabola v N q2 up to the physical threshold v = rnn, t = 0. 

In this case the sign of ~7~ does not change and one finds (V = (S - u)/4 “N) 

<$‘(+) (m 
7r’ 

0) = -cJ~* + R(+) 
NN (3.2l.a) 

- 

f2 F(-) (m 0)= $rnr+R(-) , (3.21b) 
lr 7r’ 

where R(*) are s-wave rescattering integrals, presumably dominated by the 

resonances N1 (1535), N1’ (1700), and A(1650), leading to R t+) - 4R(-). The 

experimental s-wave scattering lengths applied to (3.21) then lead to the 

estimate [ 51 

cP= NN = 66 f 18 MeV . (3.22) 

While this estimate is certainly less reliable than the on-shell value of 65 & 5 MeV, 

it does verify the sign change in (3.17). Moreover the scattering length al+ 2a3 

contributes with opposite sign to (3. 17) and (3.2la), and its magnitude ( - - 0.02 

n-i:) therefore provides a sensitive test as to any difference between the values 

(2. 13) and (3.22). Consequently one may conclude that (2.13) is correct. 

In quark language, one can combine (3.1) with (3.6) to obtain the Jaffe- 

Llewellyn-Smith form [ 6, 7, 121, 

Gk = g (Tu+f,). (3.23) 

Since oyN then depends quadratically upon m2 and upon an insensitive combina- 

tion of the distribution integrals fu andTd , it is reasonable to combine (3.23) 

with (2.13) and (3.14) to estimate the size of the non-strange quark mass, 

65 fi:rn M 140 MeV . (3.24) 7r 
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If ayN should be substantially reduced in the future to, say, 45 MeV (at the 

expense of pion PCAC and large corrections to (3.19), the value of m would 

change only slightly to 120 MeV. Given (3.24)) one can apply the quark mass 

scale set by the baryon mass splittings in this scheme, (3.15), to estimate the 

size of the strange quark mass, 

m 
S 

M 4.9mn M 680 MeV, (3.25) 

X = ms/i% w 5 . (3.26) 

Furthermore, with the additional assumption thatT strictly vanishes as in 

(3.14) (to be independently verified shortly), (3.8) and (3.23) can-be combined 

to extract the chiral octet baryon mass 

“0 =mN \ 1 - 07~ 
I 

- \ 2mB M 910 MeV (3.27) 

and the perturbative condition (B I Hr I B) << <B I Ho I B) is seen to hold, 

mN-mO x 30 MeV << m. , (3.28) 

which preserves the internal consistency of this scheme. 

These results can be converted into the usual chiral symmetry breaking 

language. The ratio X N 5 applied to (2.21) immediately yields [ S] 

c = - & &+ M -0.8 . 
i ) 

(3.29) 

While this value of c is not as close to - a as is the GMOR value, it is midway 

between this SU2 x SU2 chiral limit and the SU3 limit c = 0. This argues in favor 

of a dispersive “neutral” PCAC rather than “strongfl PCAC (c N - &) or 

(‘weak” PCAC (c -.O) . Evidently this is still adequate to allow pion PCAC to be 

a useful tool to probe chiral symmetry and chiral symmetry breaking in low 
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energy nN and 7~ scattering and in many other strong, electromagnetic and weak 

processes involving pions. Another conclusion in the chiral symmetry breaking 

language is that for a vanishing ys, (2.19) and (3.6) imply [ 6, 491 

(” /u ) = fi 
0’ 8N 

‘(Eu+‘d)+ ms’s 1 fi: ,,z 
iii ( fucTd ) - 2m Y I 

- f3 3oJ . 

s s 

as might be expected from the Zweig rule. However, (u8)N does not transform 

like A8 in our scheme and E 8( u~)~/B mN is not -210 MeV as would be the case 

if the GMOR SU3 assumption were valid. Instead, (2.19), (3.6), and (3.26) 

indicate that [ 501 

<NI Efj u8 IN> 

2mN 

M $(-210 MeV) . (3.31) 

Combining (3.29) - (3.31) with the form (2.14) again reproduces orN N 65 MeV 

as expected, and one can see how the quark mass ratio X in (3.29) and (3.31) 

conspires to keep oyN large while the ratio (u /u \ 
O w 

remains near unity as is 

necessary so that SU2 x SU2 breaking is of order SU3 breaking [ 41 . 

The phenomenological values of the Is = 0 , 1 KN u terms tend to reinforce 

this picture of chiral symmetry breaking. They are usually defined as 

andwith (2.19), u3= Eu - ‘2id and (3.6) they can be expressed in quark language 
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as El 

&lN -fu + 27,‘ +mY 
ss 1 

CT% (Is = 1,) = - 

(3.33a) 

(3.33b) 

These quantities can only be extracted from experiment via the Fubini-Furlan 

extrapolation to threshold [ 481, analogous to (3.21). One finds 

f; F~ 
s=l 

tm,, o)=-u~~p,= 1) -mK+Rl , _ 

(3.34a) 

(3.34b) 

where again R. I are s-wave rescattering integrals, presumably large in order 
3 

to measure the not insignificant kaon PCAC corrections, now O(mt/m$ in our 

dispersive, neutral version of PCAC. It turns out, however, that due to the ab- 

sence of exotic KN resonances, R. is in fact very small. Both R. and Rl are 

controlled by the u channel EN spin $ At (1405) and Er (1750) resonances, but 

the isospin crossing matrices suppress R. and enhance Rl. Further, since ex- 

perimentally the s-wave scattering lengths obey <f 1 KN 
3 “I = 0 = 0, it is clear 

from (3.34a) that oNN s KK (I = 0) M 0 [ 191 . Taking :i to traniform like hi in 

(3.32a) then leads again to the conclusion that [ 41 (u,/u,)~~~~ N 1 in the 

GMOR scheme, and consequently to the low estimate U$ (GMOR) M 20 MeV as 

in (2.14). In the quark language, however, the combination ( - fu+ 2Td) in 

(3.33a) is near the valence value of zero and so (3.33a) is a true measure of 

ys which is then of order (2 mN/mz ‘) crFN (Is = 0) = 0. Thus ys most certainly 

is very nearly zero as one might expect a measure of finding strange quarks in 

the proton to be [ 61 . 
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A more quantitative but also more model-dependent statement can be ex- 

tracted from (3.34a) and (3.34b) if one accepts the dynamical estimates of [ 5 l] 

RO M 29 MeV and Rl M 288 MeV (again consistent with the model independent 

estimate R. << Rl) which then lead to o 0 f 30 MeV and-o:: (Is = 1) 

- 180 MeV. These estimates pin down rs to be very near zero, and (3. 33b) also 

predicts that, given (3.23) and (T yN M 65 MeV, 

X -8, (3.35) 

not inconsistent with the more accurate estimate (3.26). 

The on-shell (Cheng-Dashen) method has also been applied to the KN sys- 

tem [45]. Unfortunately a formula analogous to (3.17) for the crossing- 

symmetric KN amplitude evaluated at the point v = 0, t = 2 rni can have 0 (m:) 

corrections as large as 30% and cusp corrections arising from the 2n cut. Fur- 

thermore, the resulting estimates of ONN s KK(I = 1) vary from 600 MeV [ 521 down 

to 100 - 200 MeV [ 531, depending upon how one treats the EN scattering lengths, 

phase shifts, and poles (A, 2, YT)-all absent in the Fubini-Furlan off-shell KN 

analysis described above. While the latter estimate implies X - 4 - 8, consistent 

with our previous determinations, the former value of 600 MeV leads to the GMOR 

value of X - 25. Clearly, then, no distinction between the two chiral breaking 

schemes can be made on the basis of the on-shell KN analysis at the present time. 

D. Threshold Photoproduction 

Chiral breaking corrections to the standard low energy theorems of pion 

photoproduction off nucleons have been obtained by use of equal-time commuta- 

tors of the axial-vector charge and its time derivative with the electromagnetic 

current evaluated in the Breit frame [ 541 . This leads to a Fubini-Furlan type 

of expression for the isoscalar photon electric s-wave multipole E (0) 
o+ at threshold, 



I 

- 34 - 

gA 
4mNf?T 

- R(O) 1 = 
‘1 

J d3x<p(6j I[i~.A3(X?,~(0)]*~I~(-P?> 
=-lim -2 (3. 36) 

F-0 <P(p? I~.@ IPG))) 

where the gA term in (3.36) is the nucleon pole contribution in the soft limit [ 55 ] 

R(O) ’ v 1s the isoscalar rescattering (and vector dominance) correction obtained 

from TN scattering, and Ts corresponds to the three-vector, isoscalar part of 

the electromagnetic current, Vem = Vv + Vs = V3 + 3 - l/2 V8. The chiral 

breaking equal-time commutator in (3.36) can be expressed in quark language as 

(3.37) 

The nucleon matrix elements of (3.37) can be analyzed in terms of tensor 

currents and SU6 symmetry [ 543 . In our quark model-infinite momentum 

frame approach of Section IIIA, we prefer to parallel the derivation of (3.6) and 

evaluate the nucleon matrix elements of (3.37) by keeping the leading spin-flip 

term in the light cone expansion of 4 uI q in (2.26~) combined with (2.24) or al- 

ternatively by evaluating < fl IT I N > and 3 zq in the infinite momentum frame 

while neglecting possible Z diagrams [ 61. In either case, the result is the same, 

e-g., 
(p’ I cri ;qi I P> = mi/mN) giu @‘)Fu@) ) (3.38) 

.th where mi is the quark mass of type i in the proton (i = u, d, s) and& is the 1 

quark probability distribution integral, similar to fi except that it %ountsl’ the 

difference between + helicity and - helicily quarks (relative to the proton’s 

helicity), whereas the fi counts their sum. These distribution integrals ii also 
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appear in the nucleon matrix elements of 4Y5 q, e. g. , 

<P’ IqiYgqi lP> = Ei” @‘)Y5”(P) (3.39) 

where it is important to note that no quark mass factor occurs in (3.39) as they 

do in (3.6) and (3.38) because the leading term on the light cone in (2.28b) must 

transform like gL (spin-flip) and this arises in combination with the first two 

terms of (2.28b) via (T g ci 
31 1 

rather than in combination with the quark mass 

term 03& Alternatively, (3.39) can be deduced in the infinite momentum frame 

from the two-component spinor reduction of ty, q to i; l (p’ - p) , where no 

quark mass term appears. Finally, then, one may derive a sum rule for the 

ii in terms of the axial-vector ratio gA = 1.25 by use of the quark model rela- 

tion a . A3 = -mv, 

<pi 1 a ’ A3 1 P> = -’ <P’ Iv3 1 P> = -mNgAU(p’)Y5 T3u@) (3.40) 

The resulting sum rules are obtained by combining (3.38) - (3.40): 

(3.4la) 

(3.4lb) 

It is then possible to combine the threshold theorem (3.36) with the quark 

(0) model sum rule (3.41b), and, with the estimate [ 54 ] Ry) w 0.12 Eo+ /mn and 

m 
V 

R 850 MeV, we have 

gA (3.42) 

This result can also be obtained from the tensor current-SU6 analysis of ref. 54. Thus 

(3.42) can be used to extract an independent estimate of m provided EIp+’ < 0 is 
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known to sufficient accuracy (there being a partial cancellation with the 

gA/4 mNf., > 0 term). With the use of the isotopic decompositions 

E(O) 
0-k (3.43a) 

(3.43b) 

E(O) o+ can be extracted from the threshold extrapolations of the sum of two small 

(TOP) numbers in (3.43a) (since E o+ amd Econ) are of opposite sign) or the differ- 

ence of two large numbers in (3.43b) (since E (T-P) 
o+ and E(2 are also of oppo- 

site sign). In the former case, the dispersion-theoretic extrapolation of von 

Gehlen [56] yields 

E(O) 
o+ = -0.062 mi3 . (3.44) 

Two recent energy-independent analyses of low energy pion photoproduction 

data [ 571 work with isotopic l/2 and 3/2 combinations of the multipole amplitudes 

(0) near threshold and both obtain a value for Eo+ (i. e. , by use of (3.43a) and (3.43b)) 

in almost perfect agreement with (3.44). It is therefore reasonable to apply (3.44) 

to (3.42) to find [ 61 

ii-i- 130 MeV, (3.45) 

which is roughly the same estimate as found from (T it&’ ’ (3.24). This estimate 

(3.45) is also valid in the GMOR approach ! 

One could, in principle, apply the same technique to the isovector threshold 

multipole amplitude E (+I o+ to again constrain the non-strange quark mass [ 541. We 

(+I hesitate to do so, however, because Eo+ is even smaller than E$) and not nearly 

so well-determined ,[5 73. Furthermore the I = 3/2 A isobar can contaminate the 

chiral breaking equation, whereas isospin conservation prevents it from 
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contributing at all to (3.42). For these reasons, we concentrate only upon the 

E(O) 
o+ chiral breaking constraint, and given the apparent consistency between 

the independent phenomenological values of 2, (3.24) and (3.45)) we conclude 

that our alternative to the GMOR scheme as proposed in Section IRA is on a 
- 

reasonably firm footing. 

E . Goldberger-Treiman Corrections 

In the chiral SU2 x SUB limit, the Goldberger-Treiman identity is 

mNgA = fT gTNN to) , (3.46) 

where gTNNto) corresponds to the zero-mass r” coupling constant with protons. 

For physical pions, therefore, the deviation from (3.46)) as given by the clis- 

crepancy 

A TNN = ’ - trn$Alf &N) 9 (3.47) 

is a measure of chiral SU2 x SU2 breaking [ 16, 581. Experimentally, using 

mN = 938.9 MeV, gA = 1.25, fn = 93 MeV, and gTNN = 13.40, this discrepancy, 

including present measured and estimated errors, is [ 51 

A nNN = 0.058 f 0.013 . (3.48) 

Chiral breaking matrix elements so far considered were not contaminated 

by pseudoscalar meson poles. In the case of Goldberger-Treiman discrepancies, 

however, since i3 . AT = - &v~ contains a pion pole, it must be removed before 

chiral breaking properties can be investigated. Calling <N lvr I N > the non- 

pole coefficient of the Dirac structure u 
PfY5 P 

u in <Nlv91N>, therNNdis- 

crepancy can be obtained with the aid of (3.40) as 

A 

A TNN = fTgTNN <N ITT IN> (3.49) 
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which manifests the chiral SU2 x SU3 limit for m --, 0. Likewise, the kaon 

Goldberger-Treiman discrepancies can be written in quark language as 

(N IvK IA> (3.50a) 

1 (N IvK I z> (3.50b) 

where gm = gpeA and gNm = g PK +z . 

As the non-pole matrix elements <Bf I vj I Bi > are not measurable, it is 

necessary to relate them via SU3 symmetry. To this end, we note that in our 

quark model scheme the spin-flip matrix elements \‘Bf Ivj I Bi >; , as repre- 

sented by (3.39)) do not contain quark mass factors as do the non-flip matrix 

elements <Bf luj IBi> of (3.6) and (3.7). As such, (B Iv. IBi > are ef- 
f J 

fectively llgoodrl matrix elements on the light cone and therefore should obey 

the GMOR SU3 assumption once the pole terms are removed, i. e. , 

(Bf lvj lBi) = (BII 711 B) jdvdfji + fviffji)- , (3.5 1) 

where dv+fv = 1. Combining (3.49) - (3.51), 

mass ratio in the SU3 breaking form [ 51 

where 

it is possible to express the quark 

/mz+mA+ 2mN‘ 

\ 4mN ) 

A= (- fig,, +gK)&2gTNN 

B= 
( 
- figy+gy)/2gA 

both become unity in the- SU3 limit. 

1 B J (3.52) 

(3.53a) 

(3.53b) 
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Following the discussion of ref. 5, we note that, experimentally, A and B 

now appear to be unity with roughly a 10% error since the combinations in (3.53) 

are very insensitive to SU3 breaking. Moreover a reasonable estimate of fK/f, 

is 1.22 with perhaps a 2% error. With these values and (3.48), (3.52) implies 

X =6 (3.54) 

with roughly a 20% error. This is roughly the same as (3.26) and the 

cruder estimate (3.35)) X - 8. Since we have also found m in two independent 

ways, (3.24) and (3.45)) we are encouraged by the overall consistency of this 

scheme + By way of contrast here, the baryon Goldberger-Treiman discrepancies 

also imply the value X - 6 in the GMOR scheme due to the SU3 approximation 

(3.51)) while the meson formula (2.7)and(2.11) gives the very different value 

XGMOR - 25’ 

F. Bag Model and Heavy Quark Models 

One of the key motivations in describing the quark confinement in hadrons 

via a surface [ 59 J “bag” potential is that, for massless quarks, the static SU6 

value of gA is shifted from 5/3 down to 1.08, not far from the experimental 

value of 1.25, Recently, Golowich [ 601 has shown that for a non-strange quark 

mass of size 

i5-t M 122 MeV, (3.55) 

a modified bag model calculation gives gA = 1.25. Even more recently, however, 

it was pointed out [ 611 that the experimental values of the nN CJ term and the 

proton charge radius prefer a smaller value of m, approximately 

iii cz 44 MeV , (3.56) 

giviw gA = 1.14 and a quark mass ratio of 

X -7 (3.57) 
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These results are strikingly similar to our conclusions, and while we do 

not understand the discrepancy between (3.55) and (3.56), we offer the following 

observations: 

(9 The bag calculation of gA involves ^m in an implicit dynamical manner; 
- 

gA is not proportional to an overall m factor. This is expected since 
-+ 
q y y5 q is a “good” operator on the light cone. 

(ii) While our chiral breaking calculation of oyN, (3.23)) is proportional 

to m2, the bag model calculation explicitly displays only one factor of 

2, the other m factor perhaps being implicit in the bag wave functions. 

“Wee” quark dynamics not presently incorporated in bag models, how- 

ever, alter the ‘TyN bag estimate so as to support the higher value 

(3.55). 

(iii) While (3.55) and (3.56) differ by a factor of three, both estimates are 

much greater than the presently preferred [ 621 GMOR value of 

m - 5 MeV. 

In either the chiral symmetry breaking picture or the bag model, the masses 

i?i and ms may be taken to zero, in which limit the SU3 x SU3 or bag model mod- 

ified SU6 limits are respectively recovered. Alternative pictures [ 631 have been 

suggested recently, based upon the non-relativistic Fermi-Breit type of reduction 

of a vector gluon potential. In this form of reduction the m -, 0 limit cannot be 

taken because of l/m factors. Phenomenologically these pictures explain both 

the SU6 breaking decuplet mass differences and the 2 - A mass difference, pro- 

vided one takes 

m 
6 = 336 MeV and X= -% = 1.6 

Gi 
(3.58) 

(Note that these are approximately the values obtained in the weak binding limit, 
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& Am 1 
3 N w 313 MeV and ms = 3 ma- , ) In our approach we accommodate 

naturally the 2 - A mass difference but have no definite prediction for the octet- 

decuplet splitting. Certainly the non-relativistic reduction is appropriate in the 

charmed quark sector but its application to the highly relativistic normal baryons 

may be misleading, particularly in light of the difficulties with the chiral limit. 

Yet other approaches to chiral symmetry breaking, within the context of o 

models [ 641, have been suggested, which yield large quark masses and a value 

of X similar to that in (3.58). 



- 42 - 

IV. CHIRAL SYMMETRY BREAKING MESON MATRIX ELEMENTS 

A. Constraints on (0 I vp I P> 

The fundamental pseudoscalar meson relation (2.7) can be expressed in 

quark language as (with fK = fn) 

2 
“K <OIv,lK> 

2 
= +(1+x) 

(0 I v* I “> 
7r 

(4.1) 

If we relax the GMOR SU3 assumption (2. ll), then (4.1) does not constrain X 

to the GMOR value of 25. Instead, as in the case of baryon matrix elements, 

one must investigate vi to determine its SU3 structure. 

Assuming again that the hadronic (pseudoscalar) states transform as irre- 

ducible representations of the SU3 group generated by Q:, as in (2.30), means 

that (0 Ivj IPk> is not required to have the Wigner-Eckart structure 6. 
Jk 

as in 

(2.10) unless the first (spin-flip) term in the light cone expansion (2.28b) con- 

trols <o Iv,lP> . In this case, there is no argument based on fixed poles 

in hadronic amplitudes or Z-graphs to decide the issue; however, the non-spin 

flip structure of < 0 1 vp I P> is similar to the spin averaged or non-flip be- 

havior of < B I ui I B 1 occurring in mass formulae and o-terms. Therefore, 

in parallel with our baryon analysis, we will assume that the quark mass (non- 

flip) term in (2.28b) dominates <0 I vp I P > . In this case 

(0 Ivp) -265 <OIvKIK> - ms+m . (4.2) 

Caser and Testa [ 651 give the infinite momentum frame interpretation of (4.2), 

noting that such a structure corresponds to the “direct” quark-anti-quark in- 

finite momentum saturation <0 I vp 149) <qq I P> , while “exchange” sat- 

uration correlates with the GMOR SU3 structure (2.11). In our language, if we 
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compute (0 Iv,1 P> in the infinite momentum frame by representing 1 P> 

as a superposition of on-shell quark and antiquark spinors, sharing equally the 

IP) momentum, then (4.2) results. This procedure is equivalent to a weak 

binding approximation which was one condition under which our earlier choice 

Ci = 0 was valid in the baryon analysis. 

Given (4.2)) the ratio 

<O Iv,lK>/<0 loch>= &+XJ (4.3) 

can be combined with (4.1) and then leads to the meson-determined quark mass 

ratio [ 211 

X = 2mK/m /1~6 (4.4) 

or alternatively C M -0.9 from (2.21). We believe it is significant that (4.4) is 

consistent with X M 5 - 8, as obtained from the baryon mass formulae, fixed 

poles, o-terms and Goldberger-Treiman discrepancies. 

An alternative derivation of (4.4) follows from SU3 x SU3 considerations 

on the light cone. Sazdjian and Stern [ 211 note that the quark mass term in 

8 l Ai (i.e., in vi of (2.28b)) transforms as (1, 8)L on the light cone. Octet 

light cone states transforming like (1, 8)L can also be constructed by operating 

the vector and axial-vector currents V’ and A* on the vacuum. The simplest 

state constructed in this way is the j = 0 “octet-axial” state dominated by the 

pion for Y = 0 and kaon for Y = 1 in the low mass region, and one is therefore 

led back-to (4.2) - (4.4). Although these low lying SU3 x SU3 light cone states 

are the simple hadron states, which by themselves are divorced from any light 

cone considerations, the above procedure was made more convincing by a par- 

allel treatment of the j = 1 light cone vector and axial-vector light cone states [ 211 

giving results similar to the usual saturation of the Weinberg first and second 

sum rules. 
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Another argument, by Fuchs [ 241, begins with the light plane expression 

for vi, (2,28b), and then transforms it to the constituent quark basis by applying 

the free Melosh transformation (2.31). To leading order in quark orbital angu- 

lar momentum, one is again led to the structure (4.2). Finally, in the present 

case, an argument for (4.2)) to be presented later, may be made on the basis 

of spontaneous symmetry breaking of the Nambu-Jona-Lasinio type. For the 

moment, we proceed to show that the phenomenology of meson chiral symmetry 

strongly supports (4.2). 

B . The P CAC Approximation 

One of the central inputs in any chiral breaking theory is the PCAC approxi- 

mation. For baryon matrix elements such as oFN or the Goldberger-Treiman 

corrections, chiral breaking and PCAC effects are independently accounted for. 

For pseudoscalar states, however, the two effects can become subtly intertwined. 

In the GMOR scheme, the SU3 assumption (2.10) coupled with the (3, 5) commu- 

tation relation (2.5b) implies that the PCAC operation for all qi - 0 in 

< pi ] uj I Pk> (this we term SU3 PCAC) is exact for i = 1, . . . , 8 (provided 

fn=fK=f ). 
r8 

In the chiral breaking scheme described in Section IIIA, as noted earlier, 

the fact that Us and uK (or vK and vd are not in the same SU3 multiplet (whereas 

u/G and k/C ms + m) are in the same multiplet) means that 17SU3 PCAC” will 

not be exact and in fact may be a bad approximation in some cases. On the 

other hand, SU3 PCAC ought to be a reasonable approximation in other cases. 

In particular, the SU3 PCAC limit of soft 7r, K, and 77 8 applied to the di- 

agonal pseudoscalar matrix elements of the chiral breaking Hamiltonian density 

Hr yields [ 31 as qi --)r 0, 
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<PilH1 IPi> M -if; ‘<Ol [Qf,H’ ] iPi’ 

z f;%Ola 0 AilPc 2 M m. 
1' (405) 

independent of the chiral breaking transformation properties of H’. Further- 

more, (4.5) is a powerful constraint on the theory, but one that is reasonable in 

the light of the Goldstone property [ 66 ] of Ho, 

lim <PilHOIPi> = 0 0 (4.6) 
qj-co 

More specifically, GMOR noted that in the free meson model 

<PiIHOIPj> = Gij(qoiqoj + $05) (4.7) 

vanishes according to (4.6). However it is clear that (4.7) is a rapidly varying 

(SU3 singlet) object which is rnasij on-mass shell in the rest frame. When the 

latter value is combined with the total Hamiltonian constraint (291 

<Pi IH I Pi>rest = 2rnf (4.8) 

along with H fHo + H’, one deduces that (4,5) holds in the rest frame and should 

therefore be approximately valid in the soft limit because H’ is not presumed to 

be rapidly varying, Thus one assumes 

<7rIH’In> M rnz <KIHg IK> M < (4.9) 

are always valid; we shall return to the implications of (4,9) in the next section. 

One should not infer from (4.9), however, that the off-diagonal matrix elements 

of <Pi Iuj iPk> need obey the SU3 PCAC property, for if they did, the GMOR SU3 

assumption (2.10) would be inescapable, We shall return to this point later, 

Finally, one must investigate the SU3 PCAC property as it applies to 

<O Iv,1 P>, Assuming it to be valid leads to the ratio (with fK = fn) 
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<OlvKIK> $2 - ;b <Ol v,la> =$TG- 
where 

(4.10) 

In the GMOR scheme, b measures the SUB breaking of the vacuum and must be 

small if (4.10) is to remain near unity as required by the GMOR SU3 assump- 

tion. On the other hand, in our approach u8 does not transform like h8 for 

single particle baryon states and one might suspect the same holds true for 

vacuum matrix elements. We shall investigate this possibility in Section IVD. 

To the extent that this is true, b need not vanish and the ratio in (4.10) need not 

be unity while preserving the PCAC approximation applied to <O I v,l P>. In 

other words, the Coleman theorem 1671, stating that “the symmetry of the 

vacuum is the symmetry of the world, ‘I could still apply to our scheme of chiral 

symmetry breaking but with a non-vanishing value of <O lu8 IO> because u 8 

could contain a part transforming like ho,, 

C. Constraints on <PI ui I P> 

Following the pattern of <B I ui I B> (non-flip) and <O I vp I P>, it is reasonable 

to assume that the dominant term in the (non-flip) matrix elements <P I ui I P> 

correspond to the quark mass term in the light cone representation (2.28a), 

Thus in our chiral breaking approach, the analogs of (3.6) and (3.7) for pseudo- 

scalar meson states are (for mu = md= &I) 

IT> =<TIddIT> =2&g, Or 1 is 1 ?r> = 2mszs, <K* <T&U I iiu I K*> = 2m& 

<K* I ;Id I K*> = 2&, , <K*l&lK*> =2msh, <Kg 7 , l:ulK, 7> =2mc 
, S’ 

Iad IK 7> =2x&, <K 6 71~~IK6 7 > =2msh, <rlgliiulq8> = 
(4.12) 

<K6,7 . 6 
, 9 

= <n81Fidly8> =; ii@+ 2Ks), <~J~ISSI~J~> =tms(4%-h”s). 
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Given the PCAC conditions (4.9), the equations (4,12) can be applied to Hf 

= m(&+?id) + msss to obtain 

m2 7r M 4i2h" + 2mFs 

2 
“K M 2(m2+mf)G + 2mayhs , 

(4,13a) 

(4.13b) 

mr whereas CT = m(iiu+dd) leads to 

7T7r (7 m- = 4?i12K, (4.14) 

Since T PCAC implies ggt = rnf which appears to be in reasonable agreement 

with experiment, a comparison of (4.13a) with (4.14) reveals mars as small, 

and ms >>m then indicates that 

KS 52 0. (4.15) 

Combining (4.15) with (4.13) leads to the PCAC prediction of the quark mass 

ratio, 

J 
- 

XPCAC = imK/m% - 1 M 5 o (4.16) 

Once again we note the apparent consistency between the value of X as derived 

from the mesons and from the baryons. The slight difference between the meson 

values (4.4) and (4,16) is a measure ofK PCAC corrections to (4.13b). In our 

approach it is not an accident that 

2 
XPCAC = XGMOR (4.17) 

because of the inherent quadratic quark mass dependence of H’ = m2(&+ad)/m -t 

I- mf&/ms with k/m q having simple SU3 transformation properties. 

We note, however, that SU3 PCAC cannot be applied to the off-diagonal 

matrix elements <T I uK IK> or <n I u I K> in our scheme. 8 K Further, assuming 

T PCAC is good (iO e, , KS x 0), implies that K PCAC will be bad for <K I u3 8 IK>. , 
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While these matrix elements do not affect (4,9) or (4, lo), we do not fully un- 

derstand why SU3 PCAC should fail in our approach for just the above four ma- 

trix elements 0 

Finally, although the quark mass scale is difficult to set for the mesons, if 
h 

we assume it is the same as found for the baryons , i.e. , m N m T, then (4.13a) 

and (4.15) indicate that “h N & While this is not near the valence value ‘i; = 1, 

the structure of the quark-antiquark mesons and the implied Regge subtractions 

in h” (as in the Trs) does not make such a connection compelling in our scheme. 

In other words, comparisons between baryon and meson chiral breaking matrix 

elements such as via quark counting are suspect in our approach. 

D. Constraints on CO Iui I O> 

Paralleling the analysis for <P lui I P>, we note that since the vacuum has no 

spin-flip component, the quark mass term ought to dominate the light cone rep- 

resentation (2,28a) for vacuum matrix elements. In this case <O lu, IO> N 
m s - & which does not vanish for ms f m and (4.11) then becomes 1681 

Since c N -0.8 to -0.9, it is clear from (4,18) that the SU3 symmetry of the 

vacuum is not measured by b being small in our approach,, Instead, (4.18) is a 

simple realization that u8 contains a large ho as well as a A8 piece (in the quark 

mass matrix term). 

Given- (4.18), one can see that in fact the SU3 PCAC property can be ap- 

plied to <O Iv, I P> because (4.10) is then 

<Ol VKIK> 
<Ol vp 

fi - *c - 3 
=J!2 +c 

(4.19) 

which is identical to (4,3). Alternatively, assuming SU3 PCAC to be valid in 
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this case again leads to (4,4) and X M 6, In short, there is a pattern of internal 

consistency for meson matrix elements in our chiral breaking approach which is 

similar to the consistency within the GMOR scheme. The value of the vacuum 

expectation ratio, b, must be as given in (4,18) if <OlvKlK9 cc m + m, etc, , 
S 

(4,2), and if PCAC is valid for both the expectation values <O IvK IK9 and 

<o IVT17r90 

Theoretically the vacuum expectation value <O l{q IO9 is trivially propor- 

tional to 2mq where mq is the quark mass in the spinor multiplying the creation 

and annihilation operators in the field q, Our model requires that such spinors 

always be solutions of the Dirac equation with the full quark mass, whether they 

appear here or in expectation values of the mass Hamiltonian H’, (This is 

equivalent to using the full mass matrix&in writing 2.28 for $$q and @y5hiq0 

The vacuum is, by definition, then a vacuum with respect to the massive quark 

field operators; and the expectation value of the number operator for massive 

quarks in a hadron must transform simply under SU3” This type of approach 

appears to be consistent with models in which the entire quark mass is gener- 

ated spontaneously or self-consistently. Indeed the original Nambu-Jona- 

Lasino [69] model for spontaneous mass generation begins with a Lagrangian 

with a 4-fermion interaction but without a mass term. Solutions exist for which 

the ground state of the theory is not a vacuum with respect to the original mass- 

less quark field annihilation operator; rather one defines a new vacuum I Om9 

and a massive quark field qm such that 

< Oml(rmqml Om9 a 2m (4,20) 

Perturbation theory is performed in the I Om9 basis and the perturbing La- 

grangian, for consistency, must not generate additional quark mass. The spon- 

taneous generation must not maintain SU3 symmetry if ms # m and if all mass 
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arises in this fashion, 

This is similar to what happens in a (r model where the quark mass is gen- 

erated by a oqeq interaction term, To obtain unequal quark masses ~0~9~ must 

be different for strange and non-strange quarks. To the extent that r represents 

a Hartree-Fock approximate form for the quark operator ciq90 itself, i. e, , 

(40 21) 

we again obtain (4,18). Again quark field operators “know” the full quark mass, 

E, The Ninth Pseudoscalar State 

The quark model naturally extends the octet of pseudoscalars to a nonet, and 

the possibility then arises of mixing the SU3 octet state n8 with the singlet state 

n10 A number of ambiguities and difficulties arise, however, in implementing 

this effect in chiral symmetry breaking theories. 

The first ambiguity lies in the nature of the octet meson mass formula. The 

structure of this relation is seen to be quadratic in the masses once one assumes 

the SU3 PCAC- relation (4,5), 

2 mn -t 3m2 
178 

-4mk = 0. (4022) 

This quadratic relation can also be derived by using the Ademollo-Gatto theorem 

on the matrix elements <TO lV[si5 IK*9 and <n8 lVtai5 lK+> by use of the usual 

SU3 transformation properties. The Heisenberg equations of motion imply 

El ‘q-i5 N u4-i5 (note that since only one component of u appears, one does not 

have to worry about its “bad” SU3 transformation properties [ 371). While (4,22) 

implies m2 
n8 

x 17 rnz whereas m2 
77 

M 16 rnz, it is possible that this octet rela- 

tion can be altered by a 27 piece, presumably of O(Hq2). Such an effect can be - 

seen in the baryon mass formulae, where it is roughly 3% of the baryon mass 

(see Section IIIB), This could shift m2 
n8 

by about rnf from the value of 17 rnz 
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predicted by (4,22), 

The second ambiguity concerns the identity of the isoscalar pseudoscalar 

meson which mixes with the physical 77 0 The conventional choice is the q ‘(958), 

with the mixing angle defined by 

I779 = cos 0 177 89 - sin B 1~7~9 

(4.23) 
I77 *9 = sin 8 l?j 89 + cos 8 $9 

The pure octet mass formula (4.22) predicts 

-ll”, while a 27 contaminated mass formula could give - 

The various meson decays and high energy charge 

exchange cross sections are reasonably consistent with quark model singlet to 

octet ratios and an rl -n I mixing angle somewhere between - 10’ and -20°, with 

e- -loo now favored because of the reduction of the experimental width of the 

7 ~721, It has been suggested, however, that it is the E(142 0) rather than. the 

7 ‘(958) which mixes with the n ; in this case, 8 N -6’. Finally, three particle 

mixing (n ,n ‘-, gluons? ) may occur rather than the simple two particle mixing 

scheme of (4,23). 

The main difficulty with the ninth pseudoscalar meson arises because of the 

existence of a ninth axial-vector current in quark models [ 731 0 At this point, it 

is simplest to use a basis constructed of non-strange and strange quarks : 

1 
IrlNS9 = &? ($2 $9 + 17~~9) = ‘z iiu> + lad>) 

J” 
(40 24) 

I%’ = J3 1 1-(Iv 9 -JT2lq,>) = Iis> 

In this basis the axial current divergences reveal their simplest form: 
i = 1,2,3,NS 

i =4,5,6,7 

‘x si -m v i =S 

(4025) 
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Combining (4,25) and (2.6) with f, = f8 = f0 (assuming U3 symmetry) together 

with the analogs of (4.2), one can readily derive in our scheme 

m2 
qNS = <o 1 aANS 1 ‘TJ NS’ <Olv l?J 

m2 

NS NS’ = 1 
<O19Anln> = <Olvn]a> 

7r 

m2 
22= 
m2 

<O18As lT$ > = x<oIvs lv$ 
<OlaA.I,Im <o Ivpr> = x2 0 

T 

(4.26) 

(4.27) 

These results are identical to the GMOR values with X2 M 25 in (4,27) replaced 

by X M 25 in the latter analysis, The physical ninth pseudoscalar particle (79 = 

17 t or E ) then has a mass, given m2 + m2 2 2 
9 77 = mqS+mqNSorm9 N 3rnr in this 

U3 limit (but independent of any SU3 PCAC assumptions). Clearly no such light 

isoscalar pseudoscalar meson exists‘ [ 74,751 0 

One way out of this difficulty is to assume that the ninth axial charge does 

not commute with Ho: [Qi,HO] = ig and thus 8Ao = g - J ;( cOvO + c8v8& I_f g is 

not a total divergence, this then indicates that q 1 is not a Goldstone boson, and 

the analog of (4.6) reads in this case 

One can then proceed as in (4.5-9) or as in (4.26,27) to find [ 76 ] 

m2 = m2 2 2 

77NS T+FmO 

(4028) 

m2 = X2m2+Lm2 
?3 lr 3 0’ (4.30) 

The constraints of (4,22) and (4,29,30) coupled with rni C m2 2 =m +m2 = 
17 77NS 77s 

m2 +m2 
q8 % 

and the orthogonality of the physical states <q g IH I q > N <q g I q > = 0 

then is sufficient to determine the system. In particular we find 
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2 
m9 

=m2 + . 
778 

(4.31) 

This formula, however, is exceedingly sensitive to the value of m 
‘8 

(which is 

only approximately known through the mass formula (40 22)) and even more sen- 

sitive to the value of X. For instance, for X =5, m2 = 17 rnz, one finds m = 
r18 9 

1685 MeV, which might indicate [37] that the ninth pseudoscalar meson is the 

E(1420); on the other hand, the values X = 5, m2 =20mforX=4.1, m2 = 

17 rnz give mg 
778 ‘8 

Em ID 
77 

Furthermore, the derivation of (4.31) involves approx- 

imations, and so the expression is of little practical value. In gauge models, an 

Adler-type vector gluon anomaly gives rise to a term g in 9A00 Unfortunately 

this term is itself a total divergence, and a new axial-vector current can be de- 

fined which is divergenceless in the chiral limit. Hence m. in (4.28) is zero 

and the solution to the ninth pseudoscalar meson problem outlined above is in- 

valid 0 Kogut and Susskind [77] have suggested that the particle associated with 

the ninth axial vector particle is actually a dipole consisting of a positive and 

negative metric boson; the singularities due to this dipole cancel out of any phys- 

ical matrix element, and hence there is no physical ninth pseudoscalar meson. 

In a theory with a Goldstone symmetry breaking interaction for 17, such as 

is implied by (4,29,30), Caser and Testa [ 371 have explored the possibility of 

three-particle mixing, where the third particle is a multigluon external state. 

They find that the glue state does not mix and conclude in effect that (4.31) holds; - 

thus they claim the ninth pseudoscalar meson is the E(1420) but, as has been 

noted, this conclusion is unwarranted. Fuchs [ 78 1, on the other hand, has con- 

sidered a similar scheme but judged (4.30) to be of questionable validity; reject- 

ing this equation, he found the 77 ’ to have a large component of glue and the other 
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glue plus quark state to have a high mass, 

In any event, one may conclude from the above discussion that the ninth 

pseudoscalar meson state does not determine the quark mass ratio or scale in a 

model independent way. In fact, in the conventional q - 7) ’ mixing scheme, both 

the GMOR and our quark model breaking theory lead to the same picture of the 

ninth meson state, 

F, Meson (T Terms 

Given the quark model definition anr = n$u -I- ad), the meson matrix ele- 

ments in our chiral breaking scheme can be computed with the aid of (4.12) and 

their U3 singlet analogs [ 76 ] : 

(4.32a) 

(4.32b) 

(4.32~) 

(4.32d) 

Recalling that the SU3 PCAC statement (4.9) leads to (4.15) as well as the rea- 

sonable estimate (4.16), the pion PCAC value 0:: = rn% and uhs x 0 convert (4.32) 

to 

(4.33) 

which are precisely the values in the GMOR scheme,, Here again a distinction 

between the two (3,s) chiral breaking models in terms of a quark mass ratio or 

quark mass scale cannot be made from the meson u terms, 
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Phenomenologically , therefore, estimates consistent with (4.33) serve only 

to reconfirm the underlying (3,s) structure of H’, The K7r low energy scatter- 

ing lengths are not yet known with sufficient accuracy to extract uZ* While a 

recent estimate of 0g from the AI = 3/2 Dalitz plot KQr slopes gave [ 791 

3/2 rnz to 2mf , it was based on an assumption concerning the momentum vari- 

ation of <r lH”,/” IK>, which perhaps is incorrect, If the r) 1 -+ n ~7r decay amp- 

litude were pure o-term [5,80] , the value implied by (4.33), 

7m 
%‘77 

= -COS 8 sin 0 (o:r 2 - 0:: ) + 
(cos2Q - sin 6)~:: 

;1:0,5mz, (4.34) 

would be roughly one-sixth experiment, as implied by the conventional 77 - n ’ 

mixing picture with 13 w -10’. Since the 77 ’ --t 77 7r7r rate goes as [5] Ptheory/ 

r experiment N sin46, it might appear that 6 - -2oO. Alternatively, it has been 

suggested [Sl] that the nearby S(970) resonance enhances the 77’ -c q7rr rate and 

effectively masks Tr7T CT 
+r7 (’ 

Finally, the (T term 0” given by (4,33) as 
r/77 

T71 2 ?m = cos 8 CT;; - 2 sin 8 cos 8 o18 TT+ sin28 fl:T x 0,5 rnz (4035) 

can only be extracted from the n - 3n electromagnetic decay amplitude and we 

postpone discussion of it until Section V. 

c J. Meson-Meson Amplitudes 

Working with the assumption that the isotensor CT term in 7r7r scattering is 

zero, which is an automatic consequence in the quark model, Weinberg [ 151 was 

able to obtain (2.9) as well as the low energy analytic expansion of the 7rr amp- 

litude 

fz-Qrarb IT Incnd> = 6abScd(s-m~)+6ac6bd(t-m~)+Baddsbc(u-m~) (4036) 

where the Mandelstam invariants s , t, u are defined in the usual way and satisfy 
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s+t+u = qf -I- q; + 9: + 9;. One might hope to extend (4.36) to the SU3 partners 

of the pion. Osborn [81], working in the GMOR chiral breaking scheme, in ef- 

feet assumed the validity of (4.33) and SU3 PCAC in its strong GMOR sense and 

obtained, for example, for ra c -+ ?r and P 
, b,d 

-. K or n8 

<7r’PITIrP> = (4.37) 

with pK = 2 Land p = 0, 
778 

Pagels and co-workers were able to extend this result 

to a complete SU3 X SU3 generalization of (4,36) by the replacement of 6ab6cd 

with 5 ‘ab6cd ’ dabedecd where e is summed from 1 to 8, using it extensively in 

their chiral perturbation theory 117,821 0 

While results like (4.37) are similar to the baryon analog (3.20), manifest- 

ing the Adler zero and the sign change at the on-shell point t = 2mi, the specific 

values of p, and p 
r18 

very definitely depend upon the strongest version of kaon 

and eta PCAC, respectively. In SectionIVBwe have stressed that such a strong 

version of SU3 PCAC is valid only in the GMOR scheme, while in our quark 

model scheme, kaon PCAC does have large corrections in general and applied to 

(4.37) in particular, although it appears to have small corrections in (4.9), On 

the other hand, q8 PCAC appears to be well approximated in <v8 Iui Iq8>, so 
perhaps ,!3 = 0 is a reasonable estimate in our quark model chiral breaking 

r18 
scheme D There also exists, however, the problem of extrapolating the Adler 

zero for one soft n8 at t = m,2 M 18 rnp down within the analytic circle of con- 

vergence determined by the 2n cut in (4.37) to be t = 4mz. 

H. Other Meson Decays 

The only meson process which appears to have a bearing on the distinction 

between the GMOR and our quark model scheme of chiral symmetry breaking is 
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Ka3 decay, involving the chiral breaking objet t 

<rOl [&,,a$J lK> 2* h -1 2 N fKmKm/(ms+m) = (x+1) fKmK . (40 38) 

Using (non-covariant) charge commutators, Hakim, Legonini, and Paver obtain 

the consistency relation 1831 

(x - l)J&12 
2rnk m2 

=x+1 - q&-+(O)) (4,39) 

which, in covariant language, presumably unifies the current algebra Ward iden- 

tities obtained from VL and 80 VK,, This relation can also be obtained from light 

cone considerations [84] if the LHS is weighted by a scaling integral estimated 

to be near unity. The interesting aspect of (4.39) is that it admits the two solu- 

tions X N 25, m 
h 

N. 01 rnr (GMOR) and X N 5 and m N rnr which is near the 

values suggested by our analysis. With further model-dependent assumptions 

concerning the kappa meson, it is possible, however, to conclude that the GMOR 

scheme is consistent with a divergence form factor slope A 0 > 0, while our ver- 

sion would imply A0 < 0, Experiment has yet to decide conclusively between 

these two possibilities [ 721 0 

Chiral breaking pion mass corrections could, in principle, be important in 

0 7r - 2-y decay because the pion PCAC scale is presumably set by the Sutherland 

zero [85] and not by the Adler anomalous correction [86] to the Ward identity. 

In fact, a subtraction constant in the (neutral) PCAC dispersion relation, gener- 

ated by the Bjorken limit) involves the chiral breaking equal-time commutator, 

e [d3xeiTG c 
J 

<+l[a’ A(x’;O),V;m]IO> =z?xi?, (4,40) 

leading to the 7r” - 2y amplitude [ 8 71 

2aS Iz FT w -T+- 
7r 

(4,41) 
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where S is the average non-strange quark charge of l/6 (without color) or l/2 

(with three colors), Unfortunately the color ambiguity weakens the predictive 

power of (4.41) to constrain m, but a quark model analysis of (4.41) is none- 

theless of interest. Since the commutator in 2 is the same as occurs for photo- 

production, use of (3,37) tells us that the quark bilinear of interest is i “14. 

Then the light cone relation (2.26~) coupled with (2.24) reveals that the non- 

flip Lz = 0 leading term in < y I x +oL $J I 0 > comes from the z 
1 

0 T1 term in 

(2.24) and is not proportional to an additional quark mass factor as is the nu- 

cleon matrix element (3,38). Thus <y I x’ol $ I O> transforms simply under SU3, 

and can be analyzed using model-dependeni PCTC (partially conserved tensor 

current) methods combined with vector dominance. The result is roughly [87, 

881 .z - -e2mmv/gt(0) where gt(O)/4* N 2, 

Unfortunately, meson processes do not appear to set a quark mass scale in 

a simple manner, If, however, one applies the quark mass m N mT (as indi- 

cated by baryon processes in our scheme) to ,Z in (4.41), then the chiral break- 

ing term is as large as the Adler term (with S = l/6) and of the same sign. In 

this case a color enhancement of the first term in (4.41) (S = l/2) would lead 

to too large a value for Fn [88]. 
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V. ELECTROMAGNETIC CHIRAL SYMMETRY BREAKING EFFECTS 

A, The SU2 Breaking Quark Hamiltonian 

The possible existence of a u3 term in the hadronic Hamiltonian, which is 

roughly the same strength as the second-order electromagnetic Hamiltonian, 

has been recognized for a long time. In quark language, if the SU2 breaking ef- 

fect of mu # md is allowed in the quark mass matrix (2,17), then (2,4) becomes 

H” =mu& + mdad +ms& = cOUO f c8U8 + E3U3 

where (2,Ig) - (2,22) remain valid with k = $(mu+md) and 

(5.1) 

u3 =iiu - dd 

(5.2) 
e3 = &mu - md) . 

Since on the light cone the bad operators uo, u3, and u8 can have mixed trans- 

formation properties of Ao, h3, and As, it is useful to reexpress Ho + H’ in its 

most general SU3 form 

H =Ho,SU3 +H8 + xH3 (5.3) 

where H 
v3J3 

conserves h,, and Y, H8 is the Gell-Mann-Okubo part trans- 

forming like h8, and H3 is the isospin-violating part transforming like A3” The 

number x measures the strength of H3 relative to H8. In the GMOR scheme, 

where ui transforms like hi, x GMOR is just E 3/~ 8, which in the quark model is 

’ GMOR 
= ~~ _ mu - md 

mU+m -2m d S 

0 (5.4) 

Ty transforming simply On the other hand, in our quark model approach with iq/m Y 
under SU 3’ 
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m2 - rni 
x=AU D 

mi+m2 d - 2rni 
(5.5) 

The general SU3 form (5.3) makes the definite prediction that the scale of 

baryon and meson matrix elements of H8 and H3 is given by a single value of x 

once the Wigner-Eckart theorem is applied. Further, within the octet baryons 

themselves, H8 and H3 belonging to the same octet implies that the d/f ratio 

with d+f = 1 in 

<B 
f J 

IH. IBi> = <BII H II B>(ddfji + fif ..) 
fJ1 (50 6) 

is the same for H3 as for the semistrong H8 baryon mass differences, d/f M 

-l/3 given by (3,ll). Since H3 is isospin breaking, it is clear that the H3 scale 

and d/f can be probed by the baryon and meson electromagnetic mass differ- 

ences. In order to perform this analysis we must first separate off contribu- 

tions which arise from other than explicit quark mass differences. These are 

the finite second-order current-current contributions from one photon loop. 

Thus we write- [ 39 I 

H em = HJJ+xH3 (507) 

where HJJ corresponds to the finite part of the second-order em photon loop, 

ie 2/ 
HJJ = - 2 

I 
d4x D” (x)T*~;~(x)V;~(O))~~~~~~ . 

We will discuss this separation further in the next section. 

To extract x , we first examine the pseudoscalar meson electromagnetic 

mass differences using the quadratic form (4.22) and the SU3 structure of (5,6) 

with f = 0 for the mesons, 

m2+ - m2o = tJ%&+ - mJJ)nO 
7r 7r 

(5.9a) 
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m2 - m2 
K+ K” 

= WJJ),+ - cHJJko + x * 11 H 11 P> (5 0 9b) 

where (5,9a) has been approximately verified in pole saturation [90] and hard 

pion current algebra models [ 911, and <PIIH II P> is determined from the semi- 

strong mass splitting to be - L(m2 
J3 K 

- mz)O If we accept the SU3 X SU3 Dashen 

theorem [ 921 to eliminate the HJJ pieces in (5,9), 

@JJ),+ - 'JJ)Ko = @ JJ) + - @JJ) 0 ' 
7T 7f 

(5.10) 

then x can be obtained from (5.9) and (5.10) as 

- X -- $3 k* -3 - t-c+ - = m:4 
2 2 2 

x o 0 020 . (5 . 11) 
mK-mr 

Since estimates of the JJ pieces from single pole saturation [ 901 of (5,8) or 

chiral breaking corrections [93] are consistent with the Dashen theorem (5.10) 

to within 20% and since this theorem can also be derived using pion PCAC on 

<alHJJln>, we accept (5,lO) and the value of x given by (5.11). 

For the baryon octet, one can use the values derived in (3.11) and (3.12) to 

predict the contribution of xH3 to the electromagnetic mass differences, The 

value of (xH~)~ can then be subtracted from the experimental electromagnetic 

mass differences to obtain a prediction for the baryon matrix elements of HJJ. 

For x x 0,018, one obtains a value for (II JJ)B which is reasonably close to esti- 

mates [ 941 made by octet and decuplet saturation of matrix elements of HJJ; 

this result holds for either the linear or the quadratic form of the baryon mass 

formula. It should be noted that this fit favors cpl H JJIp> - <n IH JJ In> M 

(1.3 MeV)2mN. Vector meson and decuplet baryon electromagnetic mass dif- 

ferences , though hard to extract from data, tend to further reconfirm the ex- 

istence of H3 with [95] x M 0.02. 
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In quark language, therefore, the quark mass matrix (5.1) appears to cor- 

rectly map out the physical Hamiltonian (5.3). The phenomenological value 

X M 0,018 - 0,020 gives, from (5,4), 

md)/m 1 GMoR = -i (5.12) 

for the GMOR SU2-breaking quark mass difference and from (5,5), 

tm - U 
md)/& M -+ (5.13) 

in our scheme, While (5.13) is a larger SU2-breaking effect than one might ex- 

pect, (5,12) is twice this size. One might assume that ms sets the scale for 

this SU2-breaking, in which case (5.12) and (5.13) would be of the order of a 

few percent., In absolute terms (5,13) coupled with X M 5 and our baryon esti- 

mate of the quark mass scale, k M rnT, leads to the set of chiral-breaking 

quark masses 

m N 125 MeV - 155 MeV 
U md ms - 680 MeV (5 D 14) 

whereas in the GMOR scheme, (5,12), X M 25 and the estimate [ 621 Ifi N 6 MeV 

then implies mu - 4,5 MeV, md - 7,5 MeV, and ms - 15 0 MeV. 

B. Dynamical Origin of the SU2-Breaking Tadpole 

We discuss further, now, the renormalization of the second order electro- 

magnetic mass shifts, as represented in (5.8). At the quark level it is clear 

[ 11,12,96] that there is a contribution to the em hadron mass shift, gm2 = 

2E6E, coming purely from the em mass shifts of the quarks themselves, 

6rnl = 2Eq6Eq, which infinite momentum language (Es = xE) allows one to ex- 

press rigorously as 

6m2 singular = JZ6m2T 
q qq (50 15) 

where T are the distribution integrals defined earlier, This contribution, if 
q 

evaluated using second-order QED expressions for the quark mass shifts, becomes 



(5.16) 

i.e., it is divergent in the ultraviolet cutoff, A. The complete expression for 

the second-order 8m2 is given in terms of the Cottingham formula 

(5.17) 

which may be evaluated in terms of the structure functions in the contraction of 

(2,34)(after performing the usual steps of Wick rotating, writing dispersion re- 

lations for Al and A2 with appropriate Regge subtractions, and using standard 

fixed pole information, i, e. , no cu=O fixed pole in Al)” By employing various 

sum rules it can be shown [ 121 that the infinite part of 6m2 (in the ultraviolet 

cutoff A) is precisely given by (5.16). Thus it is possible to carry out a re- 

normalization program at the quark level such that 

grn2 = Srn&e +6m2 singular 

where 6m2 singular is as given in (5.15) with 6m2 
q’ 

after renormalization, being 

the physical quark mass shifts, The contribution 6m2 singular is thus naturally 

associated with the tadpole term in (5.1); the form of this contribution is pre- 

cisely like that of the semistrong baryon and meson mass formula (3.6)-(3,8) 

and (4.13), implying that H3 of (5-3) has the same d/f ratio as appropriate to 

H8° H J J is then clearly to be identified with the explicitly finite bound state 

contributions denoted by 6mtinitee Various approximate evaluations of H JJ 

have bee; suggested. For instance saturation of HJJ by the lo-west hadron 

states (Le, , the “elastic” contribution), combined with the quark masses (5.14) 

and distribution integrals ? given earlier, provides a reasonable description 

of the octet baryon electromagnetic mass splittings. More modern approxima- 

tions to HJJ suggest themselves as well; for instance, it might be reasonable 
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to suppose that the dominant contributions to H JJ arise from the Coulomb in- 

teractions between the various possible quark pairs in the bound state [ 971 0 

We are still left, however, in any approach, with the fundamental problem 

of why mu < mdO No truly natural explanation exists at the moment, 

C, The Decay n 3r 

If, as in the previous section, we assume that H3 belongs to the (3,3) rep- 

resentation of SU3 X SU3, the amplitude for the G parity violating decay n 3r 

ought to be uniquely determined. 

In the past there was a problem associated with the Sutherland theorem 

[ 981 and the possible breakdown of pion PCAC. In the soft pion limit, the de- 

cay amplitude T for 77 3r is 

lim T = 
Pa--n 

- lim ara~bb”cIHem 
Pa-9 

Iq> = &<“& 1 [Q;,H,,] I-fl> . (50 19) 

Sutherland has shown that (5.19) vanishes (or is very small) for Hem given by 

HJJ alone 0 The presence of the tadpole term, H3, however, allows one to 

make a more reasonable estimate of the 77 3r decay rate and Dalitz plot slope, 

provided one takes into account pole terms which vary rapidly off the pion mass 
em 

shell [99] (such as the pion pole n - 7r - 3n). This type of analysis can be 

done in the tree graph approximation to a nonlinear Lagrangian [ 74,100]. An 

equivalent dispersion theoretic approach has been proposed which allows a more 

flexible treatment of the meson-meson scattering vertices which appear in the 

rapidly varying pole terms: one writes [ 95,101] 

T = T+Tp (5.20) 

where the pole terms vary rapidly with the pion momenta but the background 

amplitude T does not. Thus one can take the soft limit of (5,20) to find 

!? =p $3 (T - T p) 
a 

(5.21) 
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In U3 broken (3,s) models (L e. , m. # 0 in (4.28)), both T and Tp are equal to 

fi2<?r I E 3u3 In > in the soft limit; hence F = 0 so that the pole model of n -. 3n is 

exact [95,101]: 

T = Tp (5.22) 

Due to the isotopic structure of Tp, all of the soft pion limits are satisfied; 

hence there is no breakdown of pion PCAC, 

More recently another puzzle has arisen in connection with the ninth axial- 

vector current (and its associated Goldstone boson) which is implicit in the 

u3 x U3 symmetry of quark-gluon models. This puzzle can be seen most simply 

as follows : First we note that q and r are SU3 states and that we are only 

working to first order in SU2 breaking; hence Hem= $(mu-md)u3 + H JJO This is 

true in either our scheme or the GMOR scheme. Second, we note that the soft 

pion limit in (5.19) yields 

lim T 
Pa--o 

= $- (mU-md)6a3<~b~c lvNS 17 > 
7r 

(5.23) 

where we use the basis of pure strange/nonstrange quarks of (4.24), Due to 

(4.25), however, (5.23) is proportional to <rbrc I aANSlq> in the quark model. 

By momentum conservation, therefore, the total divergence nature of the oper- 

ator indicates that all soft pion limits of T are zero [73,102]. Two points must - 

be made: 

(i) The fact that all soft pion limits of T are zero does not imply that the on- - 

shelivalue of T is zero; one must take into account rapidly varying poles, 

(ii) This n 3T puzzle should not be treated until the simpler and more basic 

problem of the pseudoscalar mass spectrum is solved. 

Turning first to the problem of the mass spectrum, we recall from Section 

IVE that one way of accounting for the pseudoscalar masses is to introduce a 
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term into the divergence of the ninth axial current: aAo =g -&(Eoy-E8V& 

This implies that (5.23) should be written 

mu-m 
lim T = - 2f m 

Pa+6 
--.d da3abncI aANS - J tg Ip 

7r 
(5.24) 

Lf g is n_o_t a total divergence, the right-hand side of (5.24) is no longer zero and 

the difficulty vanishes; one can account for the pseudoscalar masses (Set, IVE) 

and previous analyses of the n 3n decay remain valid [ 95,101]. In vector-gluon 

models, however, g is a total divergence and one is left with both problems; if - 

one assumes that the Goldstone boson associated with the ninth current is ac- 

tually the positive/negative metric dipole mentioned in Sec. NE, then the mass 

problem is solved and, as Weinberg has shown in the nonlinear Lagrangian 

framework [ 731, the ninth axial-vector current and its (dipole) Coldstone boson 

decouple from the n 3T analysis. In operational terms, (5.24) is then no longer 

zero, 

Although it is a pseudo problem to try to analyze the n 3n amplitude without 

first resolving the pseudoscalar mass spectrum problem, it is nevertheless of 

interest to see how the U3 structure of the quark model leaves the pole model 

result (5.22) unchanged in the current algebra - PCAC (rapidly varying pole) 

method of analysis ., To take the simplest case, consider the decay 7 NS - 3n 

with g = 0 so that m =m 
qNS 

TO In general the background term !i? in (5,21) van- 

ishes in the (3,s) model; in the U3 symmetric case, lir.n,T in (5,21) also van- 
‘a 

ishes because of the total divergence nature of (5.23), Hence lim Tp also van- 
P-c6 

ishes , and one can easily verify that the 7r and n NS poles do cancel when p -+ 0 

if m 
qNS 

= Mu and p,, = 0 (see Set D IVE). It is also clear that the pole denom- 

inators vanish in this limit, however, and that formal arguments concerning Ul 

symmetry should be treated with caution. While each term in (5,21) is then 
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zero, the on-shell amplitude is given by (5,22) and is not zero; the value ob- 

tained, of course, makes no sense until the pseudoscalar mass spectrum is ac- 

counted for in a satisfactory manner. It is also of interest to see how the van- 

ishing of N = <nbrc I vNS 17 NS > in (5,23) for U3 quark models can be explained in 

rapidly varying pole language, Noting that N has an 7 NS rapidly varying pole 

term as well as a constant background term, one writes [ 95,101] N = R + Np o 

These two terms (R and NP) are both proportional to t0 lvNS 1~) NS> and exactly 

cancel when m =m 
VNS 

x, thus recovering N = 0, 

The upshot of this discussion is that in any (3,9) chiral breaking scheme 

( i.e, , in our approach or that of GMOR), the structure of Hem leads to a van- 

ishing of T in (5,21) - either due to the exact cancellation between (5,19) and the 

soft limit of the pole amplitude Tp in the case of a U3 broken mass spectrum, 

or, alternatively, due to the separate vanishing of the two terms on the right- 

hand side of (5,21) in U3 symmetric theories. For theories with a correct mass 

spectrum, the resulting on-shell pole term (5.22) is dominated by the pion pole 

if p 
rl 

= 0, both in the slope and in the rate. This implies a Dalitz plot slope 
4 2 structure s - -m 3 IT’ consistent with the data [ 721 and also with the nonlinear La- 

grangian solution [loo] 0 The 77, o decay rate is then N 70 eV for 7 = 77 8 

(%I 
= 0) and N 120 eV for m2 M 18mf (0 

178 77% = 
- 14’). While both of these 

values fall short of the new measured rate [ 721 of 204 Q 22 eV, the (3,s) quark 

model cannot be discounted because of the q3n decay, Neither, for that matter, 

can a distinction be made between the two (3,s) chiral breaking schemes on the 

basis of v3.1r decay, 
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VI, CONCLUSION 

We have seen that a description of chiral symmetry and SU3 breaking based 

on the Hamiltonian 

H’ = mu& + mdgd + ms&s (60 1) 

(q and mq refer to quark field and mass of any one type) when formulated in the 

most general fashion, does not conform to the original GMOR assumptions, In- 

deed, we have argued in a variety of ways that hadron expectation values of the 

fundamental densities 

, 

u. = 
1 ?'i@ (6.2) 

do not transform under SU3 like Ai0 Rather the quantities/B’ 
) 

are the 
lrnq hadron 

simple SUB objects. Similar statements apply to expectation values of the type 

<O I VP I P>, P being any pseudoscalar meson, and ~0 I z&ll, I O>. This alteration of 

the original GMOR scheme has profound implications for the phenomenology of 

chiral symmetry breaking, 

In particular, we have shown that the nN oterm, baryon mass differences, 

and proton Compton amplitude fixed pole value combine to determine strange and 

nonstrange quark mass values 

mu + m d 
2 = m-140MeV m - 680 MeV 

S (60 3) 

The value of the parameter 

(6.4) 
. . 

where X = ms/m N 5 is no longer near -$2; rather c M -,8. Within the frame- 

work of baryon phenomenology we also consider sum rules for the axial coupling 

gA and for low energy T photoproduction off nucleons that allow an independent 

determination of m, confirming the result (6.3). Various additional independent 
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determinations of X, using Goldberger-Treiman discrepancies and KN (T terms, 

are shown to yield again 

X = ms/m-5-6 (6.5) 

This type of consistent phenomenology for the baryons is impossible if one as- 

sumes that expectation values of the ui (6,2) transform like hi under SUQO 

An investigation of meson PCAC and chiral symmetry breaking phenomenol- 

ogy begins with the relation indicated by the GMOR analysis 

2 
“K CO Iv,lK> 
-- 
m2 

= ; (11-W <()lv IT> l 

7T 

7T 

Combined with 

<0Iv*l7r> 2; --- = -_ 
<OlvKIK> ms& 

(6.6) 

as implied by the above discussed properties of such expectation values, we ob- 

tain once again the value (6.5) for X, The GMOR assumption that (6.7) has the 

value 1 yields X = 25, which is well known to be inconsistent with the TN, (T term 

when also evaluated in their framework. A second determination of X, using 

directly the PCAC results <7~ I H’ 1~ > = rnf and <K IH’ IK> = rnk combined with our 

formalism for <Plcq I P> expectation values, yields again X N 5. That is, for 

most meson matrix elements PCAC remains a good approximation since 

<Pl&lP> 

mq 

<o Iv,lP> 

.QJ+J’p 
<Ol~qlO> , 

“s (6.8) 

which are related by PCAC, all transform simply under SU3 in our approach. 

Unfortunately, it is impossible to determine the absolute mass scale for &I 

and ms using mesons alone since there is no determination of the quark distri- 

bution integral scales such as is provided in the two baryon cases by the Compton 
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fixed pole and by gA , respectively. 

A variety of additional processes, especially meson decays, were investi- 

gated and shown to be consistent with our approach but provide no additional 

constraints at the present time. A future model dependent test of our formalism 

(as opposed to the GMOR method) using m3 decay may be possible, Electro- 

magnetic mass splittings and related subjects were also considered and shown 

to be consistent with a SU2 mass difference 

m -m 
U d 1 h M -- 0 4 (6.9) 

m 

In summary, we have developed a completely consistent approach to chiral 

symmetry breaking, for both mesons and baryons, which provides a large 

variety of independent determinations of the quark masses. These turn out to be 
h 
m N 140 MeV and m 

S 
- 680 MeV, 

much larger than previous values but of the same size as those found in the bag 

model and other recent approaches. 
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