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ABSTRACT 

We derive an operator equation with finite coefficients for the 

renormalized current operator of scalar A3 theory, by implementing 

unitarity, causality, completeness of free fields, and spectral condi- 

tions by means of operator derivatives of the scattering operator S. 

The method makes no explicit reference to diagrams, perturbation 

theory, or the removal of divergences. We prove equivalence with 

conventional renormalization of this theory. 
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1. INTRODUCTION AND RESULTS 

Everybody knows that if you renormalize the neutral scalar field equation 

Ao@) = $ go (AoH - CAFE> 1 

according to A0 = Z ‘i2A g-g z3/2 , - o and m2=mz+6m2, you get 

(1.1) 

KxAW = j(x) (1.2) 

where 

Kx= (ox-m2) , 

j(x) = i g (Am -<Am>) + /A2(x-u) A(u) d4u , (1.3) 

< > is the vacuum expectation value, and 

A2(x-u) = 
[ 
-Z6m2+ (l-Z)Kx 04(x-u) . 1 (I. 4) 

If you assume that AO(x) satisfies canonical commutation relations, you get 

Z-I=l+I and -Z-‘&n2=Is, where 

I = p 2 J(s) ds/(s-m2)2 , 
4m 

(1.5) 

I’ = [12 J(s) ds/(s-m2) , 

and the spectral weight J(s) is defined by the expectation value with respect to the 

renormalized free-field vacuum 

m 
<j(x) j(y)> = -i /- 4m2 

J(s) ds A+@-Y;S) , (l-6) 

so that 

+ y$ Kx 6,(x-u) 1 . (1.7) 
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The integral 1’ diverges in perturbation theory, so the expression (1.3) is 

no better defined than (1.1)) although it does give finite results in perturbation 

theory. 

The final result of this paper is an operator equation with finite coefficients 

for the renormalized current operator j(x), 

62 j(x) 
Wz) WY) 

= gQ4(x-y) [s,(x-z) - /+x-u, $$$ d4u] 

-i Wo-~o) 6 atzJ 6 [jtxM(Y)] , (l-8) 

where gr = (1+I)2g, and the symbol cS/~ a(x) is the “operator derivative” l-3 with 

respect to the renormalized free field a(x) of mass m. 

It is not difficult to iterate (1.8) a few times in powers of g’ or g, and to 

verify that to a given order every term on the right side of (1.8) is finite. This 

program will give the “second operator derivative” as a sum of normal ordered I 
products of a(x), from which it is easy to obtain j(x) to that order, except for the 

“boundary values”, which are given by the vacuum expectation values 

< 6 j(x)/6 a(y)> = -KxKy J O” ds J(s) s(x-y;s)/(s-m2)2 
4m2 

for any renormalizable self-interacting neutral scalar field theory, and 

<j(x)> = 0 , (1.10) 

for the theory considered here. s(x;s) is the function s(x) with mass param- 

eter s~‘~. 

The proof that (1.8), (1.9) and (1.10) give j(x) finite to every order and 

identical with the results of renormalization, which is the burden of this paper, 

consists of showing that the operator j(x) which satisfies (1.8) is (formally) 

identical to (1.3)) with L$ given by (1.7). This will be done using a method of 

renormalization4 which obtains the counter-terms by imposing physical 
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requirements such as unitarity and causality on operator derivatives of the 

scattering operator S, but makes no explicit reference to diagrams, perturbation 

theory or the removal of infinities. This method was developed in an attempt to 

treat interactions exactly in Scattering Operator Theory (TSO), 5 in which they 

had originally been treated only perturbatively, and not unambiguously in higher 

orders. 6 In Ref. 4, unfortunately, equivalence with conventional renormaliza- 

tion was verified only to fourth order: exact equivalence, such as by a derivation 

of (1.3), was not established. Furthermore, the expression for A2 given there 

is incorrect, although this had no effect up to fourth order. Finally, the treat- 

ment there was based on a mix of assumptions about S and A(x). In order to cor- 

rect these defects we have to paraphrase some of the early treatment, but only 

briefly. We use only assumptions of TSO. We define j(x) and A(x) in terms of 

S and its operator derivatives and then we prove (1.3) and (1.7). 

The discussion is organized as follows: In Section II we list our assumptions 

and some direct consequences. We define j(x) and show how the strongest assump- 

tions are summarized in an operator derivative equation for j(x), from which (1.9) 

follows. This same equation is later used to derive (1.8). In Section III, 

starting with an ansatz for S, we define A(x) and derive (1.3) and (1.7). In 

Section IV we derive equal-time com.mutation relations for A(x), and use these 

in Section V to derive (1.8). There is a brief discussion and Appendix. 

II. ASSUMPTIONS AND SOME CONSEQUENCES 

A. Completeness of Free Fields 

We assume that S has the representation 

S = x $ /Sn(xl, . . . , xn):a(xl) . . . 
n ’ 

a(xn):d4xl . . . d4xn (2.1) 
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and that each coefficient S, has a unique off-mass shell extrapolation, which has 

the same symmetry in the xi off shell as on. This enables us to define the oper- 

ator derivative 

6ys = 6) = c i$- /sn+l(YJ1s.. . Jn):a(xl) . . . a(xn):d4xl.. . d4xn (2.2) 
n 

As a special case, 

Cjya(x) = 64(x-y) . (2.3) 

The operator derivative is not a variational derivative, but because it is related 

to commutators by 

[a(x), S] = -i /A(x-u) 6 S d4u 
U , (2.4) 

one can establish rules for lloperator differentiation” that are analogous to those 

for ordinary differentiation. 2 These rules are extended off shell by relations 

analogous to (2.4)) 

[a(x), S] = -i 
r,a J43 ,A(x-u) c&S d4u , (2.5) 

involving the implicitly retarded or advanced commutator, formed from (2.1) by 

constructing the explicitly retarded or advanced commutator [a(x), “(xi)], A. We 
, 

are going to “take operator derivatives”, a procedure made complicated by the 

fact that it does not commute with ordinary differentiation and integration of some 

operator functionals, such as those containing factors like KxS4(x-y) . 3 These 

complications can be avoided, and the same results obtained, by supposing that 

operator differentiation does commute, and by distinguishing between “strong” 

operator equations, which remain valid after operator differentiation, and “weak” 

ones, which don’t. 7 In particular, we will take Kxa(x) = 0 to be weak. That is, 

ByKxa(x) = Kx6,(x-y) # 0 . P-6) 
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In fact, all the other operator equations we will deal with are strong, so no 

special notation will be used. We will only have to be careful to carry Kxa(x) 

along, until it is obviously safe to drop it. 

Finally, we may use operator derivatives to reduce matrix elements. For 

example, if ICD and i/3> are single free-particle states, and IO> is the free- 

particle vacuum, then 

<plslc!> = 6 
QP 

+ J d4x fa(x) <p 16xS IO> 

(2.7) 

= “ap -I- / d4x f;(x) co 16,s Ia> , 

where f,(x) is the wave function of the state lo!>. 

B. Strong Unitar ity 

We assume 

s+s = ss+ = 1 

is a strong equation. 8 We define the current operator 

(2.8) 

j(x) = iS+BxS . (2.9) 

Since a(x) = a+(x), one operator derivative of (2.8) gives us j(x) = j+(x) and one 

more operator differentiation gives 

Re (iSy j(x)) = 0 , (2.10) 

meaning the self-adjoint part. trImrr will mean the anti-self-adjoint part. Another 

consequence of (2.8) and (2.9) is 7,8 

i S, j(x) - QJ(x) = [j(x), j(Y)] (2.11) 

C. Strong Bogoliubov Causality and High Energy Behavior 

We assume that 6y j(x) = 0 strongly outside the forward light cone of (x-y). ’ 

We also assume that if f(p, q) is the Fourier transform of 6y j(x), that 

f(p-A, q+h)/h4 - 0 (2.12) 
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strongly as A --) 00, as well as being analytic in the lower half complex h plane. 5 

The notation p+A = @,+X,$) . Equation (2.12) leads to the condition 

pA(Gyjtx)) = o (2.13) 

where the idempotent, mutually orthogonal convolution operators are defined by 

PR Atftx? Y)) = KxKy W+o-~o)~ JA~,~F-u) , 
x +,A(y-v) f(u,v) d4u d4v . (2.14) 

PB A are also orthogonal to the idempotent convolution B, defined by 
, 

B = 1-PB- PA (2.15) 

so that 

Btftx, Y)) = KxKy Wo-~o)/ b@-u) +$-v) - 4~4 

x %(x-u)] f(u,v) d4u d4v . (2.16) 

The entire content of (2.10) and (2.13) may be summarized, with the help of (2.11) 

and (2.15)) in the single equation. 10 

i6yjtx) = pR([jtx)9jtyjl)+ ‘ci lmtiSyjtx))) ’ (2.17) 
/ 

This is the equation from which (1.8) and A2 will be derived, and is central to 

our treatment. 

D. Stability of the Vacuum and One-Particle States 

We assume that 

s IO> = IO> (2.18) 

and 

Sla>= IO!> . (2.19) 

IO> and ICI!> were defined in connection with (2.7). As a consequence, completely 

carrying out the reduction of < p IS I Q> leads to the vanishing of qc@) and qR(p) 

when -p2 = m2. (qc@) is the Fourier transform of c-S+~,~~S> and s,(p) is the 
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Fourier transform of <iSy j(x)> .) Then (2.9) and (2.18)) together with this 

vanishing of qR(p) lead to 

<O Ij(x) la> = 0 , 

which establishes the lower limit of the integral in (1.6). Finally, by assuming 

that qc@) satisfies a subtracted dispersion relation, ’ and by using (2.17) trans- 

lated into operator derivatives of S to fix the subtraction terms, we can establish 

that 1’ 

c -S+ 6x6ySz = -i K K /‘ J(s) A (x-y;s) ds 
x 3h4m2 (s-m2)2 ’ 

, (2.20) 

from which (1.9) follows by (1.6) and the relation 

-S+6,tiyS = iSy j(x) + j(y) j(x) . 

III. RENORMALIZATION OF THE MODEL 

Suppose that 

s = te -iH )+ (3.1) 

where 

H = &/:a(x)3: d4x + /A,(x) a(x) d4x 

1 + y J A2(x-y):a(x) a(y): d4x d4y , (3.2) 

A2 is a distribution of point support, Al has in fact no x-dependence and S is 

implicitly time-ordered in the a(x). We have omitted an overall phase factor in 

(3.1) designed to ensure <S>= 1, and instead we will impose (2.18) whenever the 

question comes up. Since (3.1) is an improper form, manipulations of it must 

be regarded as purely formal, or as the limit of manipulations of corresponding 

regularized expressions. It will be sufficient, for example, to cut off integrals 
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like (1.5). The only purpose of such regularization is to make the following 

arguments look respectable. It would not be done for the purpose of identifying 

finite parts . 

Define an operator 

A(x) = S+(a(x)S)+ (3.3) 

Then 

and 

A(x) = a(x) - /%(x-u) j(u) d4u , (3.4) 

Kx44 = j(x) + Kxatx) , (3.5) 

which is just (1.2)) except for the weakly vanishing Kxa(x). According to (2.5)) 

operator differentiation obeys a chain rule, so we may differentiate (3.1) and 

obtain 

j(x) = s+tt~xH)s)+ (3.6) 

where 

6xH = -$ g:a(x)2: +A,+- J% 
4 (x-u) a(u) d u . (3.7) 

The contribution of :a(x)2: to (3.6) is evaluated by interpreting it as 

:a(x)2: = lim T+@(x) a(y)) - <T+@(x) a(y))> , 
Y-X [ 1 

where T, signifies explicit time ordering, and by setting 

(T+@(x) aWS)+ = (a(x) atyP)+ , 

as is implicit in (3.6). That is, the partial time ordering is subsumed by the 

overall time ordering. Using 12 

s’ta@) atyP)+ = T+cAW Ati)) , (3.3) 
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and setting <A(x)>= 0, as is needed in order to satisfy (1. lo), we have 

Al= - ig c S+(:a(x)2:S)+> 

(3.9) 
ZZ - ig <A(x)2-a(x)2> . 

Am is also to be regarded as the limit of a time-ordered product. Inserting 

(3.2), (3.7), and (3.9) into (3.6), we have (1.3), exceptfor the form of A,(x-u), 

which we now determine from (2.13) and (2.20). 

A2 has point support, 9 so suppose that its Fourier transform is a finite 

polynomial, since we want a local theory. That is, 

N 
AZ(p) = C Lntp2+m2P . 

n=O 

From (1.3) and (3.4), 

(3.10) 

-ccYy j(x)> = - ig <k(x), Jp+(x-u) by j(u) d4u > 

+ %(x-y) - r$(x-u) +(u-v) < tjy j(v)> d4u d4v , (3.11) 0 

This expression must satisfy (2.13). Now the convolution of PA with the first 

(anticommutator) term on the right side of (3.11) is 

KxKy ~tyo-xo) [+(x-Z) d4z +(z), -/AAt+v) +$+U) 

x S,j(u) d4ud4v > , 

which vanishes, according to (2.12) and (2.13). The convolution of PA with the 

remaining terms of (3.11)) with the use of (1.9), leads to the condition 

/ 

co 
dA F@-h)/(h-ie) = 0 , (3.12) 

-co 
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where 

FM = PRWJ2~2(~) 2 ‘+.@s) ds 1 9 
(3.13) 

+tP;s1 =[F2 + S- Go+ iQ2 1 -1 
, 

and 

+$P, = +$P;m2) * 

Using the expansion (3.10) in (3.13)) the terms n=O and 1 will give no contribution 

to (3.12). The term n=2 contributes dL2(1+I), and the terms nL3 diverge in 

(3.12)) and the degree of divergence increases with n. In the limit R-a, to 

leading order in R, we obtain from (3.12) the series 

tiL2(1+I) - 4po(1+I) g n-2 L R2n-5 
n=3 h-5 n 

. 

2N-5 The divergent term R will dominate, and therefore we must have LN=O, and 

in turn each L,=O, n22, in order to satisfy (3.12). Therefore 

AZ(p) = Lo + (p2+m2)Ll , (3.14) 

and from (1.3) and (3.5), 

j(x) = (l+L1) -’ +g (Am 
[ 

- <A(x) 2>) + Lo A(x) - L lKxa(x) 1 . (3.15) 

Lo and Ll are determined by (2.20). From (3.6) 

-s*6,FyS = isf((SxSyH)S)++ S+((S,H) (gyH)S)+ 

where, from (3.7), 

6x6yH = gW a4(x-y) + $(X-Y) , 

so that 

(3.16) 

< -S+6x6yS> = i A2(x-y) + < S+( QxH) (GyH) S)+> . (3.17) 
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The second term on the right side of (3.17) may be expressed in terms of J(s) 

by using the relation 

jtx)jtY) = s+(t~,J4(GyW)+ - bxH, j(y] a , (3.18) 

which follows from (3.6) and some theorems relating time ordered products to 

advanced and retarded commutators. 13 Then 

~~((axJW~yW)+ = T+tWjW +{@~x~-Y~) [bxH. j(y)], + tx - y)} l (3.19) 

The terms in the curly brackets do not vanish, because the commutators can 

contain terms proportional to 64(x-y), which are not in conflict with 0(x0-yo). l4 

In particular, when we evaluate (3.17) using (3.19), (3.7), (3.14), (1.9) and 

relations for j(x) analogous to (2.5)) we will encounter the expression 

B(x~-Y~)K~A~(x-Y;s) = e(xo-Yo) ;Cj4(x-y) + (s-m2) AA(x-y;s) r 1 
= -0 t~o-Yo)640w , 

so that 

Q(xo-yo) / A,&4 < [aW9 j(yfl,> d4u 

L -L K )K r” J(s) A (x-y;s) ds = -i e(xO-yO)( 0 1 x y /4m2 (s,m2)2 A 

- LIIt 1 d4(x-y) . 

Nevertheless, 

mo-Yo) < [I :a@) 
2 

:,HY) a> = 0 1 , (3.20) 

as we will show in the Appendix, so the Fourier transform of (3.17) becomes 

i(l+I) (Lo + (p2+m2)Ll) - L1P 

co 
= -1 

-1 4m2 
J(s) ds a,@;@ 

= Iv - (p2+m2) I O (3.21) 
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This holds for all values of p2, so we may solve for Lo and L1: 

L1 = -I/(1+1) 

and 

Lo = I’/(1+I)2 , (3.22) 

which is precisely what is required by (1.7). 

IV. EQUAL-TIME COMMUTATORS 

A. [A(;, t), A&+, t)] = 0 (4.1) 

Proof: Using (3.4), the analog of (2.4) for j(x), and (2. ll), we see that 

[A(x), A(Y)] = -i A@-Y) + i / [$$+u) AA@-v) 6J W 

-A,(x-u) AR(y-v) S,j(v)l d4u d4v , (4.2) 

which vanishes when xo=yo, by virtue of (2.12). 

B. ~(xo-Yo)kW9 A(Y)I = W+I) 6,(x-y) , (4.3) 

where A(y) = 8A(y)/8y0. To prove this, we need the following lemma3: 

isyAe) = Ky{e(xo-Yo) I&(X), A(Y , (4.4) 

which follows here from (4.2), using (2.13) and (3.4). Commuting K, with 

e(xo-yo), we have 

b(xo-~o) [A(x), &Y)] = i65p(x) - e(xo-yo) kW, j(y)] , (4.5) 

since A(x), Kya(y) vanishes strongly because it is a commutator, and the 
C 1 

y-dependence of a(y) is transferred to a c-number. Let us substitute (3.4) for 

A(x) on the right side of (4.5)) and use (2.4) and (2.11) to change commutators 

to operator derivatives. Then the right side of (4.5) becomes 

ia4(x-y) -i/ d4u [8(yo-x0) +(x-u) Gyj(u) 

+ e(xo-Yo) AA(x-u) aujty;] . (4.6) 
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Now substitute (3. 15) and (3.21) in (4.6), and again use (3.4). Then (4.6) be- 

comes 

i(l+I) 64(x-y)+i (l+I)/d4ud4v [8(yo-x0) AR(x-u) 

x + tuBv) {gAtu) + Lo ? 6yj @)} + ’ txo-Yo) AA(x-u) 

- (4.7) 

The c-number term is all we need. If we can show that the rest of (4.7) vanishes, 

then we have established (4.3). Now the term involving Guj(v) vanishes at once 

by (2.13)) and the term involving Gyj(v) can be written as 

x f@-P’-kq+A) AI&P-h) AR@-P’-A) 
I 

, 

which vanishes according to (2.12). x(p) is the Fourier transform of A(x), and 

f(p, q) is defined in connection with (2.12). Thus (4.3) is established. 

Two other commutators that will be used later are obtained using (4.1)) (4.3)) 

(3.15) and (3.22). They are 

[A<% t), jt?h)l = 0 , (4.3) 

and 

where 

~(x~-Y~) [4x), j(Y)] = -i[g’A@) + 1’1 G4(x-y) , (4.9) 

g’ = (1+1)2 g . (4.10) 

V. DERIVATION OF EQUATION (1.8) 

We start with (2.17), and in the term P,([j(x), j(y)]) commute KxKy with 

8(x0-yo), using (3.4) and 

/AA(x-u) j (u) d4u = a(x) - A(x) - / A(x-u) j(u) d4u . 
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Then apply the equal time commutation relations (4.1)) (4.3)) (4.8) and (4.9)) 

and further simplify things by using (2.4) and (2.11). The result is 

pR([j(x)TjtY)]) = etxo-Yo)[j(x)?jtYjl + i~‘Atx)+l’+K~ 

g- + 
~~(xo-Yo) 

8X0 I J A(x-u) i6 ‘(u) d4u 
0 YJ 

$- + 
wxo-Yo) 

0 8Y() 

x A(y-v) - A&u) AR (y-v)] is,j(u) 
I 

. 

The terms in (5.1) involving 6(x0-yo) and its first derivatives are identical to 

-B(iSy j (x)) , as can be seen by commuting KxKy with 0(x0-yo) in (2.16)) with 

f(x, y) = iS,j(x). Remembering that Re (iSy j(x)) = 0, Eq. (2.17) then becomes 

6yj(x) = ~QW+It+IKx] 64(x-~) -Wxo-yo)[.iW~ j(y)] . (5 * 2) 

The counter-terms appear only as c-numbers, and one more operator differen- 

tiation and (3.4) gives (1.8). 

If we had started this section with PR( [j(x), j(y)] - < [j(x), j(y)] >), we would 

have obtained instead of (5.2) 

6$(x) = @[a(x) - /+(x-u) j(u) d4u 64(x-y) 1 
-i mo-yo) t&L j(y)] - < [jtxLj(Y)]>) + <6yjtxb I (5.3) 

which is equivalent to (1.8). 

VI. DISCUSSION 

Our starting point has been the assumptions of Scattering Operator Theory, 

but here we have recovered from them the canonical quantized field formalism. 

Causality and the energy bound (Eq. (2.12)) play the crucial roles in this effort, 

as is seen in the discussion of (4.7). Thus the scattering operator formalism of 
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Ref. 5 is seen to be fully equivalent to the quantized field formalism, for the 

model considered, except for the question of bound states, which we have not 

attempted to treat. (We have also ignored the question of the existence of the 

model. ) 

Our final result (1.8) involves no infinities (and no cancellations) because, 

in this case, at least, there are at most c-number divergences in 

e(xo-yo) [GL j(y)l, and one operator derivative takes care of them. In deriving 

(1.8) from (2.17), the **source term**, g64(x-y) 64(x-z) emerges from the com- 

mutator P,(E(x), j(y)]). The only role of B(i6 
YJ 

‘(x)) is to cancel those terms which 

do not have the desired off-shell symmetry. This is to be contrasted with the 

role played by a similar operator in Ref. 6, which must specify the interaction 

as well as restore the symmetry. (The right side of (1.8) should be symmetrical 

in y and z. This symmetry can be exhibited by carrying out the operator differ- 

entiation of the commutator, and then substituting (5.3) in the result. ) 

The obvious next steps are to investigate nonperturbative solutions of (1.8)) 

and to address the problem of vertex renormalization and overlapping divergences 

in a harder model. (Coupling constant renormalization was accomplished trivially 

in (1.8), without any deliberate attempt, by (4. lo).) 
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APPENDIX: PROOF OF 

From (3.15) and (2.4) we calculate 

EQUATION (3.20) 

< :a(x)2:, j(y) a> = 
C 1 -’ 

w+L4 < [a(x)s jAAc”-“) 

X{dOi) + LO’S,A(Y,)}> 9 (A. 1) 

and use (3.4) to evaluate aUA(y). The term in (A. 1) which comes as a result 

from 6,a(y) involves 

+(x), A(Y)}> = q+Y) , 

and 

Altx-Y) AA(x-y) = --$ /,, [l - 4m2 /s]1’2 A,(x-y;s) ds 

r 

which vanishes when x0 2y0. (We cut off 1 ds. ) What remains of (A. 1) is pro- 

por tional to 

< {a(x), { gAW + ~~~ JaA (X-U) + (Y-V) “uj (v) d4u d4v}] > 
which vanishes when x02 yo, according to (2.12) or (2.13). 
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