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ABSTRACT 

It is shown that the massive Schwinger model always confines, 

independent of the value of 8, the vacuum periodicity parameter. 

There are no half asymptotic particles for any value of 0, contrary 

to a recent claim. 
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In a recent very interesting paper, S. Coleman’ continued his investigation 

of the confinement (or charge screening) problem in the massive Schwinger 

model, 2 which he started in an earlier paper. 3 The most interesting of his 

results is that the physics of the model is a periodic function of an arbitrary 

angle 6, with the period 2n. It turns out that the appearance of this angle is 

very natural because of the degeneracy of the vacuum, and it takes care of the 

boundary condition at infinity. 4 The most surprising result of Coleman is that 

bound state physics explicitly depend on this vacuum periodicity parameter 

which is to be compared with the contrasting results related to the vacuum 

periodicity problems in 4 dimensions. 5 

In the following simple exercise we demonstrate that the appearance of 8 

explicitly in the bound state problems is due to his incorrect choice of the 

Hamiltonian to start with. Without trying to imitate Coleman’s elegant style, 

letqs review some general features of the Schwinger model. The model is de- 

fined by the Lagrangian density 2,3 

-9 = -$F 
P 

FPv + $(i&e$-m)$ 

where 

F 
PV 

=aA -aA O 
PV VP 

To define the Hamiltonian we have to impose a gauge condition first, Following 

Coleman we choose the axial gauge: 

AI = 0 0 (2) 

The equation of motion for the other component A0 becomes a constraint equa- 

tion. Therefore, there are no true dynamical degrees of freedom associated 

with the electromagnetic (or gluon) field. This means that in one spatial dimen- 

sion there are no photons, i. e, , Yineland is a land of blind creatures”:6 
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2 alAO = -ej, (3) 

The general solution of Eq, (3), up to an arbitrary gauge parameter, is 

-2. Ao(x) = -eaI IO - Fx = - zfix’ Ix-xq I jo(xq) - Ek 

and the corresponding electric field is 

(4) 

Fol(x) = -alAO = ea;‘j, +F =; I dx'~ (x-xq)jo(x’) o (5) 

Here F represents a constant c-number background field, and it will be clear 

from the discussions below that a nonzero F points out the existence of charges 

at the boundaries (customarily a dimensionless parameter 0 is defined in 

terms of Fas$ = $). 

Hamiltonian density is easily found to be 

ria = $(iYlal+m)$+ HoA 
2 - DEFOE) 1 0 (6) 

If we do not pay much attention to the subtleties related to the surface terms, 

the interaction term in (6) can be reduced to that of Coleman by a simple in- 

tegration by parts : 

HI = I dx &(Fo,)2 + (S. T. ) . (7) 

We shall show below that the surface term, ST. = lim [AoFo,]tL 9 which is 
L--o0 

cavalierly dropped by Coleman, plays a central role in his getting an incorrect 

result. Therefore we will try to avoid the integration by parts, and compute 

each term in HI separately in a general and a special example. To check that 

our results are the correct ones, we shall then demonstrate that adding the 

surface terms explicitly in (7) eliminates all the F-dependent terms, and gives 

back the ordinary confining Coulomb potential. We shall substitute (4) and (5) in 

(6), and compute each term in (6) separately: 
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H1 
e2 = J dx(ejoAO) = -eF dxxjo(x) - 2 dx dx’lx-xqljo(x)jo(xq) 

J JJ (8) 

H2 =/dx $Fol)2 =FJ$!ti dx’ e (x-x’)jo(x’) - -$/bx dx’ Ix-x’1 jo(x 

+;F2L, - (9) 

where in the second term we have used the identity 

J dx E (x-XQ)E (x-x”) = -2 Ix’-x” I 0 

Combining (8) and (9), we obtain for the full interaction term 

HI = -4 e2/jfix dx’ Ix-x’1 jo(x - eF[/dx xj,(x) + ;Jdx dx’E (x-x’)jo(xt) 1 . 

-;F2L. - (10) 

For a box of length L (which will be taken to L --L 03 in thetend) we have the iden- 

tity : 

J L/2 

-L/2 
dx E (x-x0) = -2x’ + 4 b ($ -x’) - c$+x’) 1 (11) 

Using this identity we compute the second term in the curly bracket in (10) to be 

-2fdxfxq j,(x’) + $/ixtjo(xf) [c ($-x1) - E (+ +Xf)] o 

For L --L ~0, the second term vanishes. This result holds even stronger for the 

systems with zero total charge, Q E 
J 

dx j,(x) = 0, which we assume to be the 

case for the processes under consideration, So we see that the curly bracket in 

(10) is zero and,up to an ‘5rrelevanV’ infinite constant, HI is 

dxq Ix-x’1 j,(x) joFq) , (12) 

a pure Coulomb interaction. 

Now let us show that (‘7), supplemented with the surface term, gives just 
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this result also. First note that 

AO(+L/Z) = - F + i/dxV(xt - $)jO(x’) = - ;FL + &D - :eLQ 

AO(-L/Z) = F - ~$x’(x( + $)jo(xl) =$FL - i eD - i eLQ 

(13) 
F01(L/2) = F + $$dx’ e($ - x’)jO(x’) = F + i eQ 

FO1(-L/2) = F + ildx’ E (7 i - xq)jO(xq) = F - +eQ 

where Q is the total charge, and D is the electric dipole moment of the system: 

Q = Jb j,(x) , D = dx xjO(x) / . (14) 

Using (13), we calculate the surface term to be 

AO(L/2) F01(L/2) - AO(-L/2) FOl(-L/2) =eFD - $e2LQ2 - F2L . (15 ) 

Adding this to / dx $FOl)2, we get 

1 2 HL=%F L-q e2/jdx dxP Ix-xql jO(x + YJbx dx’ e (x-x’)jO(x’) 

+ eFD - $e2LQ2 - F2L (16) 

Ewe restrict ourselves to states of charge zero, that is to say, states for 

which 

I dx j,(x) = 0 (17) 

1 2 and drop an “irrelevant” infinite constant (- 5 F L) we get 

dx’ Ix-x’lj,(x)j,(x’) + eF D + 2 [ L/$lx dx’ c(x-x’)jo(xt)] o (18 ) 

But we have already shown above, in getting (12), that this curly bracket van- 

ishes. This proves that the surface term, carefully computed, is nonvanishing, 

and cancels the F-dependent term in dx $(Fol)2, giving us back only the Cou- 
/ 

lomb interaction. 
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To amuse ourselves let us briefly repeat the formal arguments above on a 

very simple example, a quark-antiquark (or electron-positron) pair material- 

ized from the vacuum, with a separation x between them. For the configuration 

quark being to the left of antiquark, the charge distribution is explicitly given 

by 

j,(x’) = 6(x’ + 5) - 6(x1 -$) (19) 

A0 and Fol are easily found from (4) and (5) as 

AO(x’;x) = - FX’ - ;(Ix’ + ;I - lx’ - ;I) 

(20) 

Fol@‘;x) = F + ;(E (x’ -t ;) - e (x’ - $)) 

It is clear from (20) that when we put charges in the vacuum only the background 

field between the charges gets distorted. As the separation of the charges, 

x - co, 

(21) 
FOl(x’;x+ W) --. F 

This proves the claim that a nonzero F means that there exist charges of mag- 

nitude F, at the boundaries (for this reason F is called the background field). 

Now a simple calculation gives 

Hl = e21xl +eFx 

(22) 

H2 = $1~1 +eFx+%F2L 

and 

HI = Hl-H2 = <lx, 

which is the pure Coulomb potential, between two oppositely charged particles. 

Again, at the risk of boring the expert, let us quickly check that / dx i(Fol)2, 



supplemented with the surface term, gives exactly (23): 

So T. L 
= [A()Fol 1 -L 

First note from (20) that 

AO(L/2;x) = -+FL - ; x 

124) 
AO(-L/2;x) = +FL + ;x 

Fo1(fL/2) = F 

Therefore 

AO(L/2)Fo1(L/2) - AO(-L/2)Fo1(-L/2) = -F2L - eFx (25 1 

and finally 

HI = jdx &(Fol)2 + (S. T. ) = e2 2 1x1 + eFx + &F2L 1 
2 

- [F’L+eFx] =f$-1x1 

Again, we dropped the irrelevant constant in the last step. 

It is trivial that our results do not depend on the fact that quark is to the 

left of antiquark. The same arguments carry through for the other configura- 

tion also. 

We have seen that a careful analysis shows no background field dependence 

in the q< potential. This is gratifying because the F-dependent term breaks 

translation invariance and P and C symmetries. Because stable bound states 

should be eigenstates of parity and charge conjugation, to circumvent this prob- 

lem Coleman restricts himself to 8 = 0, i.e. , he explicitly determines 0 0 Our 

result ((12)and(23))also shows that the quark-antiquark potential is always bind- 

ing, independent of the value of F, again to be compared with Coleman’s result, 

which claims that for the particular value F = e/2 and for the -+ configuration 

(quark being to the right of antiquark) there is no long-range binding force be- 

tween them. 
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The above investigation raises some doubts about the periodicity arguments 

in Ref. 1 also. We shall show below that using the full Hamiltonian doesn’t 

change the fact that the physics of the massive Schwinger model is periodic; but 

it modifies the value of the period. 

The interaction energy of the quark-antiquark pair is (for x = L) Hde2 I LI , 

and the vacuum energy is HV = *L St since charges distort only the background 

field between themselves, we only look at the energy in this- region). This pro- 

cess of spontaneous pair creation from vacuum is not favorable if 

AH =&e21LI -$F2L.0 

or (26) 

F2 < e2 

So, if IF I < e, vacuum cannot create a qc pair. When I F I > e, spontaneous 

pair creation takes place, and this brings F down to IF I < e again. Therefore, 

the physics of the model is periodic again, but this time with period (-e, e) for 

F, or with period (+r, n) for the variable t3 = 47rz . 
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