EVIDENCE FOR PARITY VIOLATION IN THI: DECAYS
of the narrow states niar $1.87 \mathrm{GeV} / \mathrm{c}^{2}$ *
J. E. Wiss, G. Goldhaber, C. S. Abrams, M. S. Alam,
A. M. Boyarski, M. Breidenbach, W. C. Carithers,
S. Cooper, R. G. DeVoe, J. M. Dorfan, (i. J. Feldman,
C. E. Friedberg, D. Fryberger, (i. Hanson, J. Jaros, A. D. Johnson,
J. A. Kadyk, R. R. Larsen, D Luke \dagger V. Lith, II. L. Lynch,
R. J. Madaras, C. C. Morchouse ${ }^{\ddagger}$ H. K. Nguyen ${ }^{\Phi}$ J. M. Paterson,
M. L. Perl, I. Peruzzi \dagger^{+}M. Piccolo ${ }^{\dagger} \mathrm{F}$. M. Pierre ${ }^{\ddagger \neq}$ T. P. Pun, P. Rapidis, B. Richter, B. Sadoulet, R. II. Schindler, R. F Schwitters, J. Siegrist,
W. Tanenbaum, (i. H. Trilling, F. Vanucci, ${ }^{\Phi \Phi}$ J. S. Whitaker.

Lawrence Berkeley Laboratory and Department of Physics University of California, Berkeley, California 94720
and
Stanford linear Accelerator Center Stanford University, Stanford, California 94305

ABSTRACT

We have studied the Dalitz plot for the recently observed charged
 state is incompatible with a natural spin parity assignnent. This information, coupled with the carlier observation of the $K^{ \pm} \pi^{\mp}$ decay mode (a final state of natural spin parity) of the neutral state at $1865 \mathrm{McV} / \mathrm{c}^{2}$, suggests parity violation in the decays of these objects if they are members of the same isomultiplet as their proximity in mass suggests.

[^0]We have recently reported our obscrvation in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation of a narrow, charged state of mass $1876 \mathrm{MeV} / \mathrm{c}^{2}$ decaying into the exutic decay mode $K^{\mp} \pi^{ \pm} \pi^{ \pm}$. The proximity in mass of this state to the neut ral state decaying into $K \pi$ and $K 5 \pi$ at $1865 \mathrm{MeV} / \mathrm{c}^{2}$ suggests that they are members of the same isomultiplet. As such they are expected to have the same parity. Since the $K \pi$ final state is one of natural spin parity, a demonstration that the $K \pi \pi$ final state of the charged member of the isomultiplet is inconsistent with natural spin parity implies a parity violation in the decay. In this Letter we present evidence, based on a study of the $K^{\mp} \pi^{ \pm} \pi^{\prime \prime}$ Dalitz plot for such a parity violation, suggesting that the decay proceeds via the weak interaction as expected for the predicted $\left(0^{+}, D^{0}\right)$ isodoublet of charm. ${ }^{3}$

The present analysis is based on $K \pi \pi$ events observed among a sample of $\sim 44,000$ hadronic events taken from 3.9 GeV to 4.25 (iev center-of-mass energy. Thesc data were taken with the SLAC-LBL magnetic detector at SPEAR.

The $K \pi \pi$ combinations are selected with the aid of the time-of-flight system described in Ref. 2. In the present analysis we have used a modified form of the time-of-flight (fO) weighting technique described earlier. ${ }^{1,2}$ A given track in a multi-prong hadronic event is assigned a definite particle identity on the basis of the agrecnent between its observed TOF: over a $1.5-2.0$ meter flight path and that predicted for either a n or a k with a monentum as measured. Specifically we compute a x^{2} value for both the π and K hypotheses (x_{π}^{2} and x_{K}^{2}) based on the observed and expected TOF and the 0.4 ns rms resolution of the rof system. Tracks satisfying the requirements $x_{K}^{2}<x_{\pi}^{2}, x_{K}^{2}<3$ are called kaons. Protons and anitprotons are separated from
kaons in a similar fashion. The remaining tracks are called pions. ${ }^{4}$ The above technique allows the direct study of scatter plots and in particular the balitz plot for the $K \pi \pi$ system.

In order to obtain a relatively clean sample of $k \pi \pi(1876)$ cuents we make use of the result that for the $E_{c m}$ region, $3.9<E_{\mathrm{cm}}<4.25 \mathrm{GeV}$; the recoil mass ($M_{r e c}$) spectrum shows a sharp spike near 2 GeV .1 We thus used a data sample with the $F_{\text {cm }}$ region chosen as above coupledwith a cut 1.96 < Mrec < 2.04 $G e V / c^{2}$. Figure la and l bhow the resulting exotic and nonexotic $k \pi m$ invariant mass distributions. A fit to the spectrum of lig. lb was appropriately scaled to serve as a background for Fig. la. Figure la shows a fit to a galussian peak over this background. Figure 2 a shows the (folded) Dalitz plot for $K^{\mp} \pi^{1 . \pm}$ events with the additional invariant mass (M) requirement $1.86<M<1.92 \mathrm{GeV} / \mathrm{c}^{2}$. We find a sample of 126 events in the Dalitz plot of Figure $2 a$ of which we estimate 58 arc background. In Figure 2 b we show a background Dalitz plot consisting of 112 nonexotic combinations $K^{\mp} \pi^{+} \pi^{-}$satisfying the same mass and missing mass cuts as the exotic combinations of Figure 2 a.

Both signal and background Dalitz plots are consistent with uniform population density. A uniformly populated Dalitz plot is incompatible with a $K \pi \pi$ final state of pure, natural spin parity. ${ }^{5}$ for the case of a natural spin-parity state decaying into three pseudoscalars one expects a depopulation (or zero) along the Dalitz plot boundary. This follows from the necessity of constructing the matrix clement from the vector product of the two independent center-of-mass momenta-a vector which vanishes on the Dalitz plot boundary where momenta are collinear. If, as in the case of $K^{+} \pi^{ \pm} \pi^{ \pm}$, two of the pseudoscalars are identical, one expects additional zeros. Since three
pseudoscalars cannot be in a 0^{+}spin parity state, 1^{-}and 2^{+}exhaust natural spin parity combinations for spin less than 3 . For the case of 1^{-}one expects an additional zero along the y-axis (symmetry axis), while in the case of 2^{+}one expects a higher order zero at the top of the Dalitz plot. In order to quantitatively rule out the $k \pi \pi$ final states of 1^{-}and 2^{+} we have utilized the phenomenological matrix elements of Zomach. ${ }^{5}$ These are the simplest matrix elements and are subject to multiplication by arbitrary form factors. Barring the presence of rapidly varying form factors, they can be expected to give a good approximation to the extent of the regions of depopulatiun, allowing a quantitative comparison with the experinental distribution.

For $J^{P}=1^{-}$the matrix element is constructed from an axial vector symetric under the exchange of the two pions. The essential form of such a quantity is $\left(T_{\pi_{1}}-T_{\pi_{2}}\right) \vec{\pi}_{1} \times \vec{\pi}_{2}$, where $\vec{\pi}$ represents a pion momentum in the rest frame of the $K \pi \pi(1876)$, and T_{π} represents its hinetic energy. For the case of unpolarized porduction one then expects an intensity I_{1} - \mathfrak{q} iven by

$$
I_{1}-\propto\left|T_{\pi_{1}}-T_{\pi_{2}}\right|^{2}\left|\vec{\pi}_{1} \times \vec{\pi}_{2}\right|^{2}
$$

To compare the distribution of I_{1} - with the data, we have divided the Dalitz plot into two discrimination regions divided by a contour of constant $I_{1}-$. The particular contour was chosen so that an equal number of events would be found in each region for a phase space decay of the state $k \pi \pi(1876), 5$ as detcrmined by a Monte-Carlo calculation. Owing to the approximitely miform
 Figures 3 a and 3 b show the $K^{\mp} n^{+} \pi^{+}$invariant mas spectra for cents with

Dalitz variables lying inside the two 1^{-}discrimination regions as indicated by the shaded area in the respective inserts.

A fit to a Gaussian signal over the scaled background of fig. Ib reveals 34 ± 8 signal events in the peripheral region compared to $38+9$ signal cvent:: in the central region. Such a division is consistent with equal population with a x^{2} of 0.1 for one degree of freedom (DF) or a confidence level $C L=75^{\circ}$. On the other hand, a Monte-Carlo simulation of $K \pi \pi$ decays using the intensity distribution I_{1-} gives an expected population division of $1: 8.2$ for peripheral to central region. This is effectivcly ruled out with a x^{2} of 18.1 ($\mathrm{CL}=2 \times 10^{-5}$).

For 2^{+}we construct a symmetric, tracelcss, second-rank tensor which is also symmetric under the exchange of the two pions. We use $A^{i j}=\Delta \pi^{i} q^{j}+\Delta \pi^{j}{ }_{4}$ Wherc $\Delta \pi$ is the difference of the pion momenta and q is their cross product. For unpolarized production one expects an intensity given by:

$$
I_{2}+\propto \sum_{i} \sum_{j} A^{i j} A_{j i}=\left|\vec{\pi}_{1}-\vec{\pi}_{2}\right|^{2}\left|\vec{\pi}_{1} \times \vec{\pi}_{2}\right|^{2}
$$

Here we again divide the Dalitz plot into two regions, using a contur of constant $I_{2}+$ chosen to give equal population for phase space decay. $I_{2}+$ depopulates the peripheral region relative to the central region by $1: 5.6$. Figure 3 b and 3 c show the $\mathrm{K}^{\mp} \pi^{ \pm} \pi^{+}$invariant mass spectra for events with Dalitz variables in the shaded 2^{+}discrimination regions. Our fits give 31 ± 9 events in the peripheral regions and 35 ± 10 events in the contral region. This result is again consistent with equal population with a x^{2} of 0.1 for one $D F\left(C L=75^{\circ}\right)$, and inconsistent with $\mathrm{I}_{2}+$ with a x^{2} of 9.4 for one $D F(C L=0.002)$. The ubserved sample population of the 2^{+}peripheral discrimination region indicates the absence of a general boundary zero. The
absence of such a zero argues against natural spin parity final states of spin 3 and greater as well.

In summary the distribution in the lalitz plot is incompatible with the zeros expected for spin parity 1^{-}or 2^{+}for the $k \pi \pi(1876)$. Parity violation then follows from the observation that the presuned isomultiplet state at 186.5 $\mathrm{MeV} / \mathrm{c}^{2}$ decays into $K \pi$, a natural spin parity statc.

We wish to thank W. Chinowsky for uscful discussions.

REFERENCES AND FOOTNOTES

1. I. Peruzzi, M. Piccolo et al., Phys. Rev. Lett. 37, 569 (1976).
2. G. Goldhaber, F. Pierre et al., Phys. Rev. lett. 37, 255 (1976).
3. J. D. Bjorken and S. L. Glashow, Phys. Lett. 11, 255 (1964); S. L. Glashow,
J. Iliopoulos, and L. Maiani, Phys. Rev. [22, 1285 (1970); M. K. Gaillard,
B. W. Lee, and J. L. Rosner, Rev. Mod. Phys. 47, 277 (1975); A. De Rajula,
H. Georgi, and S. L. Glashow, Phys. Rev. Lett. 37, 398 (1976); K. Lane and E. Eichten, Phys. Rev. Lett. 37, 477 (1976).
4. Tracks which lack reliable TOF information are included in the "pion" category.
5. C. Zemach; Phys: Rev. B133, 1201 (1964); see also B. W. L.ee, C. Quigg, and J. L. Rosner, Fermilab PUB 76/73 Thy, August 1976 (unpublished).
6. A phase space decay is possible for the $K \pi \pi$ spin parity assignment of 0^{-}.

FIGURE CAPTIONS
Fig. 1. The $K \pi \pi$ mass distributions with the cuts designed to enhance the signal-to-background ratio: $E_{c m}=3.90-4.25 \mathrm{GeV}$ and $M_{\mathrm{rec}}=1.90$ - $2.04 \mathrm{GeV} / \mathrm{c}^{2}$. (a) Exotic combination $\mathrm{K}^{\mp} \pi^{ \pm} \pi^{ \pm}$; (b) non-exotic combination $\mathrm{K}^{ \pm} \pi^{+} \pi^{-}$.

Fig. 2. Dalitz plots, folded around y-axis, for the $K \pi \pi$ system with the mass cuts $M=1.86-1.92 \mathrm{GeV} / \mathrm{c}^{2}$ and the cuts given for Fig. 1. (a) Exotic combination $\mathrm{K}^{\dagger} \pi^{ \pm} \pi^{ \pm}$; (b) non-exotic combination $\mathrm{K}^{ \pm} \pi^{+} \pi^{-}$. llere $Q=T_{k}+T_{\pi_{1}}+T_{\pi_{2}}$.
Fig. 3. $M\left(K^{\dagger} \pi^{ \pm} \pi^{ \pm}\right)$distributions for the same data sample as in fig. 2. (a) "peripheral" and (b) "central" regions (on the folded plot) for a contour of a 1^{-}matrix element as indicated by the shaded regions of the inserts, (c) "peripheral" and (d) "central" regions for a contour of a 2^{+}matrix element. The solid curves are fits to a Gaussian signal over the scaled backgrounds of Fig. lb.

Fig. 1

XBL 7610-4116
Fig. 2

XBL 76104114

Fig. 3

[^0]: *Work supported by the Energy Research and Development Administration +Fellow of Deutsche Forschungsgemeinschaft
 \#permanent address Varian Associates, Palo Alto, California
 plermanent address LPNIIE, Universite Paris VI, Paris, fance
 t temanent address lahoratori Nazionali, Frascati, Rome, Italy
 $\not \ddagger \neq \mathrm{P}$ rmanent address Centre dlitudes Nucleaires de Saclay, france $\varnothing \varnothing$ Permanent address Institut de Physique Nucleaire, Orsay, France

