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Abstract 

When the parameters of a simple stochastic model of the memory 

referencing behavior of computer progrqns are carefully selected, the model 

is able to mimic the paging behayior of a set of actual programs, The 

mimicry is successful using several different page replacement algorithms 

and a wide range of real memory sizes in a virtual memory environment, The 

model is based on the independent reference model with a new procedure for 

determining the page reference probabilities, the parameters of the model, 

We call the result the Ap inversion jndependent reference model, Since the 

fault rate (or miss ratjo) is one aspect of program behavior that the model 

is able to capture for many different memory sizes, the model should be 

ially useful for evaluating multilevel memory organizat espec 

newly 

ions based on 

emerging memory technologjes, 

*Work partially supported by the Energy Research and Development 
Administration under Contract E(O)+-3)-515. 

*%ork part ially supported by National Science Foundation, NSF Grant (335720 

(Submitted to the Comm. of the KM) 



KEYWORDS AND PHRASES 

program models 

stochastic program models 

program behavior 

program paging behavior 

program page reference behavior 

paging algorithms 

replacement algorithms 

virtual memory 



THE A$J INVERSION MODEL OF PROGRAM 

PAGING BEHAVIOR 

1. Introduction 

Computing systems in which several types of storage are automatically 

made to appear as one uniform type of storage are likely to be a major part 

of our computing environment for some time to come, Memory transparency or 

automatic folding or virtual memory has been accepted as a necessary tool for 

the convenient solution of many computing problems in much the same way as 

higher level languages were accepted as a necessary evil many years ago, In 

fact, paging techniques [8] are being used to automatically manage small, 

very high speed buffers (caches) for high speed CPU's [2, 71 and to manage 

large, slow disk buffers for much la,rger and slower automated filing systems 

c31 9 as well as being used more conventionally to automatically manage main 

memory in a wide variety of computers. 

This wide use of paging techniques,together with the ever changing 

performance parameters of the memory technologies on which these paging 

techniques are implemented,point up the need for efficient and effective 

methods for evaluating the performance of different memory hierarchy designs, 

Central to such methods will be some model of how computer programs reference 

memory. The choice of that model of memory referencing behavior will 

determine the accuracy , efficiency, generality, and even the feasibility of 

the evaluation method in which it is contained. In this paper,we describe a 

new interpretation of a simple model of how programs reference memory and give 

a procedure for determining the parameters of that model. We then illustrate 

the success of the model in predicting the page fault rate and working set 



characteristics of actual programs by comparing the model predictions with 

results determined by simulations using actual program traces. We discuss some 

of the limitations of our method, how the results from our method compare with 

results from other models, and how the results may be useful. Finally, we 

discuss some possible extensions and generalizations, 

2. Choice of model 

The most widely used models of the memory referencing behavior of 

programs have been simulation models driven by traces of the addresses generated 

by actual programs. While these methods have the most potential for accuracy 

they are also the most cumbersome, expensive to process, and time consuming. 

In addition, it is normally not feasible to evaluate more than a small subset 

of the possible memory and system configurations of interest because of the 

difficulty in handling this type of model, Thus;one of our primary aims in 

developing an alternative model is to choose one which is analytically 

tractable. We want to be able to derive general results simply by solving 

equations involving the parameters of the system to be evaluated and the 

parameters of the model. Even if such solutions must be numerical instead 

of closed form expressions, we will have a model with more power than a 

simulation based on program traces. This will be power to investigate 

larger subsets of the memory design spa,ce more economically, 

In addition to developing a model which is analytically tractable, we 

want a model with predictive power. We don't want to simply engage in curve 

fitting. We want the model to predict properties of how program references 

memory,which were not built into the model,through the method of determining 

the parameters, For example, the LRU stack depth model [Id of a program 

can predict the fault rate of the program under LRU page replacement precisely 
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if the stack depth distribution of the model is determined from the stack 

depth distribution of the program. Such a prediction is not surprising; it 

is built into the model, If, however, the model also predicted the fault rate 

with some accuracy under a different page replacement policy, we would say 

that the model had some predictive power. 

Finally, we want a model which is sufficiently simple to be used effi- 

ciently in simulations since we expect to have to resort to simulations for 

the evaluation of some complex designs, or to validate simplifying assumptions 

in the analysis of some designs. 

We concentrate on the paging behavior of the model of how programs ref- 

erence memory since the principal performance characteristics of an automatic 

memory hierarchy can be determined from the paging behavior if we take a gen- 

eral view of paging. Thus when evaluating a cache memory design, the miss 

ratio is equivalent to the fault rate, the address mapping scheme corresponds 

to some special page replacement policy, and the size of cache elements is the 

page size. When evaluating an automated filing system, similar parallels can 

be drawn. 

3. Notation 

In order to develop and validate our model, we will refer to several dif- 

ferent page replacement algorithms, the algorithms which specify which page in 

main memory is to be replaced when a program refers to a page in the backing 

store. We now give a brief summary of those algorithms and our notation for 

them. 

MIN [53 -- replace the page whose next reference is furthest in the 

future. This algorithm is not practical because it requires knowledge of 

the future, but it is an algorithm which minimizes the total number of page 
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faults for a single program in a fl:xed size memory and, thus,is useful as a 

base for evaluating other page replacement algorithms. In addition, we make 

use of it in our procedure for determining the parameters of our model. 

LRU b7] --replace the page which is Least Recently Used, This is the 

page whose last reference was furthest in the past. If the future references 

of a program are like the past references,then this time reversed dual of 

the MIN algorithm should be a good practical page replacement algorithm, In 

fact, it is difficult to keep track of which page was least recently used in 

real systems, but there are some simple and practical schemes which closely 

approximate the LRU page replacement policy US], Hence our model should be 

able to predict paging behavior under the LRU algorithm if it is to be useful 

in such settings. 

FIFO n7] --replace the page which was first brought into main memory 

among those currently present in main memory (First-In-First Out). This 

algorithm is actually used in some computing systems [l] although it is 

known to have some strange properties and to generally be inferior to LRU 

and related algorithms. We consider it briefly as an extreme test. 

Aid (r4] --replace the page which is least likely to be referenced. This 

algorithm is useful when pages are known to be referenced with independent, 

fixed probabilities,as in the independent reference model. In such 

circumstances,it is known to be optimal among algorithms without knowledge of 

the future. We make extensive use of its analytic tractability in deriving 

the parameters of our model, 

WS (T) bl --replace the page which hasn't been referenced in the last 

T references, Those pages that have been referenced in the most recent T 

references are called the current working set, T (or tau) is the working set 

parameter. Of the page replacement policies we consider, this is the only one 
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which requires a variable number of main memory page frames, Thus,the paging _ 

behavior under the working set algorithm seems to represent a somewhat 

different dimension of program paging behavior than the previous fixed memory 

page replacement algorithms, Comparisons of our model results with actual 

working set results illustrate both the power and the limitations of our 

model. 

4. Previous Models 

Although simulation models based on actual program traces have been the 

most widely used models of memory referencing, numerous attempts have been 

made to develop more tractable analytic models. The two most prominent such 

models are the independent reference model and the LRU-stack depth model. 

In the independent reference model, there is a fixed probability, pi, 

associated with each page i of the program being modeled.. References to pages 

are generated by independently sampling from this page reference probability 

distribution. This model has received attention from a theoretical 

perspective because it is analytically tractable, There have been a number 

of papers giving interesting theoretical results based on this model [13,14. 

The main problem with this model is the problem our intuition suggests, namely, 

that a program's references to memory are not independent but, in fact, are 

correlated in a complex and highly structured way. Thus, if we simply count 

the number of times a program references each of its pages, and use these 

counts as estimates of the page reference probabilities in an independent 

reference model of that program, we will find that the resulting model of the 

program is a very poor predictor of the actual paging behavior of the program. 

The fact that certain sets of pages tend to be referenced together (localities) 
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is not captured in this "page reference frequency" version of the independent _ 

reference model. Thus, the model predicts a page fault rate much hjgher than 

actually observed under almost all circumstances, This is illustrated in 

Figure 1 where we have plotted the actual page fault rate as a function of 

main memory size (in pages) for an IBM/360 WATFIV compiler run subject to the 

LRU and MIN page replacement algorithms, These functions are represented by 

the solid lines in Figure 1. On the same figure,we have plotted the fault 

rates observed for the page reference frequency independent reference model 

of this WATFIV compiler for the same memory sizes and page replacement 

policies. When we notice that the fault rate is plotted on a logarithmic 

scale, the overestimate of the model is most startling, usually between two 

and three orders of magnitude: Results like these, which are typical of the 

page reference frequency model, are why the independent reference model has 

often been harshly criticized by those interested in models that have some 

practical value, 

The LRU stack depth model works from a probabilistic model of the depth 

of a reference in an LRU stack. The LRU stack is a stack jn which the most 

recently referenced page is on the top of the stack, the next most recently 

referenced page is just below the top, down to the least recently used page 

on the bottom of the stack, Each time a page is referenced, the LRU stack is 

updated by moving the entry for that pa,ge from its current position (depth) 

in the stack to the top of the stack, This stack is for all of the pages 

referenced, not just those in main memory. We can maintain an LRU stack 

(in theory) even if we are not using an LRU page replacement policy, The LRU 

stack depth model is constructed by counting the number of times a particular 

position (depth) in the LRU stack is accessed in order to update the stack, 

These counts are then used as estimates of the probability of any given 
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reference being at a particular LRU stack position (depth), The LRU stack 

depth model can then be used to generate page references by generating a 

stack depth according to the stack depth distribution, looking in an LRU 

stack at that position, calling the page name found there the next page to be 

referenced, updating the LRU stack, and then repeating this process. The 

page reference string so generated does not have to be used in an LRU paging 

environment although the page fault rate for such a model will exactly match 

(except for sampling error) the LRU fault rate of the program from which it was 

derived. 

A great deal has been written about efficient methods for determining the 

LRU stack depth distribution (and features of other stack processing type paging 

algorithms) 04,6] , but very little has appeared indicating the suitability 

(or lack of it) of the LRU stack depth model for systems other than LRU type 

paging environments. We will return to this subject later. The LRU stack depth 

model does not seem to be as analytically tractable as the independent 

reference model (the LRU stack depth model is an independent reference model 

in the strict sense of that term) although there are some available results. 

For example, the position of any particular page in the LRU stack of an LRU 

stack depth model is a uniformly distributed random variable independent of the 

identity of the page and the particular stack depth distribution ifSI, 

Since this violates our intuition about program behavior,perhaps this partly 

explains why the LRU stack depth model has received little empirical treatment 

in the literature. 

In addition to these two models, there have been fragmentary treatments 

of other types of models. We say that the treatments are fragmentary because 

they normally don't provide either enough theoretical development to demonstrate 

analytic tractability or enough empirical development to demonstrate practical 
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feasibility or value, They usually seem to be the starting points for more 

extensive research. One such model is a first order Markov model 1163 * 

The independent reference model is sometimes called a zeroth order Markov 

model since successive references are independent of all past and future 

references. In a first order model, the next reference depends on-the 

identity of the previous reference, A first order model should be able to 

do everything that a zeroth order model does plus more,provided the much 

larger parameter space can be algorithmically and efficiently determined, 

Models which explicity try to capture the idea of locality have been proposed 

k6], but not well developed. 

5. AJd Inversion Model 

If we return to Figure 1 and the comparison of the fault rates for an 

actual program and the page reference frequency model of that program,we can 

see support for an observation that Peter Franazcek made to us ufl . He 

observed that while the page reference frequency model didn't predict actual 

fault rates very well, it did predict the relative performance of different 

paging algorithms with some accuracy. Thus, the spacing between the MIN and 

LRU curves is about the same for the actual program curves and the model 

program curves, indicating approximately the same percentage change in fault 

rate in the model as in the actual program between these two paging algorithms. 

This observation suggested to us that either the independent reference model 

was capturing some aspect of program behavior or that some paging results 

depended more on the system than on the program. At any rate,it seemed worth- 

while to take another look at the independent reference model. 

Our view of the model is a more abstract one than the view represented 

by the page reference frequency version of the model. We don't insist on any 
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particular identification between model pages and actual pages; we just insist 

on good results. Thus, we simply want to choose the page reference probabilities 

of the model so that the model more accurately predicts the actual fault rates 

in at least some cases. In this view an independent reference model of a 

program that references n pages is a model with n-l parameters or degrees of 

freedom. With this many parameters, we should at least be able to do curve 

fitting provided we can devise a feasible scheme for determining the values of 

the parameters. 

We observe that one way of binding the model to the characteristics 

of a real program is to require that the lower bound on the page fault rate of 

both the model and the actual program under optimal replacement algorithms be 

close together. We can then be sure that enough structure is built into the 

model so that, at least in the long run, the model is capable of predicting 

the behavior of the actual program under the optimal paging algorithm. 

For a given page reference sequence of an actual program, we know that 

the MIN algorithm gives the least number of faults among all fixed memory size 

algorithms. We can, in fact, measure the MIN fault rate of the program, 

FMIN(m), for different memory sizes m (1 zmzn). For the independent reference 

model, the Ag r43 algorithm gives the optimal fault rate if we disallow the look- 

ahead of the MIN algorithm. At the time of a page fault, the A@ algorithm re- 

places a page which is least likely to be referenced in the future. 

Let [P, 4y3 T***,PJ and Pl<P2<P3 <Pn be the set of reference 
. . ..- 

probabilities for an independent reference model. The A!J fault rate produced 

by this model, FAO(m), for a memory size m is equal to [@] : 
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n II 

-7 
F, = FAg(m) = pi 

c Pi2 
_ l=m llisn 

i=m 
n 

c 
i=m 

'i 

Therefore, if the reference probabi lities are known, ( 1) can give the 

(1) 

optimal (non-lookahead) fault rate for different values of m, 1~ m 5 n. Con- 

versely, if a set of n fault rate values are given, we may be able to find a 

set of reference probabilities which satisfy the relations in (1). 

We observe that if our independent reference model is to capture the 

fault rate behavior of actual programs, then we expect that the fault rate 

of the model under the AP) algorithm should be close to the fault rate of the 

actual program under the MIN algorithm and for all memory sizes. This gives 

us a procedure to find pi's from the relations in (1). In other words, we now 

substitute for F,'s in (1) the observed MIN fault rate values, and then we 

invert (1) to get a set of recurrence expressions for finding piis. The 

independent reference model which is obtained by this procedure is referred 

to henceforth as the AP) inversion model. 

n m 

We carry out this procedure by letting Sm = c pi and Rm = c pi' We 
i=m i=l 

then successively get: 
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n 

F, = Pi - 

n 

z Pi2 

Fm 
= s, - '=; 

m 

Similarly: 

n 

F .m+lSn+l = sm+12 - c 
i=m+l 

Pi2 

Subtracting the above two expressions we get: 

F,S, - FmtlSmtl = Sm2 - Smt12 - P ' m 

Fmpm + Fmsm+l - Fmtlsmtl = pm2 + 'mtl' + 2PmSm+l - Smt12-P 
2 

m 

or 

pm ='m+l (Fm - Fmtl) lzm<n - (2) 
2s m+l - Fm 

If p, is known, then (2) can be used successivley to find pnml, pns2 and 
, 

so on. However, we can arrange (2) so that first we can find pl, and having 

pl, we can find p2, and so on. Since pi's are probabilities, we have 

S mtl = l- Rm = 1 - Rm 1 - pm . 
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Replacing this in (Z), we find: 

(I-Rm_l-~m) (Fm-Fm+l) 
'm = - 2(1-R m-lwPm) - Fm 

lLm<n 

In (3), we assume that R. = 0. Each pi" i=1,2,3,...,n-1 can be successively 

computed from (3) by solving a quadratic equation. Later,in this paper, we re- 

turn to this derivation for more comments. 

6. Test Results - Fault Rate Prediction 

We now examine the ability of the AJd inversion model to predict the fault 

rate behavior of real programs. We expect to get substantial improvement over 

the previously mentioned page reference frequency method. Indeed, by inspecting 

Figure 2, we can see the success of the model, In this figure, the solid lines 

represent the fault rate curves of WATFIV program under MIN and LRU algorithms. 

Using the A!J inversion technique, we construct an independent reference model 

based on the same program. The MIN and LRU fault rate which are produced by 

the model are shown by dotted lines on the same figure. As we expected, the 

MIN fault rate curve of the model closely follows the MIN fault rate curve of 

the actual program for a wide range of memory sizes. It is interesting, how- 

ever, that even the LRU fault rate curves of both the model and the acutal pro- 

gram are fairly close together. The success of the model becomes more signi- 

ficant if we compare Figure 1 with Figure 2 to see the amount of improvement 

over the page reference frequency method, This demonstrates the fact that by 

using an appropriate method, we can build substantial predictive power into a 

simple independent reference model. 

It is interesting to inspect the set of reference probabilities which are 

obtained by the AD inversion model. We can get a better insight into the struc- 

ture of this model by comparing these reference probabilities with the reference 
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probabilities which are obtained from the simple frequency method. In Figure 

3, the two sets of reference probability densities based on the WATFIV compiler 

are shown. The horizontal axis is the page number and the vertical axis is the 

probability weight. 

In the frequency method, the reference probabilities are found by taking 

the global averages on the entire string. In the averaging process, most of 

the information about the regional characteristics of the string is lost. 

Along the same lines, we have tried other approaches to get a better represent- 

ative set of probabilities. One method we used was to divide the trace into 

intervals and find the relative reference frequencies in each interval, and 

order each set and combine over all intervals, The results, which are not re- 

ported here, showed only a slight improvement over the usual frequency method. 

In the Ala inversion model, a completely different approach is taken and 

the reference probabilities which are obtained in this case bear no direct re- 

lation with the relative reference frequency of each page in the actual program. 

In Figure 3, we note that the A@ inversion model produces a reference probability 

mass distribution which has a distinctive resemblance to the fault rate curve 

of the program upon which the model is based. We can see that some important 

information, such as the memory sizes where the actual fault rate changes curva- 

ture, is precisely carried over to the corresponding page numbers in the ref- 

erence probability curve. 

Generally, the A@ inversion model assigns large probability mass to a small 

number of pages (i.e., pages with the lowest subscript) and the remaining pages 

receive probability weights in sharply decreasing quantities. One can interpret 

the top pages (e.g., the first 20 pages in Figure 3) as the current locality 

pages of the program. References to these pages are mostly favored in the ref- 

erence string generated by the model. The pages which receive the least pro- 

bability weights can be imagined to produce the instances corresponding 
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to locality transitions in the actual program. The remaining pages which re- 

ceive probability weights between the above two extremes can be considered to 

contribute to the small variation of the locality sizes in time. 

We can support our claim about the predictive power of the A@ inversion 

model by presenting more evidences about the success of the model. For another 

replacement algorithm, we test the behavior of the model under the FIFO paging 

algorithm. In Figure 4, the solid line is the fault rate of the actual WATFIV 

program versus memory sizes under the FIFO algorithm. In the same figure, the 

dotted line represents the fault rate curve of the model under the same algo- 

rithm. We can see that the model is capable of predicing the average fault be- 

havior of the program on the lower range of memory capacities. For very large 

memory sizes, the dotted line drifts slightly away from the soTid line. The 

behavior of the model in this region can be partially accounted for by any one 

of the following reasons. Since we simulate the model, in this case the sam- 

pling error becomes significant for large memory sizes. The other source of 

the error is the inaccuracy in defining the tail (i.e., the pages with the 

highest subscripts) page reference probabilities. We shall return to the pro- 

blem of finding the tail probabilities later in this paper. 

In a series of experiments, we present more data for validation of the 

model. We have constructed Afl inversion models based on the page reference 

trace of several programs. These programs include a trace of a WATFIV 

compiler, a FORTRAN program called WATEX, an APL program, and the trace of a 

program to calculate the Fast Fourier Transform, called FFT, of a set of data 

points. 

In Figures 5, 6, and 7, the fault rate curve of each model under the MIN 

and LRU algorithms are compared with those of the corresponding actual programs. 

In each figure, the solid lines belong to the actual program and the dotted 

lines represent the data points from the model. We note that in each case the 
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model is able to predict the LRU fault rate of the actual program in a satis- 

factory way, All these models are especially successful in the range of lower 

memory sizes. Tt is significant, for instance, to note that the Ap inversion 

model has been able to capture the special behavior of the FFT program as can 

be seen in Figure 7. We observe that the fault rate curves of the model 

breaks in exactly the right point (memory size), in this case. This is a 

rather promising result which shows that the technique can be used successfully 

to model program behaviors which are highly structured. 

7. Average Working Set Size Prediction 

The working set concept has been widely acclaimed as being a good measure 

of program reference localities. The working set [9], WS(t,T), at time t, is 

the set of pages addressed in the past T references, The size of this set is 

denoted by ws(t,T). The window size T is the working set parameter. The mea- 

sured working set sizes can be averaged over the entire program trace and lumped 

into one number, called the average working set size, ws(T). 

The average working set size can also be defined for the references generated 

by the model. Since the probabilistic structure of the model is known, the ex- 

pected working set size can be readily obtained by a probalistic argument. Let 

r P~YP~,P~S~*. ,pJ be the parameters of the AP) inversion independent reference 

model. The expected working set size with parameter T is equal to the proba- 

bility that a page is in the working set summed over all pages. A page is in 

the working set if it has been referenced at least once in the last T units of 

time; therefore, 

n 

ws(T) = ' [l -(l-pi)T] 
i=l 

(4) 

We can now examine the capability of the model in predicting the average 

working set sizes of actual programs. In a series of experiments, we have mea- 
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sured the average working set sizes of a number of programs with different 

window sizes. For each actual program, the average working set sizes of the 

corresponding AP) inversion model is calculated from (4). The results are illus- 

trated in Figures 8 and 9 for the WATFIV, APL and FFT programs. In each figure, 

the horizontal ax is is the window size in terms of address reference units and 

the vertical axis is the average working set size. The solid lines are obtained 

from the measurements on the actual programs and the dotted lines are computed 

from the parameters of each model. 

We can see that the predicted average working set size values derived from 

the model are strikingly close to those of the actual programs. This result 

demonstrates the capability of the A@ inversion model in capturing an important 

feature of the address reference behavior of real programs. 

Once the average working set size is known, the fault rate values under 

working set (WS) algorithm can be obtained. For the independent reference 

model, the WS fault rate is equal to the probability that a page hasn't been 

addressed in the last T references and that it will be addressed in the next 

reference summed over all pages, i.e., 

n 

FwsrTJ = i< (I-Pi)TPi 7- . 

In Figures 10 and 11, the WS fault rate of the WATFIV program with two 

different page sizes, and the WS fault rate of APL and FFT programs are shown. 

In each figure, the WS fault rate probability of the corresponding AP) inversion 

model is shown by dotted lines. The horizontal axis is the average working set 

size and the vertical axis is the fault rate. The fit of the points obtained 

from the model to the points measured on the actual programs, basically re- 

flects the results illustrated in Figures 8 and 9. 
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In Figure 9, we notice that the model somewhat overestimates the working 

set size of the APL program. An explanation for this behavior will follow in 

the next part. 

8. Comparison with LRU Stack.Model 

We have defined the LRU stack model for the sequence of page references. 

This model is strongly bound to the observed LRU stack depth distribution of 

the programs. The long run fault rate of LRU stack model, under the LRU algo- 

rithm, converges to the LRU fault rate of the program upon which the model is 

based. This property is built into the LRU stack model by setting the stack 

depth distribution {di3, i=l,Z,.,., n of the model equal to the relative fre- 

quency of the observed stack distances generated by an actual program. It is 

interesting to investigate the behavior of LRU stack model under systems other 

than LRU. 

Similar to our earlier set of experiments, the traces of several programs 

have been used to construct the empirical LRU stack distance distributions. In 

each case, an LRU stack distribution is used to construct the corresponding LRU 

stack model. In order to compare the optimal fault rate behavior of an actual 

program with the respective LRU stack model, the MIN algorithm is used for both 

of them. We note that since the observed LRU stack depth densities are not 

monotone decreasing values, we don't expect that LRU would be optimal for the 

model. 

In Figure 12, the result of the experiments on the APL program using the 

MIN and LRU algorithms are shown. The solid lines represent the actual programs 

and the dotted lines represent data points from the corresponding LRU stack 

models. The LRU algorithm, as well as the MIN algorithm, were applied by a simu- 

lation run for the actual program and the model. Therefore, the discrepancy 

between the LRU fault rate curve of the model and the corresponding program 



gives a significance measure of the sampling error in the simulation of the 

model. The more interesting information in this figure is, of course, the be- 

havior of LRU stack model under the MIN algorithm. We note that the model 

gives a good prediction of the MIN fault rates of the actual program. Like the 

A@ inversion model, the good fits are especially notable for lower-range of 

memory sizes. 

In Figures 13 and 14, the average working set sizes and the WS fault rate 

of the APL program are compared with their respective LRU stack model values. 

If we inspect Figures 9 and 13, we notice that both the Ag inversion model and 

the LRU stack model give up to about a 10% overestimation of the actual average 

working set sizes of the APL program for most window sizes. We can give an ex- 

planation for this by taking a closer look at the distribution-of working set 

sizes of the APL program. In Figure 15, a histogram of the observed working 

set sizes for window size T=4000 units for this program is plotted, In this 

plot, we can distinguish three major peaks. Although this is not a typical 

working set histogram, nevertheless programs sometimes do exhibit this behavior. 

Each peak can be associated with a large period of time which the program pre- 

dominately spends in a locality which is different in size from other major lo- 

calities. The frequent locality changes may also contribute to the clusters 

of fairly large working set sizes in the histogram. 

Programs like APL which exhibit distinctive multiple locality regions give 

the illusion of being programs with fairly scattered reference patterns for the 

averaging mechanisms which build the models, e.g., Ag inversion and LRU stack 

models. The overestimation of the average working set sizes can be attributed 

to this averaging over the actual reference patterns. 

Our other experiments show that the LRU stack model can predict reasonably 

well the MIN and WS fault rate of actual programs. 
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9. Extensions and Limitation of A0 Inversion Model 

A possible extension of the model is in the area of management of filing 

systems, The files should be considered as variable size blocks of information. 

Therefore, we would have to introduce new parameters in the model which describe 

the file lengths. 

The Ala inversion model can be easily extended to study the page read/write 

characteristics of the programs. The immediate application of such an extension 

would be the performance evaluation of the memory hierarchy systems with differ- 

ent page read/write transportation costs. 

In finding the parameters of the Afl inversion model, we may encounter two 

kinds of problems. The first problem deals with solving the recurrence rela- 

tions (3), and the second problem is related to the tail probabilities. 

We recall that the MIN fault rates of an n page program are substituted 

for Fi's in (3) and, subsequently, the equations are solved for pi's' It is 

theoretically quite probable that a set of Fi's, 1 < i < n and Fi 2 Fj for _ _ 

i < j, are defined for which there is no real valued solution for pi’s’ In 

fact, it is much harder to come up with some empirical values for Fi's where 

we can solve for pi 's. 

The case where we can't solve the equations signifies the situation where 

there is no independent reference model with Afl fault rates exactly equal to 

those values that we have substituted for Fi's. 

Our experiments in using the actual program traces show that for traces 

of reasonable length, we usually can find fairly accurate values for pi’s’ 

However, when the measured MIN fault rate values are such that the equations 

lved for all values of pi's, we can find approx imate values for 

by using the relations: 

(5) 

(3) cannot be so 

these parameters 

pi = Fi - Fit1 . 
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Once a pi is found in this way, we can try to use relations (3) to find the 

successive parameters. For instance, in the FFTl program, pl was found using 

(5) and the remaining probabilities were obtained by (3). The model seems to 

function properly even with approximate reference probabilities obtained from 

the above procedure. 

The other problem is in finding the tail probabilities. Consider a pro- 

gram with n pages. Denote by Fm the fault rate of the program with memory size 

m under the MIN algorithm. When m becomes large, it is possible that for some 

memory size n' the observed Fi, i=n', n'tl,...,n will become zero. Here we 

assume that initial faults, due to the initial loading of the memory, are ex- 

cluded from the total fault counts. Since F, is the minimum fault rate with 

memory size m, then for any other fixed memory size paging algorithm the lower 

bound on the maximum memory size, n", for which it produces non-zero fault rate, 

is equal or greater than n'. For instance, for the WATFIV program, n'=lZO and 

n"=164 (under LRU) and for the WATEX program, n'=n"=57 under MIN and LRU. 

The point is that the A@ inversion method, which uses the MIN fault rate 

of the programs, can give us only n' -1 non-zero reference probabilities. There- 

fore, we get a model with n' -1 parameters and, clearly, when we use the model 

as it is, the pages n' through n never get referenced. For the lower range of 

memory sizes, the model with n'-1 parameter still gives satisfactory results. 

This is because, in the practical cases, the reference probabilities close to 

the tail of the model are very small. However, the behavior of the 

model can be greatly degraded for large memory sizes if we don't extend the 

tail probabilities to get a full size n parameter model. 

Extending the tail probabilities to get n non-zero reference probabilities 

is still around 

the prob ility so 

an open question here. We have chosen an ad-hoc method to get 

lem; we have simply extended the last non-zero reference probab 
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that pn,-I = pn, = . . . . = pn. Then we need to normalize to get a consistent 

set of probabilities. This solution has almost no effect on the performance 

of the model for small memory sizes, but it has greatly improved its performance 

in the region of large memory sizes. 

10, Conclusion 

Constructing program models can be a compact way of characterizing the 

page reference behavior of actual computer programs. In this paper, we have pre- 

sented the technique of building an Ag inversion independent reference model, 

based on the actual MIN fault rates of a page reference trace. We noted that 

the independent reference model preserves the relative fault rate of actual 

program traces under MIN and LRU algorithms. Thus, the Al3 inversion model 

should be capable of predicting the true LRU and FIFO fault rates of real pro- 

grams for different main memory sizes. We presented the results of experiments 

on several programs to validate the model. 

The A0 inversion model is also successful at predicting the average working 

set size and the WS fault rate of programs for a wide range of window sizes. 

We have alSO seen that when an LRU stack model is constructed, based on the 

actual LRU distribution of a reference string, it can reasonably predict the 

MIN fault rate of the same program. 

The analytical tractability and the simple probability structure of the AP) 

inversion model make this model a convenient tool for the analysis and evaluation 

of virtual memory systems and the performance of CPU's with high speed buffers. 

When a, program has several very distinctive locality regions, the Al? in- 

version model, as well as the LRU stack model, overestimates the average work- 

ing set size by a small percentage. However, the prediction accuracy of the 

average fault rate under fixed memory size algorithms are virtually unaffected, 
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The problem of finding the tail probabilities has been dealt with here in 

an ad-hoc manner. More elaborate treatment of this subject should justify the . 

desired accuracy of the model under very large memory sizes where the effect of 

these probabilities are most noticeable, 

The independent reference assumption on the successive references of a 

program is against our intuition and the actual observations. However, we have 

demonstrated that by putting enough structure into the model, we can obtain a 

powerful model which produces realistic results, and can be used effectively 

in the analysis, simulation, and evaluation of several problem areas in memory 

management techniques. 
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Figure 1: PAGE FAULT RATE OF WATFIV PROGRAM 

50 100 150 

MEMORY SIZE 

FAGE FAULT RATE WATFIV E A$ MODEL 

F 
‘d -3 
c 10 
5 
z 

1O-4 

0 50 100 350 

HEMBRY SIZE IPAGESI 



lOa 

10-l 

1O-2 

Figure 3: REFERENeE PROBABILITIES FOR TWO MODELS 
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