
SLAC PUB-1826
STAN-CS-76-579

October 1976

THE Ae, INVERSION MODEL OF PROGRAM PAGING BEHAVTOR

by
Forest Baskett

and
Abbas Rafii

Stanford Linear Accelerator Center*
P.O. BOX 4349, Stanford, California 94305

and

Computer Science Department**
Stanford University, Stanford, California

Abstract

When the parameters of a simple stochastic model of the memory

referencing behavior of computer progrqns are carefully selected, the model

is able to mimic the paging behayior of a set of actual programs, The

mimicry is successful using several different page replacement algorithms

and a wide range of real memory sizes in a virtual memory environment, The

model is based on the independent reference model with a new procedure for

determining the page reference probabilities, the parameters of the model,

We call the result the Ap inversion jndependent reference model, Since the

fault rate (or miss ratjo) is one aspect of program behavior that the model

is able to capture for many different memory sizes, the model should be

ially useful for evaluating multilevel memory organizat espec

newly

ions based on

emerging memory technologjes,

*Work partially supported by the Energy Research and Development
Administration under Contract E(O)+-3)-515.

*%ork part ially supported by National Science Foundation, NSF Grant (335720

(Submitted to the Comm. of the KM)

KEYWORDS AND PHRASES

program models

stochastic program models

program behavior

program paging behavior

program page reference behavior

paging algorithms

replacement algorithms

virtual memory

THE A$J INVERSION MODEL OF PROGRAM

PAGING BEHAVIOR

1. Introduction

Computing systems in which several types of storage are automatically

made to appear as one uniform type of storage are likely to be a major part

of our computing environment for some time to come, Memory transparency or

automatic folding or virtual memory has been accepted as a necessary tool for

the convenient solution of many computing problems in much the same way as

higher level languages were accepted as a necessary evil many years ago, In

fact, paging techniques [8] are being used to automatically manage small,

very high speed buffers (caches) for high speed CPU's [2, 71 and to manage

large, slow disk buffers for much la,rger and slower automated filing systems

c31 9 as well as being used more conventionally to automatically manage main

memory in a wide variety of computers.

This wide use of paging techniques,together with the ever changing

performance parameters of the memory technologies on which these paging

techniques are implemented,point up the need for efficient and effective

methods for evaluating the performance of different memory hierarchy designs,

Central to such methods will be some model of how computer programs reference

memory. The choice of that model of memory referencing behavior will

determine the accuracy , efficiency, generality, and even the feasibility of

the evaluation method in which it is contained. In this paper,we describe a

new interpretation of a simple model of how programs reference memory and give

a procedure for determining the parameters of that model. We then illustrate

the success of the model in predicting the page fault rate and working set

characteristics of actual programs by comparing the model predictions with

results determined by simulations using actual program traces. We discuss some

of the limitations of our method, how the results from our method compare with

results from other models, and how the results may be useful. Finally, we

discuss some possible extensions and generalizations,

2. Choice of model

The most widely used models of the memory referencing behavior of

programs have been simulation models driven by traces of the addresses generated

by actual programs. While these methods have the most potential for accuracy

they are also the most cumbersome, expensive to process, and time consuming.

In addition, it is normally not feasible to evaluate more than a small subset

of the possible memory and system configurations of interest because of the

difficulty in handling this type of model, Thus;one of our primary aims in

developing an alternative model is to choose one which is analytically

tractable. We want to be able to derive general results simply by solving

equations involving the parameters of the system to be evaluated and the

parameters of the model. Even if such solutions must be numerical instead

of closed form expressions, we will have a model with more power than a

simulation based on program traces. This will be power to investigate

larger subsets of the memory design spa,ce more economically,

In addition to developing a model which is analytically tractable, we

want a model with predictive power. We don't want to simply engage in curve

fitting. We want the model to predict properties of how program references

memory,which were not built into the model,through the method of determining

the parameters, For example, the LRU stack depth model [Id of a program

can predict the fault rate of the program under LRU page replacement precisely

-2-

if the stack depth distribution of the model is determined from the stack

depth distribution of the program. Such a prediction is not surprising; it

is built into the model, If, however, the model also predicted the fault rate

with some accuracy under a different page replacement policy, we would say

that the model had some predictive power.

Finally, we want a model which is sufficiently simple to be used effi-

ciently in simulations since we expect to have to resort to simulations for

the evaluation of some complex designs, or to validate simplifying assumptions

in the analysis of some designs.

We concentrate on the paging behavior of the model of how programs ref-

erence memory since the principal performance characteristics of an automatic

memory hierarchy can be determined from the paging behavior if we take a gen-

eral view of paging. Thus when evaluating a cache memory design, the miss

ratio is equivalent to the fault rate, the address mapping scheme corresponds

to some special page replacement policy, and the size of cache elements is the

page size. When evaluating an automated filing system, similar parallels can

be drawn.

3. Notation

In order to develop and validate our model, we will refer to several dif-

ferent page replacement algorithms, the algorithms which specify which page in

main memory is to be replaced when a program refers to a page in the backing

store. We now give a brief summary of those algorithms and our notation for

them.

MIN [53 -- replace the page whose next reference is furthest in the

future. This algorithm is not practical because it requires knowledge of

the future, but it is an algorithm which minimizes the total number of page

-3-

faults for a single program in a fl:xed size memory and, thus,is useful as a

base for evaluating other page replacement algorithms. In addition, we make

use of it in our procedure for determining the parameters of our model.

LRU b7] --replace the page which is Least Recently Used, This is the

page whose last reference was furthest in the past. If the future references

of a program are like the past references,then this time reversed dual of

the MIN algorithm should be a good practical page replacement algorithm, In

fact, it is difficult to keep track of which page was least recently used in

real systems, but there are some simple and practical schemes which closely

approximate the LRU page replacement policy US], Hence our model should be

able to predict paging behavior under the LRU algorithm if it is to be useful

in such settings.

FIFO n7] --replace the page which was first brought into main memory

among those currently present in main memory (First-In-First Out). This

algorithm is actually used in some computing systems [l] although it is

known to have some strange properties and to generally be inferior to LRU

and related algorithms. We consider it briefly as an extreme test.

Aid (r4] --replace the page which is least likely to be referenced. This

algorithm is useful when pages are known to be referenced with independent,

fixed probabilities,as in the independent reference model. In such

circumstances,it is known to be optimal among algorithms without knowledge of

the future. We make extensive use of its analytic tractability in deriving

the parameters of our model,

WS (T) bl --replace the page which hasn't been referenced in the last

T references, Those pages that have been referenced in the most recent T

references are called the current working set, T (or tau) is the working set

parameter. Of the page replacement policies we consider, this is the only one

-4-

which requires a variable number of main memory page frames, Thus,the paging _

behavior under the working set algorithm seems to represent a somewhat

different dimension of program paging behavior than the previous fixed memory

page replacement algorithms, Comparisons of our model results with actual

working set results illustrate both the power and the limitations of our

model.

4. Previous Models

Although simulation models based on actual program traces have been the

most widely used models of memory referencing, numerous attempts have been

made to develop more tractable analytic models. The two most prominent such

models are the independent reference model and the LRU-stack depth model.

In the independent reference model, there is a fixed probability, pi,

associated with each page i of the program being modeled.. References to pages

are generated by independently sampling from this page reference probability

distribution. This model has received attention from a theoretical

perspective because it is analytically tractable, There have been a number

of papers giving interesting theoretical results based on this model [13,14.

The main problem with this model is the problem our intuition suggests, namely,

that a program's references to memory are not independent but, in fact, are

correlated in a complex and highly structured way. Thus, if we simply count

the number of times a program references each of its pages, and use these

counts as estimates of the page reference probabilities in an independent

reference model of that program, we will find that the resulting model of the

program is a very poor predictor of the actual paging behavior of the program.

The fact that certain sets of pages tend to be referenced together (localities)

-5-

is not captured in this "page reference frequency" version of the independent _

reference model. Thus, the model predicts a page fault rate much hjgher than

actually observed under almost all circumstances, This is illustrated in

Figure 1 where we have plotted the actual page fault rate as a function of

main memory size (in pages) for an IBM/360 WATFIV compiler run subject to the

LRU and MIN page replacement algorithms, These functions are represented by

the solid lines in Figure 1. On the same figure,we have plotted the fault

rates observed for the page reference frequency independent reference model

of this WATFIV compiler for the same memory sizes and page replacement

policies. When we notice that the fault rate is plotted on a logarithmic

scale, the overestimate of the model is most startling, usually between two

and three orders of magnitude: Results like these, which are typical of the

page reference frequency model, are why the independent reference model has

often been harshly criticized by those interested in models that have some

practical value,

The LRU stack depth model works from a probabilistic model of the depth

of a reference in an LRU stack. The LRU stack is a stack jn which the most

recently referenced page is on the top of the stack, the next most recently

referenced page is just below the top, down to the least recently used page

on the bottom of the stack, Each time a page is referenced, the LRU stack is

updated by moving the entry for that pa,ge from its current position (depth)

in the stack to the top of the stack, This stack is for all of the pages

referenced, not just those in main memory. We can maintain an LRU stack

(in theory) even if we are not using an LRU page replacement policy, The LRU

stack depth model is constructed by counting the number of times a particular

position (depth) in the LRU stack is accessed in order to update the stack,

These counts are then used as estimates of the probability of any given

-6-

reference being at a particular LRU stack position (depth), The LRU stack

depth model can then be used to generate page references by generating a

stack depth according to the stack depth distribution, looking in an LRU

stack at that position, calling the page name found there the next page to be

referenced, updating the LRU stack, and then repeating this process. The

page reference string so generated does not have to be used in an LRU paging

environment although the page fault rate for such a model will exactly match

(except for sampling error) the LRU fault rate of the program from which it was

derived.

A great deal has been written about efficient methods for determining the

LRU stack depth distribution (and features of other stack processing type paging

algorithms) 04,6] , but very little has appeared indicating the suitability

(or lack of it) of the LRU stack depth model for systems other than LRU type

paging environments. We will return to this subject later. The LRU stack depth

model does not seem to be as analytically tractable as the independent

reference model (the LRU stack depth model is an independent reference model

in the strict sense of that term) although there are some available results.

For example, the position of any particular page in the LRU stack of an LRU

stack depth model is a uniformly distributed random variable independent of the

identity of the page and the particular stack depth distribution ifSI,

Since this violates our intuition about program behavior,perhaps this partly

explains why the LRU stack depth model has received little empirical treatment

in the literature.

In addition to these two models, there have been fragmentary treatments

of other types of models. We say that the treatments are fragmentary because

they normally don't provide either enough theoretical development to demonstrate

analytic tractability or enough empirical development to demonstrate practical

-7-

feasibility or value, They usually seem to be the starting points for more

extensive research. One such model is a first order Markov model 1163 *

The independent reference model is sometimes called a zeroth order Markov

model since successive references are independent of all past and future

references. In a first order model, the next reference depends on-the

identity of the previous reference, A first order model should be able to

do everything that a zeroth order model does plus more,provided the much

larger parameter space can be algorithmically and efficiently determined,

Models which explicity try to capture the idea of locality have been proposed

k6], but not well developed.

5. AJd Inversion Model

If we return to Figure 1 and the comparison of the fault rates for an

actual program and the page reference frequency model of that program,we can

see support for an observation that Peter Franazcek made to us ufl . He

observed that while the page reference frequency model didn't predict actual

fault rates very well, it did predict the relative performance of different

paging algorithms with some accuracy. Thus, the spacing between the MIN and

LRU curves is about the same for the actual program curves and the model

program curves, indicating approximately the same percentage change in fault

rate in the model as in the actual program between these two paging algorithms.

This observation suggested to us that either the independent reference model

was capturing some aspect of program behavior or that some paging results

depended more on the system than on the program. At any rate,it seemed worth-

while to take another look at the independent reference model.

Our view of the model is a more abstract one than the view represented

by the page reference frequency version of the model. We don't insist on any

4%

particular identification between model pages and actual pages; we just insist

on good results. Thus, we simply want to choose the page reference probabilities

of the model so that the model more accurately predicts the actual fault rates

in at least some cases. In this view an independent reference model of a

program that references n pages is a model with n-l parameters or degrees of

freedom. With this many parameters, we should at least be able to do curve

fitting provided we can devise a feasible scheme for determining the values of

the parameters.

We observe that one way of binding the model to the characteristics

of a real program is to require that the lower bound on the page fault rate of

both the model and the actual program under optimal replacement algorithms be

close together. We can then be sure that enough structure is built into the

model so that, at least in the long run, the model is capable of predicting

the behavior of the actual program under the optimal paging algorithm.

For a given page reference sequence of an actual program, we know that

the MIN algorithm gives the least number of faults among all fixed memory size

algorithms. We can, in fact, measure the MIN fault rate of the program,

FMIN(m), for different memory sizes m (1 zmzn). For the independent reference

model, the Ag r43 algorithm gives the optimal fault rate if we disallow the look-

ahead of the MIN algorithm. At the time of a page fault, the A@ algorithm re-

places a page which is least likely to be referenced in the future.

Let [P, 4y3 T***,PJ and Pl<P2<P3 <Pn be the set of reference
. . ..-

probabilities for an independent reference model. The A!J fault rate produced

by this model, FAO(m), for a memory size m is equal to [@] :

-9-

n II

-7
F, = FAg(m) = pi

c Pi2
_ l=m llisn

i=m
n

c
i=m

'i

Therefore, if the reference probabi lities are known, (1) can give the

(1)

optimal (non-lookahead) fault rate for different values of m, 1~ m 5 n. Con-

versely, if a set of n fault rate values are given, we may be able to find a

set of reference probabilities which satisfy the relations in (1).

We observe that if our independent reference model is to capture the

fault rate behavior of actual programs, then we expect that the fault rate

of the model under the AP) algorithm should be close to the fault rate of the

actual program under the MIN algorithm and for all memory sizes. This gives

us a procedure to find pi's from the relations in (1). In other words, we now

substitute for F,'s in (1) the observed MIN fault rate values, and then we

invert (1) to get a set of recurrence expressions for finding piis. The

independent reference model which is obtained by this procedure is referred

to henceforth as the AP) inversion model.

n m

We carry out this procedure by letting Sm = c pi and Rm = c pi' We
i=m i=l

then successively get:

-lO-

n

F, = Pi -

n

z Pi2

Fm
= s, - '=;

m

Similarly:

n

F .m+lSn+l = sm+12 - c
i=m+l

Pi2

Subtracting the above two expressions we get:

F,S, - FmtlSmtl = Sm2 - Smt12 - P ' m

Fmpm + Fmsm+l - Fmtlsmtl = pm2 + 'mtl' + 2PmSm+l - Smt12-P
2

m

or

pm ='m+l (Fm - Fmtl) lzm<n - (2)
2s m+l - Fm

If p, is known, then (2) can be used successivley to find pnml, pns2 and
,

so on. However, we can arrange (2) so that first we can find pl, and having

pl, we can find p2, and so on. Since pi's are probabilities, we have

S mtl = l- Rm = 1 - Rm 1 - pm .

- 11 -

Replacing this in (Z), we find:

(I-Rm_l-~m) (Fm-Fm+l)
'm = - 2(1-R m-lwPm) - Fm

lLm<n

In (3), we assume that R. = 0. Each pi" i=1,2,3,...,n-1 can be successively

computed from (3) by solving a quadratic equation. Later,in this paper, we re-

turn to this derivation for more comments.

6. Test Results - Fault Rate Prediction

We now examine the ability of the AJd inversion model to predict the fault

rate behavior of real programs. We expect to get substantial improvement over

the previously mentioned page reference frequency method. Indeed, by inspecting

Figure 2, we can see the success of the model, In this figure, the solid lines

represent the fault rate curves of WATFIV program under MIN and LRU algorithms.

Using the A!J inversion technique, we construct an independent reference model

based on the same program. The MIN and LRU fault rate which are produced by

the model are shown by dotted lines on the same figure. As we expected, the

MIN fault rate curve of the model closely follows the MIN fault rate curve of

the actual program for a wide range of memory sizes. It is interesting, how-

ever, that even the LRU fault rate curves of both the model and the acutal pro-

gram are fairly close together. The success of the model becomes more signi-

ficant if we compare Figure 1 with Figure 2 to see the amount of improvement

over the page reference frequency method, This demonstrates the fact that by

using an appropriate method, we can build substantial predictive power into a

simple independent reference model.

It is interesting to inspect the set of reference probabilities which are

obtained by the AD inversion model. We can get a better insight into the struc-

ture of this model by comparing these reference probabilities with the reference

- 12 -

probabilities which are obtained from the simple frequency method. In Figure

3, the two sets of reference probability densities based on the WATFIV compiler

are shown. The horizontal axis is the page number and the vertical axis is the

probability weight.

In the frequency method, the reference probabilities are found by taking

the global averages on the entire string. In the averaging process, most of

the information about the regional characteristics of the string is lost.

Along the same lines, we have tried other approaches to get a better represent-

ative set of probabilities. One method we used was to divide the trace into

intervals and find the relative reference frequencies in each interval, and

order each set and combine over all intervals, The results, which are not re-

ported here, showed only a slight improvement over the usual frequency method.

In the Ala inversion model, a completely different approach is taken and

the reference probabilities which are obtained in this case bear no direct re-

lation with the relative reference frequency of each page in the actual program.

In Figure 3, we note that the A@ inversion model produces a reference probability

mass distribution which has a distinctive resemblance to the fault rate curve

of the program upon which the model is based. We can see that some important

information, such as the memory sizes where the actual fault rate changes curva-

ture, is precisely carried over to the corresponding page numbers in the ref-

erence probability curve.

Generally, the A@ inversion model assigns large probability mass to a small

number of pages (i.e., pages with the lowest subscript) and the remaining pages

receive probability weights in sharply decreasing quantities. One can interpret

the top pages (e.g., the first 20 pages in Figure 3) as the current locality

pages of the program. References to these pages are mostly favored in the ref-

erence string generated by the model. The pages which receive the least pro-

bability weights can be imagined to produce the instances corresponding

- 13 -

to locality transitions in the actual program. The remaining pages which re-

ceive probability weights between the above two extremes can be considered to

contribute to the small variation of the locality sizes in time.

We can support our claim about the predictive power of the A@ inversion

model by presenting more evidences about the success of the model. For another

replacement algorithm, we test the behavior of the model under the FIFO paging

algorithm. In Figure 4, the solid line is the fault rate of the actual WATFIV

program versus memory sizes under the FIFO algorithm. In the same figure, the

dotted line represents the fault rate curve of the model under the same algo-

rithm. We can see that the model is capable of predicing the average fault be-

havior of the program on the lower range of memory capacities. For very large

memory sizes, the dotted line drifts slightly away from the soTid line. The

behavior of the model in this region can be partially accounted for by any one

of the following reasons. Since we simulate the model, in this case the sam-

pling error becomes significant for large memory sizes. The other source of

the error is the inaccuracy in defining the tail (i.e., the pages with the

highest subscripts) page reference probabilities. We shall return to the pro-

blem of finding the tail probabilities later in this paper.

In a series of experiments, we present more data for validation of the

model. We have constructed Afl inversion models based on the page reference

trace of several programs. These programs include a trace of a WATFIV

compiler, a FORTRAN program called WATEX, an APL program, and the trace of a

program to calculate the Fast Fourier Transform, called FFT, of a set of data

points.

In Figures 5, 6, and 7, the fault rate curve of each model under the MIN

and LRU algorithms are compared with those of the corresponding actual programs.

In each figure, the solid lines belong to the actual program and the dotted

lines represent the data points from the model. We note that in each case the

- 14 -

model is able to predict the LRU fault rate of the actual program in a satis-

factory way, All these models are especially successful in the range of lower

memory sizes. Tt is significant, for instance, to note that the Ap inversion

model has been able to capture the special behavior of the FFT program as can

be seen in Figure 7. We observe that the fault rate curves of the model

breaks in exactly the right point (memory size), in this case. This is a

rather promising result which shows that the technique can be used successfully

to model program behaviors which are highly structured.

7. Average Working Set Size Prediction

The working set concept has been widely acclaimed as being a good measure

of program reference localities. The working set [9], WS(t,T), at time t, is

the set of pages addressed in the past T references, The size of this set is

denoted by ws(t,T). The window size T is the working set parameter. The mea-

sured working set sizes can be averaged over the entire program trace and lumped

into one number, called the average working set size, ws(T).

The average working set size can also be defined for the references generated

by the model. Since the probabilistic structure of the model is known, the ex-

pected working set size can be readily obtained by a probalistic argument. Let

r P~YP~,P~S~*. ,pJ be the parameters of the AP) inversion independent reference

model. The expected working set size with parameter T is equal to the proba-

bility that a page is in the working set summed over all pages. A page is in

the working set if it has been referenced at least once in the last T units of

time; therefore,

n

ws(T) = ' [l -(l-pi)T]
i=l

(4)

We can now examine the capability of the model in predicting the average

working set sizes of actual programs. In a series of experiments, we have mea-

- 15 -

sured the average working set sizes of a number of programs with different

window sizes. For each actual program, the average working set sizes of the

corresponding AP) inversion model is calculated from (4). The results are illus-

trated in Figures 8 and 9 for the WATFIV, APL and FFT programs. In each figure,

the horizontal ax is is the window size in terms of address reference units and

the vertical axis is the average working set size. The solid lines are obtained

from the measurements on the actual programs and the dotted lines are computed

from the parameters of each model.

We can see that the predicted average working set size values derived from

the model are strikingly close to those of the actual programs. This result

demonstrates the capability of the A@ inversion model in capturing an important

feature of the address reference behavior of real programs.

Once the average working set size is known, the fault rate values under

working set (WS) algorithm can be obtained. For the independent reference

model, the WS fault rate is equal to the probability that a page hasn't been

addressed in the last T references and that it will be addressed in the next

reference summed over all pages, i.e.,

n

FwsrTJ = i< (I-Pi)TPi 7- .

In Figures 10 and 11, the WS fault rate of the WATFIV program with two

different page sizes, and the WS fault rate of APL and FFT programs are shown.

In each figure, the WS fault rate probability of the corresponding AP) inversion

model is shown by dotted lines. The horizontal axis is the average working set

size and the vertical axis is the fault rate. The fit of the points obtained

from the model to the points measured on the actual programs, basically re-

flects the results illustrated in Figures 8 and 9.

- 16 -

In Figure 9, we notice that the model somewhat overestimates the working

set size of the APL program. An explanation for this behavior will follow in

the next part.

8. Comparison with LRU Stack.Model

We have defined the LRU stack model for the sequence of page references.

This model is strongly bound to the observed LRU stack depth distribution of

the programs. The long run fault rate of LRU stack model, under the LRU algo-

rithm, converges to the LRU fault rate of the program upon which the model is

based. This property is built into the LRU stack model by setting the stack

depth distribution {di3, i=l,Z,.,., n of the model equal to the relative fre-

quency of the observed stack distances generated by an actual program. It is

interesting to investigate the behavior of LRU stack model under systems other

than LRU.

Similar to our earlier set of experiments, the traces of several programs

have been used to construct the empirical LRU stack distance distributions. In

each case, an LRU stack distribution is used to construct the corresponding LRU

stack model. In order to compare the optimal fault rate behavior of an actual

program with the respective LRU stack model, the MIN algorithm is used for both

of them. We note that since the observed LRU stack depth densities are not

monotone decreasing values, we don't expect that LRU would be optimal for the

model.

In Figure 12, the result of the experiments on the APL program using the

MIN and LRU algorithms are shown. The solid lines represent the actual programs

and the dotted lines represent data points from the corresponding LRU stack

models. The LRU algorithm, as well as the MIN algorithm, were applied by a simu-

lation run for the actual program and the model. Therefore, the discrepancy

between the LRU fault rate curve of the model and the corresponding program

gives a significance measure of the sampling error in the simulation of the

model. The more interesting information in this figure is, of course, the be-

havior of LRU stack model under the MIN algorithm. We note that the model

gives a good prediction of the MIN fault rates of the actual program. Like the

A@ inversion model, the good fits are especially notable for lower-range of

memory sizes.

In Figures 13 and 14, the average working set sizes and the WS fault rate

of the APL program are compared with their respective LRU stack model values.

If we inspect Figures 9 and 13, we notice that both the Ag inversion model and

the LRU stack model give up to about a 10% overestimation of the actual average

working set sizes of the APL program for most window sizes. We can give an ex-

planation for this by taking a closer look at the distribution-of working set

sizes of the APL program. In Figure 15, a histogram of the observed working

set sizes for window size T=4000 units for this program is plotted, In this

plot, we can distinguish three major peaks. Although this is not a typical

working set histogram, nevertheless programs sometimes do exhibit this behavior.

Each peak can be associated with a large period of time which the program pre-

dominately spends in a locality which is different in size from other major lo-

calities. The frequent locality changes may also contribute to the clusters

of fairly large working set sizes in the histogram.

Programs like APL which exhibit distinctive multiple locality regions give

the illusion of being programs with fairly scattered reference patterns for the

averaging mechanisms which build the models, e.g., Ag inversion and LRU stack

models. The overestimation of the average working set sizes can be attributed

to this averaging over the actual reference patterns.

Our other experiments show that the LRU stack model can predict reasonably

well the MIN and WS fault rate of actual programs.

- 18 -

9. Extensions and Limitation of A0 Inversion Model

A possible extension of the model is in the area of management of filing

systems, The files should be considered as variable size blocks of information.

Therefore, we would have to introduce new parameters in the model which describe

the file lengths.

The Ala inversion model can be easily extended to study the page read/write

characteristics of the programs. The immediate application of such an extension

would be the performance evaluation of the memory hierarchy systems with differ-

ent page read/write transportation costs.

In finding the parameters of the Afl inversion model, we may encounter two

kinds of problems. The first problem deals with solving the recurrence rela-

tions (3), and the second problem is related to the tail probabilities.

We recall that the MIN fault rates of an n page program are substituted

for Fi's in (3) and, subsequently, the equations are solved for pi's' It is

theoretically quite probable that a set of Fi's, 1 < i < n and Fi 2 Fj for _ _

i < j, are defined for which there is no real valued solution for pi’s’ In

fact, it is much harder to come up with some empirical values for Fi's where

we can solve for pi 's.

The case where we can't solve the equations signifies the situation where

there is no independent reference model with Afl fault rates exactly equal to

those values that we have substituted for Fi's.

Our experiments in using the actual program traces show that for traces

of reasonable length, we usually can find fairly accurate values for pi’s’

However, when the measured MIN fault rate values are such that the equations

lved for all values of pi's, we can find approx imate values for

by using the relations:

(5)

(3) cannot be so

these parameters

pi = Fi - Fit1 .

- 19 -

Once a pi is found in this way, we can try to use relations (3) to find the

successive parameters. For instance, in the FFTl program, pl was found using

(5) and the remaining probabilities were obtained by (3). The model seems to

function properly even with approximate reference probabilities obtained from

the above procedure.

The other problem is in finding the tail probabilities. Consider a pro-

gram with n pages. Denote by Fm the fault rate of the program with memory size

m under the MIN algorithm. When m becomes large, it is possible that for some

memory size n' the observed Fi, i=n', n'tl,...,n will become zero. Here we

assume that initial faults, due to the initial loading of the memory, are ex-

cluded from the total fault counts. Since F, is the minimum fault rate with

memory size m, then for any other fixed memory size paging algorithm the lower

bound on the maximum memory size, n", for which it produces non-zero fault rate,

is equal or greater than n'. For instance, for the WATFIV program, n'=lZO and

n"=164 (under LRU) and for the WATEX program, n'=n"=57 under MIN and LRU.

The point is that the A@ inversion method, which uses the MIN fault rate

of the programs, can give us only n' -1 non-zero reference probabilities. There-

fore, we get a model with n' -1 parameters and, clearly, when we use the model

as it is, the pages n' through n never get referenced. For the lower range of

memory sizes, the model with n'-1 parameter still gives satisfactory results.

This is because, in the practical cases, the reference probabilities close to

the tail of the model are very small. However, the behavior of the

model can be greatly degraded for large memory sizes if we don't extend the

tail probabilities to get a full size n parameter model.

Extending the tail probabilities to get n non-zero reference probabilities

is still around

the prob ility so

an open question here. We have chosen an ad-hoc method to get

lem; we have simply extended the last non-zero reference probab

- 20 -

that pn,-I = pn, = = pn. Then we need to normalize to get a consistent

set of probabilities. This solution has almost no effect on the performance

of the model for small memory sizes, but it has greatly improved its performance

in the region of large memory sizes.

10, Conclusion

Constructing program models can be a compact way of characterizing the

page reference behavior of actual computer programs. In this paper, we have pre-

sented the technique of building an Ag inversion independent reference model,

based on the actual MIN fault rates of a page reference trace. We noted that

the independent reference model preserves the relative fault rate of actual

program traces under MIN and LRU algorithms. Thus, the Al3 inversion model

should be capable of predicting the true LRU and FIFO fault rates of real pro-

grams for different main memory sizes. We presented the results of experiments

on several programs to validate the model.

The A0 inversion model is also successful at predicting the average working

set size and the WS fault rate of programs for a wide range of window sizes.

We have alSO seen that when an LRU stack model is constructed, based on the

actual LRU distribution of a reference string, it can reasonably predict the

MIN fault rate of the same program.

The analytical tractability and the simple probability structure of the AP)

inversion model make this model a convenient tool for the analysis and evaluation

of virtual memory systems and the performance of CPU's with high speed buffers.

When a, program has several very distinctive locality regions, the Al? in-

version model, as well as the LRU stack model, overestimates the average work-

ing set size by a small percentage. However, the prediction accuracy of the

average fault rate under fixed memory size algorithms are virtually unaffected,

- 21 -

The problem of finding the tail probabilities has been dealt with here in

an ad-hoc manner. More elaborate treatment of this subject should justify the .

desired accuracy of the model under very large memory sizes where the effect of

these probabilities are most noticeable,

The independent reference assumption on the successive references of a

program is against our intuition and the actual observations. However, we have

demonstrated that by putting enough structure into the model, we can obtain a

powerful model which produces realistic results, and can be used effectively

in the analysis, simulation, and evaluation of several problem areas in memory

management techniques.

” 22 -

BIBLIOGRAPHY

1. "The Cray-1 computer preliminary reference manual," CRAY Research, Inc.

2. "IBM System 360 Model 85 functional characteristics," Form A22-6916.

3. "Introduction to the IBM 3850 Mass Storage System (MSS)" Form

GA32-0028-1.

4. Aho, A.V., Denning, P.J., Ullman, J,D., "Principles of optimal page replace-

ment,"J. of ACM 18, 1 (January 1971), pp 80-93.

5. Belady, L.A., "A study of replacement algorithms for virtual storage com-

puter,"IBM System J., 5, 2 (1966), pp 79-101.

6. Coffman, E.G., Denning, P.J., "Operating system theory," Prentice Hall,

Englewood Cliffs, New Jersey (1973).

7.

8.

9.

10.

11.

12.

13.

14.

15.

Conti, C.J., "Concepts for buffer storage," Computer Group News (March 1969).

Denning, P.J., "Virtual memory," Computing Surveys, 2, 3, (1970).

Denning, P.J., "On modeling program behavior," AFIPS Conf. Proc., Spring

Joint Computer Conference (1972), pp 937-944.

Denning, P.J., Savage, J.E., Spirn, J-R., "Models for locality in program

behavior," TR 107, Computer Science Laboratory, Dept. of Electrical

Engineering, Princeton University (1972).

Franaszek, P.A., Private communication (March 1974).

Franaszek, P.A., Wagner, T.J., "Some distribution free aspects of paging

algorithm performance," J. of ACM, 21, 1 (January 1974).

King, W.F., "Analysis of paging algorithms," IBM Watson Research Center Re-

search Report RC-3288 (March 1971).

Mattson, R.L., Gecsei, D.R., Traiger, I.L., "Evaluation techniques for

storage hierarchies," IBM Systems Journal, 9, 2 (1970).

Rafii, A. "Empirical and analytical studies of program reference behavior,"

Ph.D. Dissertation, Electrical Engineering Dept., Stanford University:

SLAC Report 197, Stanford Linear Accelerator Center (July 1976).

- 23 -

16. Shedler, G.S., Tung, C., "Locality in page reference strings," SIAM

Journal of Computing 1, 3 (September 1972).

17. Watson, R.W., "Time sharing system design concepts," McGraw-Hill, New

York (1970).

- 24 -

I

d

d

lO-2
w

iii
+ 1o-3
2
iz

1O-4

Figure 1: PAGE FAULT RATE OF WATFIV PROGRAM

50 100 150

MEMORY SIZE

FAGE FAULT RATE WATFIV E A$ MODEL

F
‘d -3
c 10
5
z

1O-4

0 50 100 350

HEMBRY SIZE IPAGESI

lOa

10-l

1O-2

Figure 3: REFERENeE PROBABILITIES FOR TWO MODELS

f
5 IO

-3

s
x -4
02 10
a

lO’!j

lO’6

10”
100 150

PAGE NUMBER

Figure 4: FIFO FAULT RATE OF WATFIV c A$ MODEL

0 50 100 150
HEMClRY SIZE [PAGES1

I.. . f _. -. ‘. ‘. .
S3:;GVH JTInVd 3Wd NIbI 3 nUTI :L am2r~

.

(sa8ed)ams lhomaK
as Otr 0.2 0

F-- - '. . . . '. . . . ' *. - '4 . g-OK

Fault Rate
6 z z iii 'j
1. A IL .!. 0

Average Working Set Size _

Page Fault Rate .q cI. Average Working Set Size kj ~.

- .

I-J
8

‘W
..IJ*.. . ..L

m-JIJ * . * I .‘.w

