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ABSTRACT 

We investigate 3+1 dimensional kink solutions of Skyrme’s 

chiral model. These solutions are ‘self-dual’, and minimize the 

energy in each homotopy class. We find an exact l-kink hedgehog 

by saturation of the lower bound of the energy. It is a stereo- 

graphic projection, formally akin to the instanton. 
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The discovery of the instanton’[ l] in a pure Euclidean Yang-Mills theory 

shows the paramount importance of an aesthetic geometry underlying field 

theories admitting exact solutions. Although it lacks explicit renormalizabil- 

ity, nonlinear chiral dynamics does possess a very appealing geometric inter- 

pretation [2 1, and hence may have exact solutions in four dimensions. In this 

letter, we shall show that this is so in the specific instance of a remarkable 

chiral model due to Skyrme [ 2 1. 

Wefirstrecall the topological arguments necessary for the existence of the 

desired solutions of three-dimensional, stable, finite energy, static kinks 0 

Specifically we study the SU(2) x SU(2) invariant chiral dynamics of Nambu- 

Goldstone bosons such as pions. The group geometry is as follows. 

At each spacetime point, a quaternion field S(x) = Go + i5’ 0 Ftakes value 

on the nonlinear group manifold M of SU(2), S is a unitary and unimodular 

2 X 2 matrix in a doublet SU(2) representation, r1 are the usual Pauli matri- 

ces, Since $I: + 6” = 1, M is parametrized on a 3-unit sphere S3 embedded 

in a four-dimensional Euclidean chiral space, It follows that the four-dimen- 

sional rotation group O(4) M SU(2) x SU(2) carries this hypersphere into itself 

and is the largest group of isometries of S30 

From the group geometry viewpoint [ 31 the natural objects of chiral dynam- 

ics are the group currents, Jp = S-18pS, which take values in the Lie algebra, 

They are antihermitian and traceless matrices: Jp = i?‘D 5’ G0 They remain 

invariant under the left-shifts, S -+ ULS, and transform simply as J - 
fJJ 

U-lJ U 
R/JR 

under right-shifts, S -+ SUR, with UL R being global SU(2) rotations. 
, 

Chiral Lagrangians can be readily constructed from the left and right invari- 

ant combinations of these currents. 



-3-’ 

Of all possible classical fields S(x), we are only interested in the subset 

obeying the would-be energy finiteness condition 

S(x) 
--I (1) 
IXI-- 

true at all times, Hence at any fixed time t, S(3 or JP(x) map the physical 

space R3 into the group SU(2). Eq, (1) implies that R3 can be continuously de- 

formed onto S3, Le. , it is compactified onto S3 : 

Ji(x) : S3 ---) S3 o (2) 

In consequence the phase space of the Ji(x) with eq. (1) falls into an infinite 

number of homotopy classes, the Chern classes of a3(SU(2)) M r3(S3) = Zco, 

where Zo3 is the additive group of integers [4] which are the degrees of the 

mappings, Any two mappings of the same class can be continuously deformed 

into one another while two maps belonging to different classes cannot. Exam- 

ples of such deformations or homotopies are a global SU(2) transformation or 

time evolution. So the degree of a mapping is a homotopic invariant, hence 

conserved irrespective of the dynamics of the system. It depends solely on the 

periodicity of the field S(x) which arises from the compactness of SU(2), and 

the condition (1). 

We now seek the minima of the energy in each component of the phase 

space [II0 For that purpose, we express the degree of the mapping, in terms 

of the currents. From the Minkowskian and chiral geometries, the trivially 

conserved topological vector current is 

B i 
P = p+T WIJvsJplJo). 

““BP = 0 follows readily since #J 
P 

= aP apPn S is symmetric in p and p , etc 0 

The degree of mapping is then 
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B c-i- 
47r2 / 

d3x E 
ijk Tr( I Ji, JjlJk) 0 (4) 

To see the true topological meaning of B we introduce the geodesic param- 

etrization [ 51 of S3: 

1,-o ;icq 
S = cos 2 + in’e 7sin f = e2 L 

where n1 = - varies within the sphere 

05JiZ/7&27r. 

In terms of these geodesic coordinates, we obtain 

(5) 

(6) 

where d3a = (cv)~ sin 8 da! de dx is a three-dimensional volume element in the 

spherical coordinates with the radius a! and the angles 0 ( 0 2 ?r and 0 ( x 5 2~; 

for convenience we defined Q! = 7$/2, Notice that this integral is proportional 

to the surface of S30 The factor 1/2n2 in eq, (3) is the proper normalization 

allowed by the compactness of S3 to have B take integer values, 

From eq. (6) it is clear that B is the degree of the mappings of S3 -.+ S3; it 

measures the number of times S3 is covered in the course of the mapping [ 6 3. 

We now introduce our choice of chiral Lagrangian 

Lz = 52) + 74) 

2 

9tJ) 
= 5 Tr [JP,Jv12 

(7) 

whose static Hamiltonian is 
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H st = 1 J? - $ 
2c2 l 

(8) 

where c is a length, for example the inverse of the pion decay constant, fil, 

and E is a dimensionless coupling. g(2) is the standard chiral Lagrangian in the 

current form [ 7,3 ] D The model (7) was first written down and investigated by 

Skyrme [2 ] in a series of remarkable papers 0 Its extension and relevance to 

chiral gauge invariant theories of realistic hadronic solitons have been recently 

stressed by Faddeev [ 8 ] 0 In the light of more recent developments in chiral 

dynamics our own physical motivations for the additional quartic term are the 

following: 

a. A simple application of. the Derrick scaling argument [lo] shows that 9 
(2) 

can only have stable, finite energy static solutions in two space dimen- 

sions, such as vortices with finite energy per unit length. To obtain truly 

three dimensional kinks, the same scaling argument applied to eq. (8) then 

allows the desired, stable finite energy, static solutions in only 3 spatial 

dimensions. 

b. Secondly, the additional quartic term can be seen as a particular choice of 

counterterms needed in Slavnov% [ 111 superpropagator regularization of 

9(2 )” At the one loop level, his procedure leads to a divergence free uni- 

tary S matrix when energies are below a certain cutoff, This connection 

will be important in an eventual quantum soliton expansion. 

C. Our most compelling argument for the choice of commutator as the quartic 

term is rooted in the particular form of the topological current (eq. (3)) 

181 0 In other words, the dynamics is determined by the geometry in the 

spirit of the chiral Lagrangian approach [3 ] e Moreover this selection 

allows an exact geometrical solution to be presented next. 
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Our key observation about (8) is that it can be recast in the form 

st 2 
H = $Ji -;*Ji Tr (JzJi) 2% IBI 

(9) 

where we have defined the dual of JF as * JF = E . . 1Jk 
E 

abc JbJc 
j k” Then eq, (9) gives 

the lower bound for the kink energy in each homotopy class. We shall see that 

for I BI = 1 this lower bound can be saturated and yields an exact solution, 

Namely, in place of the highly nonlinear chiral dynamical equations of eqo (7) 

we can solve instead for the equation 

Eq. (10) is the chiral counterpart of the self-dual equation Fa! 
PV 

= f Fiz for the 

Yang-Mills pseudoparticles ] l] 0 Clearly we seek solutions which are invariant 

under simultaneous spatial and isospatial rotations. The exponential param- 

etrization of S3 suggests the spherically symmetric hedgehog ansatz [2] 

for the lowest kink state. The center of the kink is chosen to be at the origin 

5?= 0, It is easy to calculate JF and * JF : 

and 

xax. 

+--$(I-cos z/J) - E.a$-COS ?/,)$I 1 . 

(12) 

After inserting these explicit forms in eq. (10) we obtain a first order differen- 

tial equation for the unknown function $, 
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5!k = 
r dr F 2 sin $ (13) 

Its solutions are respectively 

q(r) = 4 tan-l(F) 

and 

q(r) = 4 tan-lj i) 

a is a constant of integration, a length which is not arbitrary but is determined 

below by the lower bound in eq. (9) with B = 1. Eq, (13) gives the solutions 

cpi = 
2axi 

r2 + a 
2 , $0 = *r2 - a; o 

r2 +a 
(15 ) 

Here (+) refers to the first solution, and (-) to the second solution. Only the 

first possibility is the desired physical solution as it satisfies the energy fi- 

niteness condition X/(W) = 0 resulting from S --) I. It gives e(O) = 2n or 
Ixl-w 

S (x=6) = -1, So while the points at spatial infinity are all mapped into the 

north pole I of S3, the particle-center (chosen to be at T= 0) is mapped into the 

south pole -1. These remarkable points are the focal points of the geodesics 

and compose the only discrete invariant subgroup of SU(2)[5 ] D Cur exact so- 

lution is simply the usual stereographic projection [I2 ] from the hypersphere 

s3, the manifold of SU(2), onto R3, the physical space, It is of degree B = 1 as 

can be explicitly verified from eqs, (14a) and (6): 

d$ (l-cos $) = 1 

For S, the solution takes the Cayley form: 
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The antiparticle solution with B = -1 is given by S+. Calculating the energy 

corresponding to this solution and equating it to the lower bound for B = 1 in eq, 

(9) we determine a to be a M c/c0 We have not yet found any solution to eq. (10) 

with I B I $ 1; many kink solutions may be sought in the same way as the many 

instanton solutions of ref, [ 91. 

The informed reader must have made two relevant observations. First, 

there exists a close topological connection between our solution, eq. (17), and 

the instanton solution [l]. Indeed the group current corresponding to eq. (17) 

is identical to eq. (4) for the instanton potential Aa in ref, [13] 

J; = - 2a 2 2 a (r2+a2)2 (a -r )&i f 2xaxi + 2aQj 
I 

Q (18) 

The crucial difference is that, in contrast to the instanton, the solution (17) 

represents a real extended particle in Minkowski space with a fixed length 

scale. The connection between chiral dynamics and massive gauge fields is one 

discovered by Bardakci et al. and Boulware [ 141 0 It is recently emphasized by 

Polyakov [ 15 ] D 

Secondly, long ago Skyrme [2] obtained the same expression (eq. (18)) for 

Jr by assuming the proportionality between JF and Jf”*. He did so to give a pos- 

sible definition of the particle singularity and isolates the latter from the re- 

maining nonlinear field structure, This definition is clearly arbitrary in gen- 

eral. The physical nature of our method is completely different. Our eq, (10) 

is a dynamical consequence of Skyrme’s model (7). It has the meaning of a new 

and simpler equation of motion, one for which an exact l-kink solution is ob- 

tained. Moreover, many kink solutions must also obey eq. (10) in complete 

analogy to the case of the instantons [ 910 Therein lies the essential difference 

between our work and that of Skyrme, which makes this paper a new develop- 

ment in his scheme [ 163. 
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In closing, eq. (17) is one of a few exact kink solutions found in four- 

dimensional Minkowskian relativistic field theories., Being a pure stereo- 

graphic map, it can be shown by way of algebraic topology [17] to admit upon 

canonical quantization a wave functional which is double-valued under a 27r spa- 

tial rotation. In the phraseology of Finkelstein [ 18 1, the kink theory (7) is said 

to admit half-integral spins; the quantized kink corresponds to towers of states 

with both half-integral spins and isospins. If the Lagrangian (7) is a phenom- 

enological model for strong interactions, the kink (17) is seen as a coherent 

lump of Nambu-Golds tone pions , endowed with a chiral twist, B = 1, It has the 

natural interpretation of a classically degenerate form of a baryon. 

The relation of chiral dynamics to a fundamental theory of hadrons may be 

analogous to that of the Landau-Ginzburg theory to the BCS theory of super- 

conductivity [19] 0 In this perspective the chiral kink generation mechanism is 

seen as the obverse of the Nambu-Jona Lasinio theory 1201. In the latter 

scheme, due to spontaneous y 5 -symmetry breaking, massive fermions arise 

from massless ones, provided Goldstone pions are created as bound states and 

restore the symmetry, We recall that nonlinear chiral dynamics was conceived 

to give a well-defined meaning to the concept of symmetry restoration. Self- 

consistency then forces the nonlinear chiral invariant group dynamics of 

Nambu-Goldstone bosons to respond in kind by generating superselection rule 

sectors which are baryons, This duality property [ 2 ] is strongly suggested by 

a semiclassical analysis, and needs confirmation at the full quantum mechani- 

cal level. The detailed investigation of the kink structure of eq, (7), the 

fermionic spin structure of l-kink sector, via collective coordinates, the im- 

proved Sugawara algebra of currents, and more are the subjects of forth- 

coming publications. 
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