
sLAf2-PUB-1816 
ITp-544 
September 1976 
(T) 

TWO DIMENSIONAL SU(N) GAUGE THEORY, STRINGS AND WINGS: 

COMPARATIVE ANALYSIS OF MESON SPECTRA AND COVARIANCE* 

Andrew J. Hanson? 

Stanford Linear Accelerator Center 
Stanford University, Stanford, California 94305 

and 

R. D. Peccei and M. K. Prasad 

Institute of Theoretical Physics, Department of Physics 
Stanford University, Stanford, California 94305 

ABSTRACT 

't Hooft's two-dimensional SU(N) gauge theory model for mesons is studied 

in two different axial gauges. Using numerical techniques employed in aero- 

dynamical wing theory, we compare the bound state spectra in the A+ = 0 and 

A1 = 0 gauges,.finding agreement in the weak coupling limit. Furthermore, 

Lorentz covariance of the weak-coupling A1 = 0 theory is numerically confirmed. 

We also investigate the massive-end string model, which is equivalent to 

't Hoof-t's A+ = 0 model when the xf = T gauge is chosen. We find that the 

numerical spectrum of the string model in the x0 = r gauge differs from the 

X+ = T gauge string spectrum as well as from the A1 = 0 gauge theory spectrum. 

A Bethe-Salpeter equation approach to the spectrum of the gauge theory in the 

A1 = 0 gauge is developed for any coupling. While the strong coupling theory 

in this gauge presents severe difficulties, the weak-coupling limit is shown 

to be completely consistent. 
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INTRODUCTION 

't Hooft [1,2] has proposed a model for mesons based on the l/N expansion 

of the Bethe-Salpeter equation for a U(N) Yang-Mills theory of spinor and 

vector fields in two-dimensional spacetime. In a completely different context, 

Bardeen, Bars, Hanson and Peccei [3], Bars and Hanson [4] and Bars- [5] have 

investigated models for mesons using point particles attached to the relati- 

vistic Nambu string [6]. (For brevity, we will hereafter refer to these 

models as "the string model.") It is remarkable that 't Hooft's field-theoretic 

meson spectrum, found by using null-plane quantization and the gauge Ai = 0, 

agrees with the string model spectrum in the x 
+ = -c gauge, provided one properly 

identifies the renormalized spinor mass of the field theory with the point- 

particle mass of the string theory. 

It is clearly of interest to establish whether this correspondence is an 

artifact of a judicious gauge choice or is a more general property of these 

apparently distinct theories. The recent work of Frishman, Sachrajda, 

Abarbanel and Blankenbecler [7] indicates that there appear to be incon- 

sistencies even between different axial gauge formulations of the 't Hooft 

model. Thus the gauge invariance of the 't Hooft field theory and the relation 

of the 't Hooft field theory to the point-particle string model both seem to 

warrant further investigation. 

In this paper we shall study the appropriate bound state equations for 

the meson spectra of 't Hooft's model in the A+ = 0 and A1 = 0 axial gauges. 

We shall also investigate the analogous equations for the string model in the 
+ 0 

X = r and x = T gauges. For these purposes we shall make use of a number 

of numerical techniques derived from the theoretical aerodynamics of wings. 

The Bethe-Salpeter equation which determines the meson bound state spec- 

.icated when one adopts trum of the 't Hooft model is considerably more compl 



a timelike quantization scheme and the A1 = 0 gauge than when one uses 

't Hooft's lightlike quantization and the A+ = 0 gauge. To begin with, the 

timelike gauge bound state equation, unlike 't Hooft's lightlike case, becomes 

a 4x4 equation. Furthermore, before one can attempt to solve this equation 

one needs to compute the spinor self-energy exactly, which in the-A1 = 0 

gauge appears to be a prohibitive task. For weak coupling, however, it is 

possible to reduce the bound state problem in the A1 = 0 gauge to the problem 

of solving a one-dimensional integral equation similar to the one that is 

obtained in the A' = 0 gauge. This weak-coupling equation can be deduced 

either by taking an appropriate limit of the A1 = 0 Bethe-Salpeter equation 

or, more simply, by extending Coleman's [8] weak-coupling analysis of the 

massive Schwinger model to an SU(N) gauge theory. In the weak coupling 

limit of the l/N expansion, we find that the numerical spectra in the timelike 

and null-plane approaches agree very well. Remarkably enough, the timelike 

weak-coupling spectrum agrees with the lightlike spectrum to within 10% far 

into the strong coupling regime. This is reminiscent of the behavior of the 

sine-Gordon theory [9]. 

The fact that our meson spectra calculated in two different gauges 

agree with one another in the weak coupling limit is not unexpected; the 

result is consistent with the traditional perturbation theory "proofs" of 

gauge invariance [lo]. The inconsistencies found by Frishman et al. [7] 

appear in the strong-coupling limit of the theory and hence do not reflect 

on our weak-coupling results. 

Finding solutions to the strong-coupling timelike field theory equations 

is extremely difficult. In the limit of vanishing bare fermion masses, 

however, one might hope to be able to solve these equations: in 't Hooft's 

null-plane analysis, the bound state equation was exactly soluble in this 

2 



limit, yielding a zero mass bound state. If the timelike theory is to be 

equivalent to the null-plane theory, it must then give also a zero mass bound 

state. While we have been able to solve the self-energy equations for 

imaginary values of the coupling constant in the zero-mass limit, no solutions 

have been found for realistic coupling constants. This has prevented us from 

establishing the equivalence (or inequivalence) of the bound state spectra 

in different axial gauges for strong-coupling. 

To investigate whether the string model and the field theoretical model 

are equivalent in different gauges, we study the bound state equation for the 

string model in the timelike gauge, x0 = T. Our numerical results indicate 

that, save for very weak coupling, the string model in the x0 = T gauge is 

not equivalent to the string model in the x+ = T gauge, and also is not equiva- 

lent to 't Hooft's model in either axial gauge. 

The gauge dependence of the quantum spectrum of the string is perhaps not 

totally unexpected. In a recent note, Bardeen, Bars, Hanson and Peccei [ll] 

demonstrated the quantum Poincar4 covariance of the string model in two 

dimensions and noted that the classical Hamiltonians for the model in the x0 = T 

and xi = 'c gauges are related by a canonical transformation. In general, the 

process of canonical quantization and the process of performing a canonical 

transformation are not commutative. Our results are an example of this effect. 

The Nambu string with massive end points possesses a gauge invariant classical 

action; however, the quantization of this string system does not preserve the 

gauge invariance and one obtains distinct bound state spectra for different 

gauge choices. 

The plan of this paper is as follows. In Section I we review the 't Hooft 

model in the lightlike gauge and discuss the numerical solution of the A+ = 0 

bound state equation using Multhopp's wing theory techniques [12]. Section II 
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deals with the 't Hooft model in the A1 = 0 gauge and in the limit of weak 

coupling. The meson bound state equation is derived by employing a Hamiltonian 

technique analogous to that used by Coleman [8] for the massive Schwinger model. 

Numerical solutions for the spectrum are obtained and the results are compared 

with those of Section I. In this section, we also demonstrate the- covariance 

of the mass spectrum by examining the bound state equation in an arbitrary 

frame. Section III is devoted to an analysis of the bound state spectrum of 

the string model. We obtain the semiclassical Bohr-Sommerfeld spectra and 

the quantum spectra of the string model in both the xf = r and x 0 = 'c gauges. 

The weak-coupling limit of the x0 = r gauge string bound state spectrum is 

found to disagree with the A1 = 0 gauge 't Hooft model beginning with terms 

of order G4. Section IV deals with the 't Hooft model in the A1 = 0 gauge for 

arbitrary coupling. After deriving the coupled integral equations for the 

fermion self-energy, we discuss the inconsistencies that arise in those 

equations for vanishing fermion mass. We examine next the Bethe-Salpeter 

equation and reduce it to a SchrGdinger equation for the bound state spectrum. 

In the weak-coupling limit, we show how the Bethe-Salpeter equation becomes 

equivalent to the weak coupling equation derived in Section II. Section V 

contains concluding remarks and a summary of our results. A number of 

technical matters are relegated to appendices. 



I. 'T HOOFT MODEL IN LIGHTLIKE GAUGE 

A. Review of Formalism 

The 't Hooft model for mesons in two spacetime dimensions is described 

by a Lagrangian density in which constituent fermions, henceforth called "quarks", 

interact by means of a U(N) Yang-Mills gauge field. We choose for convenience 

to work with an SU(N) gauge group [2] instead of a U(N) group since to leading 

order in l/N as N + M, we may ignore the distinction between U(N) and SU(N). 

Here A; is the SU(N) Yang-Mills "glue " field, $J is the quark field and 

The current J; is given by 

The matrices Xa form the fundamental representation of SU(N). Some of their 

useful properties are listed in Appendix A along with the gauge transformation 

properties of q and A:. 

Using null-plane quantization and the lightlike gauge Ai = 0, 't Hooft [l] 

has solved, in the l/N approximation, the quark self-energy equation and 

formulated the Bethe-Salpeter equation for two-body meson bound states. 

't Hooft's work is valid to order l/N and to all orders in (g2N) as N + ~0 and _I~ 

g -+ 0 with (g2N) kept fixed. Because the dimens ion 1 ess parameter (g2N/m2) is 
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not restricted to be small, 't Hooft's lightlike bound state equation is valid 

for all values of this parameter. As we shall see, this means that in this 

case one can obtain the meson spectrum for both weak and strong-coupling from 

the same equation. 

The bound state equation for the meson spectrum obtained by '_t Hooft in 

the l/N approximation reads: 

Here iV2 is the invariant 

quark mass and the notation on the right-hand side indicates a principal value 

Here iV2 is the invariant mass-squared of the meson states, m is the "bare" mass-squared of the meson states, m is the "bare" 

quark mass and the notation on the right-hand side indicates a principal value 

integral as defined in Appendix B. integral as defined in Appendix B. The coupling constant that enters in The coupling constant that enters in 

Eq. (1.4) is an effective coupling defined by Eq. (1.4) is an effective coupling defined by 

(I. 5) (I. 5) 

We see explicitly that Eq. (1.4) is valid for all values of the dimensionless 

parameter (g2N/m2). Hence from it one can obtain the meson spectrum for both 

weak-coupling [(g2N/m2) @ l] and strong-coupling [(g2N/m2) % 11. The boundary 

conditions on 't Hooft's equation are such that 

Using Eq. (1.6) one can integrate the right-hand side of Eq. (1.4) by parts 

to give: 



1 C)(K) 

This latter equation proves more convenient for numerical investigation. 

One can obtain the meson bound state equation, (1.4), directly from a 

Hamiltonian formalism [13]. In this case the meson state ]P') is given by 

I -- 
2 

Here a:, b: are creation operators for quarks and antiquarks respectively and 

the bound state wavefunction $(K) obeys Eq. (1.4). It is important to remark 

here that, because of the null-plane quantization used, Eq. (1.4) is manifestly 

Lorentz covariant. The value of the "center of mass" momentum P+ has been 

scaled out and appears nowhere; no special choice of Lorentz frame has been 

necessary to find a bound state equation which directly gives the invariant 

mass-squared. 

Using Eq. (1.6), one finds that Eq. (1.7) has a zero mass ground state, 

M2 = 0, corresponding to the wavefunction 

w ) K = e($ - iq 0(-l; + K) c /J i.Y 

provided the bare quark mass m vanishes. Since the renormalized quark mass 

m r is given by 
2 

kn 
r : ) j , i 0 
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icu lar one concludes that a legitimate zero mass bound state occurs for a part 

tachyonic renormalized mass, mr2 = -G2/a. 

B. Numerical Techniques 

Equation (1.7) for the mass spectrum of the meson bound states of 't Hooft's 

model is not to our knowledge soluble in analytic form. Thus we must solve 

it numerically to determine the spectrum. A numerical solution of Eq. (1.7) 

has already been obtained by 't Hooft [l]. Here we develop an alternate 

approach which will be useful also in subsequent sections. Our method is 

based on Multhopp's elegant techniques for treating the aerodynamics of wings [12]. 

A description of Multhopp's method is summarized in Appendix'C. 

We begin by changing variables to the parameter 0, 

so that we can express $(K) as a sine series compatible with the boundary 

conditions (l-6), 

It is convenient to define a dimensionless parameter R to specify the coupling 

constant regime of the theory. If we take 

then Eq. (1.10) tells us that the renormalized mass of the quark is given by 
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and changing variables as in Eq. (l.ll), we find that Eq. (1.7) a.~ be rewritten 

The integral appearing above is among those listed in Appendix B. Using that 

result, we find - 

We have thus been able to convert 't Hooft's lightlike-gauge Bethe-Salpeter 

equation into a linearized eigenvalue problem. 

To solve Eq. (1.17) numerically we use Multhopp's wing theory techniques 

outlined in Appendix C. It is easily verified that the parity transformation 

K -f -K is a symmetry of the bound state integral equation (1.7). (In terms 

of the 0 variable this parity transformation corresponds to the substitution 

8 +Tr - e). Hence we can search for eigenvalues I$$) of definite parity. 

Using the formulas given in Appendix C, we obtain the even and odd parity 

eigenvalue problems in standard Multhopp form with the matrix LGBkj defined 

as follows: 



where 

C. Numerical Results 

We already know that for m = 0, that is R = 0, the even parity equations 

have an exact solution for the ground state with mass-squared eigenvalue M2 = 0. 

This should then, in principle, be an ideal place to test our numerical pro- 

cedure. Unfortunately, the wavefunction (1.9) appropriate for this case is 

a step function. Clearly we cannot expect that our truncated series for Cp(f~) 

will give a very accurate result. 

It is a fact well known to numerical analysts [14] that any finite series 

representation for a discontinuous function exhibits the Gibbs phenomenon: 

even in the limit of an infinite number of terms, the series will always 

overshoot the true value of the function. The standard technique [14] for 

alleviating this problem is to improve the convergence by inserting Lanczos 

coefficients in the series; unfortunately the representation of the function 

is then severely smoothed in the region of the discontinuity. 
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We now give a simple demonstration that the Multhopp technique approxi- 

mates discontinuous functions in a satisfactory way differing from both a 

sine series and a Lanczos-factor sine series. Figure 1 shows a plot of these 

three different (100 term) approximations to a segment of a step function. 

We see that the Multhopp approximation rises faster than the Lanczos series 

and overshoots less than the sine series. There is still, however, a small 

overshoot causing a Gibbs phenomenon which will keep our R = 0 ground state 

mass from approaching zero as it should. 

In Fig. 2, we illustrate the shape of the numerical ground state mass 

curve as a function of R for several values of the Multhopp matrix size n. 

We see that for R > 0.2, the curves agree to better than 1% for any n > 51. 

As we approach R = 0, we see that the ground state never goes below 

c-t, 

EiGi 
'$?to) = z -WY 

GZ .'R--c; 

-z 0.3614 &w)- 

no matter how large a matrix we use. It is fortunate that we know the exact 

eigenvalue at R = 0; otherwise the Gibbs phenomenon could prevent us from ever 

determining the correct answer, or might even tempt us to declare falsely 

that Eq. (1.20) gives the true ground state eigenvalue. 

Having satisfied ourselves that our numerical procedures check as well as 

can be expected with the only known solution of the 't Hooft equation, we 

proceed to examine the numerical spectra for various values of the coupling 

constant. Figure 3 displays the R-dependence of the even-parity ground state 

and the first odd-parity excited state. Our calculations were performed for 

values of R ranging from 0.1 to 5. 

The significance of these curves is best understood by classifying the 

physical meaning of the various sectors of R: 
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R=O - ultimate strong-coupling 

OSRsl - super strong-coupling 

lsRs.5 - strong-coupling 

5<R<m - weak-coupling 

The motivation for this classification is that Eq. (1.17) contains only ratios 

of masses and the coupling constant, namely 

G never appears alone and so does not determine by itself whether the theory 

is in a strong-coupling or weak-coupling regime. Very small bare quark mass 

is equally as effective as large G2 in producing a strongly-coupled equation. 

Similarly, either large quark mass or small G 2 gives a weak-coupling equation. 

R is therefore the only dependable indicator of the regime of the equation. 

R = 0, with vanishing bare mass (or infinite G2) and tachyonic renormalized 

mass, is the ultimate strong-coupling limit. R = 1 plays a special role 

because at this point m = 0 and the renormalized mass makes the transition r 

between normal and tachyonic properties. The ground state eigenvalue at R = 1 

is 

As we will see in Section 3 on string models of mesons,this is also the ground 

state of the massless Nambu string model quantized in the lightlike gauge. 

The massless string therefore corresponds to the strong coupling sector of 

the 't Hooft model. 

For very large values of R, the weak coupling limit and the nonrelativistic 

limit of the equations are indistinguishable. When the effective quark masses 

become very large, the motion becomes non-relativistic. We shall see that, 
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in this limit, the spectra of several different equations related to ‘t Hooft’s 

equation become indistinguishable. 
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II. 'T HOOFT MODEL IN A TIMELIKE GAUGE - WEAK COUPLING 

A. Generalization of Coleman's weak coupling analysis in the N + 00 limit 

We mentioned in the introduction that 't Hooft's model in the axial gauge 

A; = 0 (which we hereafter refer to as the timelike gauge) is considerably 

more complicated than the lightlike gauge treatment. In this sectjon we study 

the model only in the weak coupling limit (R ~~ 1). We are primarily interested 

in the meson bound state equation. A physically transparent derivation of this 

equation may be found by generalizing Coleman's [8] weak-coupling analysis of 

the massive Schwinger model to the SU(N) "color" gauge group in the context 

of the N + ~0 limit [15]. 

The Lagrangian for the model has already been given in Eq. (1.1). The 

theory is super-renormalizable; it requires no infinite renormalization other 

than standard normal ordering, which amounts to a trivial redefinition of 

the zero of the energy density. We want to write the theory in Hamiltonian 

form and retain only the independent degrees of freedom. To do this we must 

choose a gauge and, as indicated above, we choose the timelike gauge AT = 0. 

The field equation for A:, 

then becomes an equation of constraint. We note that there are no true 

dynamical degrees of freedom associated with the gauge field because in one 

space dimension there are no transverse directions. We solve Eq. (2.1) by 

means of the Coulomb Green's function in one space dimension: 
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In (2.2) we have dropped a term proportional to (x-xl) which corresponds to a 

constant background colored "electric" field. The general solution to Eq. (2.1) - 

is then 
ct 

and the corresponding electric field is 

We can now find the Hamiltonian density: 

- * - , 

Restricting ourselves to color neutral states, 
+-a 

,a 
i 

c2 
= I‘ 

$x J"(-x, = 0 
0 I 

a simple integration by parts y 
"kc?3 

.elds the Hamiltonian 

The requirement (2.6) is necessary since the presence of uncompensated color 

charge in space would lead to a growth of the field at infinity. 

In the N + M limit of the model, the weak coupling regime occurs when 

the dimensionless ratio (g2N/m2) is much less than unity. In this region 
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we can compute H restricted to the two particle quark-antiquark subspace. 

Let q be the momentum of the quark and s be the momentum of the antiquark, 

and let P = q + s be the total center-of-mass momentum of the bound state. 

Then we can define the two-particle bound state IP> as 

To obtain the SchrGdinger equation for the quark-antiquark bound state, we 

operate on Eq. (2.8) with the normal ordered Hamiltonian (2.7). A sketch of 

the calculation is presented in Appendix D, which also contains the details 

of the Dirac field expansions and a list of our conventions. In this calcula- 

tion we retain only leading order terms in the l/N expansion. Hence, for 

example, quark-antiquark annihilation terms in the Hamiltonian do not contribute. 

Furthermore, terms in H which, when acting on IP>, describe the production of 

fermion pairs are neglected. These terms are of higher order in (g2N/m2) and 

hence need not be kept in the present weak-coupling approximation. Their 

effect can be taken into account, if necessary, with the aid of ordinary 

perturbation theory. However, for strong-coupling, it is more expeditious 

to deal directly with the Bethe-Salpeter equation. (We shall do this in 

Section IV.) 

Given the above stated approximations, the action of the Hamiltonian 

(2.7) on the state IP> gives rise to three kinds of terms: 

(1) Free particle kinetic energies for the quark and the anti-quark 

(2) First order self-energy corrections for the bound state constituents 

(3) Coulomb binding potential between the quark and anti-quark 

We arrive in this way at the following SchrEdinger equation for the meson 

spectra, val .id in the weak coup ling regime, G2/m2 < 1: 
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Here Wp is the eigenvalue of the operator H corresponding to the eigenfunction 

4p(ql and E 
4 

= [q2 + m2]1'2. This eigenvalue equation for H assumes an 

especially simple form in the center-of-mass (C.M.) frame P = 0: 

2. E$, Eg 

The spectrum of Eq. (2.9) would be by definition Lorentz covariant 

provided we could show that 

Because of the two-particle approximation employed in deriving .(2.9), 

we do not expect (2.11) to hold exactly. 

Our numerical techniques allow us to evaluate each side of Eq. (2.11) inde- 

pendently as a check of covariance. We will see in the course of the next 

two subsections that Eq. (2.11) holds for all practical purposes for weak 

coupling, so that in this regime we have demonstrated Lorentz covariance. 
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B. Numerical Techniques 

Our numerical investigation of the weak coupling 't Hooft model in the 

timelike gauge consists of two distinct parts. First we study the bound state 

equation (2.10) for the quark-antiquark system in the C.M. frame P = 0. We 

then study the bound state equation (2.9) where the total C.M. momentum is 

nonzero, P # 0. We now outline the details of the numerical techniques for 

these two parts separately: 

(1) C.M. Frame, P = 0 

The bound state equation that concerns us is (2.10). To so 1. ve the equa- 

tion numerically we introduce an angle 9 such that: 

cc7z< P 
<Qc' 

-- 
%- 0 < 4-3 < ,3-f-- 

We now express @o(q) in a sine series which incorporates the boundary condition 

that $o(q) vanishes at q = +m: 

Defining &T,G (TG = Timelike Gauge eigenvalue) by 

the bound state equation (2.10) takes the following form in our new parametr ization 
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To obtain Eq. (2.15), we have integrated the integral on the right-hand side 

of Eq. (2.10) by parts. The bound state equation (2.10) (or equivalently 

(2.15)) is invariant under the parity transformation q -+ -9. (For Eq. (2.15), 

the transformation is 8 -t R - f3). Hence we can search for eigenvalues (f) 
ETG 

which possess definite parity. 

Employing again Multhopp's wing theory techniques, the eigenvalue problem 

for even and odd parity reduces to the standard form given in Appendix C. The 

Multhopp matrix TGBkj for this case is given by 

where T,(f3 ,9.) is given in Eq. 
k J 

(1.19) and the integral BE(O) is: 

This integral is evaluated in Appendix B. 

(2) Total C.M. Momentum, P # 0 

The bound state equation that concerns us here is (2.9). We still employ 

the parametrization (2.12) and expand $,(e) in the sine series: 

cn 
-7 

z 
*j= 1 

P 
Q-< 

J 
c. 4 2,i ’ 

It is evident that the expression 
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occurring in the integrand of the bound state equations (2.9) makes exact 

integration fairly hopeless. Therefore, we shall proceed to numerically 

evaluate the integral on the right-hand side of Eq. (2.9) before employing 

Multhopp's standard wing theory techniques. However, because the integral 

in Eq. (2.9) is a principal value integral, we must first isolate the singular 

pieces of the integral and compute them analytically; then we may evaluate 

the remaining nonsingular pieces numerically by standard quadrature techniques. 

To isolate the singular parts of the integral in (2.9) we make a Taylor 

expansion of F(q,q',P) in (q-q') to give: 

-- 

It is now clear that the integral in (2.9) has only one singular piece with 

the integrand having a double pole. Isolating this singularity, we rewrite 

the bound state equation (2.9) as follows: 

7/\/; (pp '$1 = (-'ic -i- E, 't) + 

P 

c%) - $I$ 

& 

The second integral in the right-hand side of Eq. (2.21) does not contain a 

principal value prescription s ince it is perfectly non-singu lar. 
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Since the total C.M. momentum P is non-vanishing, it is clear that the 

bound state equation (2.21) is not invariant under a parity transformation. 

Thus we cannot classify the eigenvalues by parity. We can, of course, for 

a given P order the eigenvalues so that the lowest corresponds to the ground 

state even parity solution with a nonzero C.M. momentum P, the next lowest 

eigenvalue corresponds to the first odd parity excited state solution with 

a nonzero C.M. momentum P, etc. 

Introducing the notation 

the eigenvalue problem becomes 

where the standard matrix B P kj is defined as follows: 

In the above the integral Ca(Ok) is given by 
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and is evaluated in 

n’ 

Appendix B. The quantity Dp(O,) is defined by: 

where 

The expression (2.26) represents the Multhopp quadrature procedure for the 

nonsingular integral on the right-hand side of Eq. (2.21). 

C. Numerical Results 

Equations (2.9) and (2.10) for the P # 0 spectrum and the rest frame 

spectrum of the timelike gauge weak coupling 't Hooft model can be solved 

numerically using the Multhopp technique with matrices (2.24) and (2.16), 

respectively. In Fig. 4 we plot the rest frame timelike gauge ground state 

and first excited states eigenvalues M* TG and compare them with the corresponding I 
't Hooft eigenvalues For increasing R (the weak coupling limit) the two 

eigenvalues approach each other very closely and eventually become indistin- 

guishable to five decimal places in our numerical computations. 

The timelike ground state eigenvalue M& continues to remain within 10% 

of the corresponding lightlike gauge eigenvalue MtG down to R = 0.5. We find 

it remarkable that a weak-coupling equation should agree with a strong-coupling 

equation so far into the strong coupling regime. This behavior is reminiscent 

22 



of that noted by Coleman [9] for the sine-Gordon equation. We emphasize, 

however, that M* TG is to be trusted only for large R and that extrapolating 

the weak-coupling equation to small R, though amusing, may not be physically 

relevant. 

We now turn, as promised, to checking the covariance of the P # 0 timelike 

gauge bound state equation (2.9). For this purpose, we plot the ratio of the 

two sides of Eq. (2.11) vs. R in Fig. 5 for various values of P. In the 

notation of Eqs. (2.14) and (2.22) this ratio takes the form 
2 

t 
Ep 

- -R" p2 
- - 

*2 , 

1 
c > 
2,2g 

i-G 
In particular, the plot of the ratio Z at P = 0 checks the numerical accuracy 

of the extra quadrature (2.26) which was necessary in the solution of Eq. 

(2.23), but which did not occur in Eq. (2.15). We see from Fig. 5 that for 

values of R and P for which our numerical procedures are expected to be 

accurate, the ratio Z for the ground state spectrum is typically 

We have therefore checked both gauge invariance and Lorentz covariance of 

the 't Hooft model in the weak-coupling regime. 
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III. BOUND STATES OF THE STRING MODEL 
. 

In the string model approach to the meson spectra in two dimensions [3,4,5] 

one assumes that mesons are bound states of two massive particles described by 

I the coordinates x'l(1) 5 xu(~~cr = al) and x'l(2) z x'(r,o = 02). The Nambu 

string action [6] generates the required binding potential between the two 

particles. In this way one arrives at the meson action functional 

s z r-Y [ i,b:+- L,("yT-)- x j?cr p- Gf2]# ('3, 

rift 
j- 

1 
Here Lo(o) is the particle Lagrangian corresponding to the desired model for 

the meson constituents, and 

is the Nambu string Lagrangian density. We define 

A. Lightlike Gauge Point Particle 

Let us take for Lo(a) the standard re lativistic point partic 

If we then choose the lightlike r-gauge 

.e Lagrangian 

and the o-gauge 
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we get a manifestly invariant expression for the mass-squared of the bound 

The Bohr-Sommerfeld approximation to the quantum spectrum was found previously [3,4] 

where 

and n = 0, 1, 2... 

The Schr;idinger equation for the quantum mechanical mass-squared spectrum 

is found by representing Ip 1 in Eq. (3.7) as an integral operator with the 

result [3] 
2 



Clearly, Eq. (3.10) is identical to 't Hooft bound state equation (1.4) in 

the A+ = 0 gauge provided we set 2y = G2 and take the string model masses 

equal to the renormalized field theory mass: 

With these identifications, the numerical results for the spectrum of the 

lightlike string are therefore identical to those we found in Section I for 

't Hooft's model in the lightlike gauge. In particular, the unfolded mode 

of the massless Nambu string [3], with 

is identical with 't Hooft'smodel at R= 1. The massless Nambu string is thus - 

interpretable as a strong -_ -_ coupling theory. 

Recalling that when m = 0 't Hooft's lightlike-gauge model has a zero 

mass bound state, we see that the string model has the same solution when 

the string model masses become tachyonic: 
. 

It is indeed remarkable that the string model in the lightlike gauge has a 

perfectly respectable zero mass bound state with tachyonic constituents! The 

linear potential due to the string is so strong that it overpowers the tachyonic 

nature of the constituents, which could not appear in a physical theory by 

themselves. 

One can straightforwardly extend this argument to the N-fold lightlike- 

gauge string [3]. The invariant mass-squared is [ll] 
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and the form of the SchrGdinger equation analogous to (3.10) follows at once. 

The wave function 

has the eigenvalue M2 = 0 provided that 

Thus we have noticed an entire new class of exact solutions to the N-fold 

massive string in the lightlike gauge, with certain tachyonic constituent 

masses producing zero-mass ground states. 

B. Timelike Gauge Point Particles 

The timelike gauge point particle system follows from the action (3.1) 

and the relativistic point particle Lagrangian (3.4) when we choose the 

timelike r-gauge 

-&yr) = z ( ) 3,, 17 
and the o-gauge 
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(3. i 8) 

When we transform to center-of-mass variables as in Ref. 11, we find the 

Hamiltonian 

where 

The Bohr-Sommerfeld spectrum of the theory is again of the form given in Eqs. 

(3.8)-(3.9). The Schrijdinger equation for the mass spectrum is now found from 

(3.20) by representing Irl as an integral operator. This yields 

Imposing the boundary condition 

we may integrate the right-hand side of Eq. (3.21) by parts obtaining: 
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We observe that Eq. (3.21) and Eq. (2.10), the bound state equation for 

the weak coupling 't Hooft model in the A 1 = 0 gauge, are not the same. Making 

the identifications of parameters as in Eq. (3.11), remembering that 2y = G‘, 

and expanding the kinetic energy term does reproduce the first two terms in 

Eq. (2.10) in the weak coupling limit, G2/m2 < 1. However, the kernels remain 

inequivalent because of the additional kinematic factor 

originating from the quark spinors. This factor is unimportant for extremely 

weak-coupling (the nonrelativistic limit) but it does produce some differences 

for stronger coupling. 

The essential point that needs to be made is that Eq, (3.21) is the bound 

state equation of the timelike string model for any value of y and u (i.e. for 

any coupling). As we shall discuss in Sec. IV, the Bethe-Salpeter bound state 

equation for the strong-coupling timelike 't Hooft model apparently has a 

structure differing considerably from Eq. (3.21). It therefore seems doubtful 

that the timelike string model is equivalent to the timelike 't Hooft model, 

even though the two lightlike-gauge models have identical bound state spectra. 

Furthermore, as we shall soon discuss, the timelike string and the lightlike 

string have inequivalent quantum spectra. 
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C. Numerical Techniques 

Equation (3.23) possesses no known exact solutions, so we must again 

use numerical techniques to analyze its spectrum. We shall consider only 

the case in which ul = u2 = 1-1, and transform to a new parameter 8: 

We find it convenient to define the Timelike String eigenvalue 

and to define R by 

I_L- * -x ,“IT 
This last relation is suggested by the identification of u2 with the quark 

renormalized mass-squared (1.14). Equation (3.23) now can be written as 

We note that with q defined as in (3.25), the parity transformation 

is a symmetry of Eq. (3.28). Hence we will again be able to search for 

definite parity eigen values 8;:). 

Expanding $(0) in the by now familiar sine series 

(3.2 8) 



we can express the eigenvalue problem in the standard Multhopp form of Appendix 

C. The matrix TsBkj for the problem at hand is given by 

A 
TS kj 

The function Ca(ek) appearing in Eq. (3.31) has been defined previously in 

Eq. (2.25). 

D. Numerical Results 

Solving the eigenvalue equation (3.28), we find the ground state and the 

first excited state eigenvalues plotted in Fig. 6 for strong-coupling, 

1.0 d R G 5.0. For comparison we have plotted in Fig. 6 the corresponding 

eigenvalues of the lightlike string. The spectra are clearly different for 

this R-range. In the timelike gauge, the square root in the kinetic energy 

prevents us from going below R = 1.0. At R = 1.0, where u2 = 0, the system 

corresponds to the no-fold massless Nambu string [3] and has a ground state 

The timelike gauge ground state is therefore lower than the lightlike gauge 

ground state 

discussed in Section I and Section 1II.A. We have here a clear example of 

the well-known ambiguity in the canonical quantization procedure [11]: If 

one chooses different canonically equivalent classical variables,the corresponding 
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quantum systems may be inequivalent. 

Quantizing the two-dimensional string model in different gauges produces 

different spectra, even though the classical systems are canonically equivalent. 

Furthermore, this discrepancy cannot be resolved by examining Poincar6 

covariance: it has been shown[ll] that both the gauges x 0 = r and-x 
+ 

= T can 

be formulated so as to produce Poincarg-covariant quantum theories. We are 

faced with the fact that canonical transformations and canonical quantization 

are operations which do not in general commute. New criteria are needed to 

choose between inequivalent systems arising in this way. 

E. Comparison of Bohr-Sommerfeld Spectra to Quantum Spectra 

The Bohr-Sommerfeld quantum spectrum (3.8) must approximate the true 

quantum spectra of both the timelike and lightlike string model in the semi- 

classical limit. We therefore compare the Bohr-Sommerfeld and the quantum 

spectra in the limit of large principal quantum numbers, which we denote here 

by n = 0, 1, 2... 

To find the Bohr-Sommerfeld spectrum, we must solve numerically the 

transcendental equation (3.8) for M2 as a function of R = 1 + .rru2/2y, the 

principal quantum number n and the Bohr-Sommerfeld constant. We know of no 

direct way to compute the constant that enters in the Bohr-Sommerfeld equation 

for the string model. For most of our work we have adjusted the constant so 

that the ground state of the Bohr-Sommerfeld spectrum and that of the 

quantum spectrum agree. Since the ground state mass is different for each 

value of R and for each gauge, the constant was readjusted for each case 

considered. Clearly there are other ways in which constants could enter 

the semiclassical spectrum and other ways to determine the semiclassical 

ground state; our choice is just a convenient guess. 
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Figure 7 shows the Bohr-Sommerfeld spectrum versus principal quantum 

number for various R's. These curves were computed with vanishing constant 

in (3.8); if one uses constants that fit the ground state, the curves are 

nearly identical to those shown. In order to exhibit the differences between 

the quantum and semiclassical spectrum we plot 

and 

i\ .-fix 
\ 

LG - - c '3.35, 

‘2, 
i3ol\r- r&MetfeI$ 

versus n in Fig. 8. For this latter graph we have forced the ground states to 

agree separately for each gauge. We observe that the even and odd parity states 

have very different deviations from the Bohr-Sommerfeld spectrum which approach 

a common constant for large n, which we denote by A(m,R). This constant is 

a function of R and the gauge. We have some evidence that 

However, ALG and ATS are quite different at small R. 

We have no immediate interpretation for the behavior of ALG(n,R) and 

+,(n,Rl. The shape of the quantum spectra clearly agree with the Bohr- 

Sommerfeld spectrum for large n, as required. To achieve further insight, 

the Bohr-Sommerfeld approximation must be replaced by a rigorous WKB treatment 

of the problem, which we shall not attempt here. 

33 



IV. 'T HOOFT MODEL IN A TIMELIKE GAUGE - STRONG COUPLING 

We now return to treat the timelike-gauge 't Hooft model using methods 

which, unlike those of Section II, are valid for strong as well as weak 

coupling. We employ once again 't Hooft's large N expansion, where G2 = ;g2N 

is kept fixed as N + 03, but without the weak-coupling restriction G2 <m2. 

In the N + ~0 limit, only "rainbow" graphs contribute to the quark self-energy 

in any axial gauge. In the timelike gauge, the self-energy problem leads to 

two coupled nonlinear integral equations which appear very difficult to solve, 

in contrast to 't Hooft's [l] simple lightlike gauge self-energy problem. 

In the superstrong coupling limit, in which the quark bare mass m vanishes, 

the timelike self-energy equations appear to be inconsistent, as has been 

noted recently by Frishman et al. [7]. For weak-coupling, on the other hand, 

one can proceed perturbatively. We shall exhibit the first two terms of this 

expansion and check that they agree with the weak-coupling results of 

Section II. 

For strong-coupling the appropriate bound state equation is the Bethe- 

Salpeter equation. Again, because we are working to leading order in l/N 

and are using an axial gauge, only ladder graphs need to be retained in the 

bound state equation. Furthermore, since the kernel of the Bethe-Salpeter 

equation is instantaneous, we may turn the bound state problem into an 

equivalent Schrijdinger equation. Unfortunately, any attempt to solve this 

problem for strong-coupling requires knowledge of the exact solutions of the 

quark self-energy equations. For weak-coupling, where these solutions are 

known, one recovers exactly the bound state SchrGdinger problem of Section II. 

A. Quark Self-Energy 

The quark self-energy matrix C(pu) is defined by 
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where S (p ) 
0 IJ 

and S(pu) are the bare and full quark propagators, respectively. 

In the Al = 0 gauge, the only diagrams that contribute to the self-energy in 

the N + ~0 limit are planar diagrams with fermions on the boundaries (rainbow 

graphs). Thus it is easy to deduce that C(p,) obeys the following integral 

equation: 
+CO +a 

-CD -co 
where q 

1-I 
= (Eq,q), pu = (Ep,p) and D(pu-qu) is the free "gluon'! propagator 

Because D(pu-qu) is independent of E 
P 

and Eq it follows that C(p,) is independent 

of E 
P' 

Then it is easy to see that the most general structure that C(p,) can 

have is 

Inserting this form for C(p) into Eq. (4.2) and performing a symmetric inte- 

gration in the complex Eq plane, we find the following coupled nonlinear 

integral equations for A(p) and B(p): 
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where 

We have been unab le to find exact solutions to the above equations for 

realistic parameters. However, for zero bare mass and unphysical coupling 
7 

(GA < 01, we have noted a number of (non-unique) solutions. One such solution is 

One can easily convince oneself that if GL > 0 the above ceases to be a solution. 

Indeed, Frishman et al. [7] have shown that Eqs. (4.5) and (4.6) are incon- 

sistent for G2 > 0 and m = 0. It is not clear to us whether this superstrong ' 

coupling inconsistency of the self-energy equations has any bearing on the 

consistency of the bound state equations in the same regime. Obviously, if 

we can find no solution for C(p), we shall not be able to construct a solution 

of the Bethe-Salpeter equation. That is not to say, however, that no bound 

states exist. 

For weak coupling (G2/m2 Ql) the self-energy equations are well defined 

in the usual perturbative sense. We can expand 
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This leads to the following expansion for the squared-"energy", w2(p), of 

Eq. (4.7): 

We have calculated oo2(p) and w12(p) in Appendix E with the result 

It is clear from the above expressions that the timelike-gauge self-energy 

is not at all simple. In contrast, in the lightlike gauge the self-energy 

contribution just gave rise to a mass shift. This difference is a manifesta- 

tion of the fact that the quark self-energy is a gauge-variant quantity. 

We conclude this section by noting that to order G2 the value (4.15) 
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for the self-energy agrees with the weak-coupling analysis of Section II. 

Indeed the second term on the right-hand side of Eq. (2.9) corresponds 

precisely to the expansion: 

B. Bethe-Salpeter equation for two-body bound states 

We now turn to the quark-antiquark bound states of the timelike gauge 

't Hooft model in the l/N approximation. To leading order in l/N, the mass 

spectrum of these bound states is given by the Bethe-Salpeter equation with 

only ladder diagram contributions [2]. The bound state wave function for 

"color" singlet bound states is defined as 

Here a,b = 1,2 are spinor indices and \P) is the state vector of the bound state, 

with P2 =PP = M2. 
u1-I 

Translation invariance allows us to write 

In coordinate space and in the ladder approximation, the bound state wave 

function obeys the Bethe-Salpeter equation, 
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where the kernel is given by 

This equation is represented pictorially in Fig. 9. Because the kernel is 

proportional to 6(tx-t,), the wave function that enters in the right-hand side 

of Eq. (4.21) is a one-time wave function. This property allows us to consider 

equal time wave functions also on the left-hand side of the Bethe-Salpeter 

equation. Using Eq. (4.20) we see that if t = t =tthen . 
X Y 

so that all the wave function resides in the e -iEt 

factor, written above in the appropriate relativistic form. 

To proceed, it proves convenient to write the Bethe-Salpeter equation in 

momentum space for the spatial variable x, but in ordinary space for the time 

variable. We define 

and 



In terms of these definitions the Bethe-Salpeter equation., in the equal time 

limit, reads 

where 

Because Eq. (4.26) is a one-time equation,it is equivalent to an integral 

SchrSdinger problem for the meson bound states. Of course since the wave 

function x carries spinor indices, Eq. (4.26) is a matrix integral problem. 

The Green's function that enters in the Bethe-Salpeter equation is the 

full quark Green's function. Its inverse is related to the self-energy C(p,) 

by Eq. (4.1). Because C(pu) is independent of E it follows that we can 
P 

where 
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Thus the full quark Green's function obeys the differential equation 

Following Schwinger [16], we form the two-body analog of the operator 

appearing in (4.30) and let it act on the Bethe-Salpeter wave function. This 

will transform the bound state problem into an ordinary matrix Schrgdinger 

problem. Consider then 

/ 

J J- ;-,', - H 
L\c' bt;;' aa 

&p&y,‘ -g H (p-j yc?(+ 

2 '/r 

dcI' bb' b 
) 

- 
&a* 

) -ii[~+-4 
1,-)3L e 

/ 

The right-hand side of (4.31) follows from the Bethe-Salpeter equation (4.26) 

and Eq. (4.30). The above equation can be simplified further by noting that 

the full quark Green's function at equal times is given, after a symmetric 

integration, by 
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The function w(p) in (4.32) is defined in Eq. (4.7). Using the form of the 

kernel K given in (4.27) one obtains, after some algebra, the following bound 

state equation: 

The projection factors H/w appearing on the right-hand side of Eq. (4.33) are, 

essentially, those of the Salpeter equation [17]. However, in Eq. (4.33) these 

factors contain all orders in G2 and are not just given by the ratio of the 

free Hamiltonian to its eigenvalue. 

Equation (4.33) is exact. One cannot, however, even attempt to solve 

Eq. (4.33) until the full quark self-energy solution is obtained. As we have 

seen in Section IV A, and as emphasized by Frishman et al. [7], for super- 

strong coupling there appear to be no solutions to the self-energy equations - 

(at least if one uses the principal value prescription adopted here as an 

infrared cut off). Because of this difficulty we do not know how to examine 

Eq. (4.33) in the super strong coupling limit. For weak-coupling, however, 
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there is a perfectly well-defined expression for the self-energy, and the 

Bethe-Salpeter equation can be studied in this limit. 

To analyze the bound state equation in the weak coupling limit it is 

useful to diagonalize the kinetic energy terms in Eq. (4.33). This can be 

done readily by performing a Foldy-Wouthuysen transformation on H. It is not 

hard to check that 

where 

diagonalizes H: 

Defining a new wave function 

we may partially diagonalize the bound state equation to read: 
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Equation (4.38) is still exact. For weak coupling, however, various 

approximations can be made: 

(1) Only the first two terms in the expansion of w(p) need to be kept 

[Eq. (4.17)]: 

(2) The matrix U(p) can be calculated with the ang 

order expression: 

lowest 

(3) Only the "upper" components of the wave function ii b need be retained 
, 

(i.e. a = b = 1). This means that effectively 
‘12 
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It is straightforward to check that in this weak-coupling limit, the bound 

state equation reduces to the following (scalar) form: 

The right-hand side of Eq. (4.42) is identical to that of Eq. (2.9) obtained 

using the weak-coupling Hamiltonian formalism. However, we demonstrated 

explicitly in Section II that the eigenvalues have the correct relativistic 

form indicated on the left-hand side of Eq. (4.42) only for weak-coupling. 

The deviation of Eq. (4.42) from exactness for strong coupling is exhibited 

in Fig. 5. In fact, the covariance test plotted in Fig. 5 serves as a 

sensitive indicator of the value of the coupling parameter at which the 

techniques we have utilized are expected to fail. 

We conclude that in the weak-coupling regime the Bethe-Salpeter equation 

for the 't Hooft model in the timelike gauge is covariant and yields the 

same spectrum as the lightlike gauge. Thus, in weak-coupling there are no 

inconsistencies between different gauge choices. For strong-coupling, 

however, the situation remains murky and obviously deserves further study. 
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V. CONCLUSIONS 

Our main concern in this paper has been the investigation of the bound 

state spectrum of 't Hooft's model in different gauges and its relation to 

the string model bound state spectrum. To be able to make quantitative state- 

ments, we have had to solve numerically a number of singular integral equations, 

Fortunately, it was possible to adopt for these purposes a technique used 

extensively in the aerodynamics of wings. 

We have obtained three principal results: 

(1) We have demonstrated that the spectrum of the 't Hooft model for weak-coupling 

is the same in the lightlike and timelike gauges. 

(2) We have verified that the timelike gauge 't Hooft model is Lorentz covariant 

for weak coupling. 

(3) We have shown that the string model has a quantum spectrum that is gauge -- 

variant. -- 

Let us comment briefly on these points. 

The gauge invariance and Lorentz covariance of the 't Hooft model, although 

formally expected, are important results. The recent work of Frishman et al. [7], 

in strong-coupling, has raised doubts about both the gauge invariance and the 

covariance of the bound state spectrum. What we have shown is that there 

exists a range of coupling constants for which no inconsistencies arise in 

the 't Hooft model. 

Our work on the string model, on the other hand, shows that the quantum 

mechanics of the timelike and lightlike string are canonically inequivalent. 

Since the quantum system can be formally proven to be PoincarS covariant in 

either gauge [ll], this raises the interesting question of what gauge is the 

"physical" one. One wonders what criteria, if any, exist to establish a 

preference for one of the string quantum systems over the other. 
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The strongly coupled 't Hooft model in the timelike gauge remains an 

open challenge. If there is to be any chance of retaining gauge invariance 

in the strong coupling regime, some way must be found to circumvent the 

problems uncovered by Frishman et a1.[7] and to put the bound state equations 

into a form which can be solved numerically. We remark that it may not be 

necessary to solve the fermion self-energy equations exactly in order to 

accomplish this; the quarks are after all unobservable, so that the bound 

state equation itself could be perfectly well-defined. 

We conclude with a comparison of the ground state mass-spectra of the 

three theories which we have solved numerically in the course of this work. 

In Figure 10, we plot each of the three possible ground state mass-squared 

ratios versus the coupling parameter R. It is clear that for weak coupling, 

all these theories are equivalent. Marked differences appear in the strong- 

coupling regime. The weak-coupling timelike gauge theory spectrum is of 

course not to be taken seriously in the strong coupling region; nevertheless, 

it remains remarkably close to the strong-coupling 't Hooft model solution. 
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APPENDIX A: SU(N) Transformation Properties 

We display here the transformation properties that the gluon field 

Am and the quark field $,(x,3 have under local SU(N) transformations. 

Under an infinitesimal gauge transformation generated by Aa( < 

transforms as 

while $o(x,) transforms as 

Here f abc are the structure constants of SU(N), and the (N2 - 1) matrices Xa 

are the N x N traceless hermitian matrices which define the fundamental 

representation of SU(N). We list below a number of useful properties of 

these matrices: .- 

L 
+",+xh] L- i -f 

abc4 xc (A 3) * 

(8 j .Gt 

i 
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APPENDIX B: Some Useful Principal Value Integrals 

The Cauchy principal value integral of a function with a single pole in 

the interval of integration is defined as: 

For a function with a double pole in the interval of integration the above 

definition is modified to read: 

In the text we need to know a number of principal value integrals. We list 

these integrals below and outline their evaluation: 

pl = 0) $1, ,I\ 

0 < 0<“lr* 

Proof: One can explicitly check that AO(8) = 0 and Al(e) = T. The following 

recursion relation for A,(e) is easily derived: 

Ah+,(@) - 2 cc-~ e A,c~) + A,,-,@+ = c’t (i 

The difference equation (B.4) has solutions An(e) a etrne and the boundary 

conditions provided by A0 and Al yield (B.3). 
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It is easy to check that the 

relation: 

integra 1 (B.5) obeys the following recursion 

Using (B.6) and the result of an explicit evaluation of BO(0)) 

one can compute (B.5) recursively. 

The integral (B.8) obeys the recursion relation 

Ch,+l(0) -I- c,-,@Q = 
2 ~(-&gC (e)+ 4rf -0"~ * 

n 4 - h2 \ 
(I ? -- / 

For even n this equation is easily solved yielding 

[Equation (B.lO) could have been arrived at more directly by realizing that 

C&B) is a special case of the general Poisson integral formula linking 
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harmonic conjugate functions [18]]. For odd n, one can compute Cn(0) by 

using Eq. (B.9) along with the result 
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APPENDIX C: The Multhopp Technique 

In this appendix we describe a method for solving the type of singular 

integral equations that persistently occur in our analysis of strings and two 

dimensional SU(N) gauge theories. We adapt an ingenious technique developed 

almost forty years ago by H. Multhopp in connection with the aerodynamic 

theory of wings [12]. 

Multhopp's method transforms singular integral equations into (infinite) 

algebraic equations and then solves these, approximately, by truncation. 

Consider the singular integral equation 

where $(a) = Q(b) = 0, which is an equation of the type encountered in the 

text. Equation (C.l) can be transformed into an algebraic equation by expanding 

$ in a.complete set of functions and performing the singular integrals on the 

right hand side. A particularly convenient expansion is provided by a sine 

series since $ can then be made to satisfy the boundary conditions trivially. 

Furthermore, when one uses a sine expansion the integrals on the right hand 

side of (C.l) can be performed for a variety of simple kernels (see Appendix B). 

Mapping the interval (a,b) into (0,~) and making the expansion 
co I 

one transforms Eq. (C.l) into the following transcendental eigenvalue problem: 

j=l 
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Here B(j,@) is the function that is obtained upon performing the singular 

integral over the kernel K in (C. 1). 

The eigenvalue problem can be solved approximately by truncating the 

sums (C.2) and (C.3). For the problem at hand, it is convenient to 

truncate at n terms with n being odd. Thus Eqs. (C.2) and (C.3) become, 

approximately, 

Equation (C.5) can be transformed into an n x n eigenvalue problem by evalua- 

ting it at equally spaced angles Ok (Multhopp’s angles), 

The choice of (C. 6), made by Multhopp, is especially convenient because one 

can use the “completeness” relation [12] 

to solve for aj in terms of $(8,). Using (C. 7) one easily sees that 

The result (C.8) allows one to rewrite Eq. (C.S), for 8 = Ok, as 
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where the "Multhopp matrix" B 
kj 

is given by 

The system of equations (C.9) is simply a linear n x n matrix equation which 

can be easily solved on a computer to yield the n eigenvalues & and the 

corresponding eigenfunctions q(e) evaluated at the n discrete points (C.6). 

When one has a definite parity for the wave function, as in the text, 

so that 

the system of equations (C.9) can be reduced in an obvious way to systems of 

(n + 1)/2 and (n - 1)/2 equations for even (+) and odd (-) parity respectively. 

For the discrete angles ek the parity operation (C.ll) implies 

Then the eigenvalue problem (C.9) splits into 

(1) Even parity (+): 

- - i 1 c. 13 
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where 

I3 
C+) _ 

kj - 

(2) Odd Parity (-): 
Ch - ‘)/ii? 

where 

i3 
G-3 

-43 
Pj - kj '- 

R 
k, b+t-_I * 

These are the equations we use repeatedly in the text, 
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APPENDIX D: Hamiltonian approach to timelike gauge bound state equation 

In this appendix we shall outline the derivation of the bound state 

equation (2.9) by Hamiltonian methods. The Hamiltonian (2.7) is 

The current density entering in the above is given by 

J,aW = 1 "it(,) f $- yJw ", 

- 

For the field JI we shall use the following zero time field expansion 

The operators ao, bo obey the usual anticommutation relations 

with all other anticommutators vanishing. It is convenient to evaluate the 

spinors u(p), v(p), in a representation in which 

One finds that 
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where E = ,~/p‘+rn~ . From Eq. (D.6) it follows for example that 

(In Sec. IV, on the other hand, we use a more conventional representation where 

y" is diagonal.) 

Using Eqs. (D.2) and (D.3) one can write out the Hamiltonian H in terms 

of the quark and antiquark creation and annihilation operators a .: a b b t a' a' a' a' 
We are interested in the terms of H which when operating on the state 

lJ9 = J:t qp 1 

* 

a $1 b+Jp-%l 10) _ i J 'b I. 8 

-- a2 
will, to lowest order, reproduce this state. These terms clearly must have 

pairs of ao and a:, and of bo and bf‘. a. The normal ordered Hamiltonian (D.l) 

contains in general 28 terms. Of these only 10 have the above stated property. 

We display these terms below: 
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In Eq. (D.9) we have gone to momentum space. We have used a principal value 

prescription to define the Fourier transform of the Coulomb potential Ix-y1 

since it does not introduce any new parameters, unlike 't Hooft's [l] A 

cutoff. The factor of N occurring in the second group of terms in Eq. (D-9) 

comes from the contraction in the internal symmetry space: 

The last two terms in H eff (D.9) when acting on the state (D.8) will not give 

rise to any extra factor of N. These terms correspond to the annihilation 

graphs and thus can be neglected in the N + ~0 limit. 

Armed with [D.9), it is now straightforward to compute the effect of H eff 

on IP>. The result is displayed in the text in Eq. (2.9). Note that the 

kinetic energy terms arise from the first two terms in H, the self energy 
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terms arise from the next four. Finally the 7th and 8th term in H eff give 

rise to the Coulomb binding term. The effect of these last terms on IP) 

yields a factor of N which transforms the effective coupling into G2 =$g2N. 
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APPENDIX E 

In this appendix we give the details of the calculation leading to the 

results quoted in (4.15) and (4.16). To first order in G2, A(p) and B(p) are 

The integrals in (E-1) can be straightforwardly calculated giving 

A, 6-p) zz - 1, E2 

jb 

and using (4.13) we verify (4.15). To second order in G2 we have: 

A,( 1 P = 

Bj ~~j = 

i J ‘Eh 

[wl(TjjL ,(& p +g ~~~~~~+~~~j~~~j* 
We will now give the details of how the integral in Eq. (E.3c) is evaluated. 

c. L3 

The integrals in (E.3a) and (E.3b) can be similarly calculated but are somewhat 

more tedious. 

The integral we wish to concentrate on is 
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To evaluate 3 &) we introduce variables I$ and x such that: 

/p=~ndp E -z)ndcb - cm < 4 (-+m -- .\ 
P 

In terms of our new variables 3W takes the following form : _ 
5 

$&i)z a($) = ; 
Tr-=ln2 f 

*cu '3c d3C 

-a3 ~&.&"~(a;-nRX-~~~) * 

The integral in (E.6) is now evaluated by means of contour integration. The 

contour we choose is shown in Fig. 11. We have assumed without loss of 

generality that 4 > 0. The two simple poles at z = 4 and z = $I + 2vi lying 

on the contour necessitate the Cauchy principal value prescription for - 

evaluating 3 (@). The Cauchy principal value is the average of 

obtained with the two simple poles inside and outside the contour 

We consider first the contour integral 

the result 

r. 

i 

where r is the contour of Fig.11. As p -+a, the contributions from the vertical 

segments vanish and the contributions from the horizontal segments comb5ne to 

On the other hand the residue theorem tells us that 

where the poles at z = ni/2 and z = 3ri/2 are triple poles/ while those at z =4 and 

z = rj + 2ni are simple poles. A tedious but straightforward evaluation of the 
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relevant residues gives the following answer: 

Thus we find 

which combined with (E.3c) verifies Eq. (4.16). 
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FIGURE CAPTIONS 

Fig. 1: 100 term approximation to a segment of the discontinuous function 

9 (Tr-x) 8 (x) . The dotted line is the sine series approximation, the dashed 

line is the Multhopp approximation and the solid line is the sine series 

with the Lanczos convergence factor approximation. 

Fig. 2: Dependence of the ground state eigenvalue 2M2/G2 = 'LG on the dimension 

n of the Multhopp matrix plotted as a function of R. The values of n 

exhibited are: n = 11, 51, 101, 201. 

Fig. 3: Dependence of the ground state and first excited state eigenvalue 

2M2/G2 = gLG on R. The range of R is from 0.1 to 5.0. 

Fig. 4: Comparison of the two lowest eigenvalues 2M2/G2 of the timelike gauge 

weak coupling theory with the corresponding eigenvalues of the lightlike 

gauge 't Hooft model plotted versus R. The range of R is from 0.1 to 5.0. 

The timelike gauge eigenvalues are shown with a solid line. 

Fig. 5: Plot of the ratio Z =(& 2 - R2P2)/gTG2 versus R for different values of 
P 

6 = P/m. The range of R is from 0.1 to 100.0. Curves (a), (b), (c), and 

(d) correspond to P = 0, 1.0, 5.0, and 10.0, respectively. 

Fig. 6: Comparison of the lowest eigenvalues M2/-y = 2M2/G2 of the timelike 

gauge string model with the corresponding eigenvalues of the lightlike 

gauge string model versus R. The range of R is from 0.1 to 5.0. The 

solid curve represents the timelike gauge string model eigenvalues 

and therefore starts at R = 1.0. 

Fig. 7: Plot of the Bohr-Sommerfeld spectrum M2/-y versus principal quantum 

number n for various values of R: (a) R = 1.0, (b) R = 10.0 and (c) 

R = 100.0. 

Fig. 8: Plot of the difference ATS(n,R) and A LG (n,R) versus principal quantum 

number n for R = 1.0. The difference ATS is shown by a o,ALG by a +. 
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Fig. 9: The Bethe-Salpeter equation for the 't Hooft model in the l/N approximation.- 
._ 

Fig. 10: Plot of the three independent ratios of the ground state eigenvalues 

M2 versus R. The range of R is from 0.1 to 100.0. Curve (a) is the ratio 

CM 
2 2 

ITS/CM )TGj curve (b) is the ratio (M2)TG/(M2)LG and curve (c) is the 

ratio (M2)Ts/(M2)LG. 

Fig. 11: Contour for the integral in Eq. (E.7). 
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