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Abstract 

We present inclusive distributions for final state hadrons produced 

in inelastic muon proton scattering. Over the total energy range 

2 < W < 4.7 and the momentum transfer range .3 < Q2 < 4.5, the fractional 

momentum and energy distributions approximately scale. Disbributions in 

transverse momentum display an interesting two-component behavior. They 

show no dependence on the virtual photon "mass squared" Q 2 , and have 

average values typical of other hadron-initiated reactions. A com- 

parison of our distributions with those seen in e+e- annihilation and 

neutrino-nucleon scattering show agreement, in support of quark-parton 

fragmentation ideas. We further break these distributions down by 

event topology. 
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1. INTRODUCTION 

In this paper, we present inclusive hadron distributions seen in a 

deeply inelastic muon-proton scattering experiment at the Stanford Linear 

Accelerator Center. Data were taken using a 14 GeV positive muon beam 

incident on a liquid hydrogen target. All charged final-state particles 

emerging from the target were detected in a two meter long streamer 

chamber. Charge identification and momentum analysis were provided by a 

16 kG magnet; however, mass identification was generally not possible. 

The trigger for the experiment was provided by a scattered u+ traversing 

four banks of scintillator hodoscopes interspersed with 1.5m of lead. The 

experimental apparatus is shown in Fig. 1. A detailed description of the 

experiment can be found in Ref. 1, which presents topological cross sections 

and average charged hadron multiplicities. 

The data presented in this paper are based on %4,000 inelastic events 

covering a kinematic range: 0.3 5 Q 2 5 4.5 GeV2 and 2.0 5 W 5 4.7 GeV: here, 

Q2 = negative square of the four-momentum transferred to the hadronic 

system, and W = center-of-mass energy of this system. Because of the lack 

of mass identification, most of the distributions presented will be for 

negative particles only, where pions are the dominant particle type. To 

minimize the effect of final-state protons in the positively charged data 

sample, we shall often restrict the W range to 2.8 I W i 4.7 GeV, as 

discussed in the text. Inclusive data for negative particles covering 

a W range below that of this experiment can be found in Ref. 2. None of 

the distributions presented have been radiatively corrected. These 

corrections are expected to be small for muons in our Q 
2 and W range. 
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Our interest in looking at final states in deeply inelastic scattering 

is particularly motivated by their accessibility to interpretation in terms 

of a simple quark-parton model. In such a model, as symbolically shown in 

Fig. 2, the final parton state is easily described: In the lab system, one 

parton absorbs all of the incident photon momentum; the remainder have 

low energy and will form the proton "debris". The struck parton is therefore 

strongly isolated in phase space from the remaining ones. This system must 

then somehow evolve into the hadrons we detect. Our failure so far to 

understand this process has made it difficult to put this model on a firmer 

footing. A detailed study of the final-state particles may help us to 

enhance the much needed understanding of this mechanism. 

II. PROCEDURE 

The inclusive hadron distribution describes the density in phase space 

for final-state hadrons. In the present experiment, since the "beam" 

particle is a virtual photon, the center-of-mass energy and projectile 

"mass" are continuous variables. The final-state particle density will 

thus be presented for bins of W and Q2 defined by the initial photon-proton 

system. We define: 

E dW,Q2> _ 

d3p 

E ddW,Q2) , 
u ,,,:W> Q”) d3p 

where the cross sections are integrated over a range AQ2 and AW with 

weighted average values given by Q2 and W. 

As is customary for hadronic reactions, we will display the distributions 
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in terms of longitudinal and transverse variables, as defined with 

respect to the virtual-photon-proton collision axis. Since the muon scatter 

plane defines a direction in space to which the virtual photon polarization 

is correlated, the hadron distributions can also depend on the azimuthal 

angle $ of the hadron momentum vector with respect to the muon scatter 

plane. We find little dependence on this angle. For example, looking only 

at the high-momentum tracks in each event, the resulting particle density 

is uniform in azimuth to 10% (see Section VI below). Since the dependence 

on @I is so small, we will integrate all distributions over this variable. 

When calculating energies from the measured momenta, we assume that all rest 

masses are m . 7T Keeping the limitation of this assumption in mind, we 

draw inferences from our fractional energy distributions mainly for fast 

particles which are predominatly pions. 

All distributions are'weighted for the muon and hadron detection 

efficiencies. (1) These weights are typically 2. and 1.15, respectively. 

For forward-produced hadrons (large momentum along incident photon direction) 

the hadron weight is typically 1.05; for very backward hadrons the weights 

are large. Distributions are presented only in the phase space region 

where the hadron detection efficiency can be reliably estimated, 

. l.e., to an accuracy better than 5%. 
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111. LONGITUDINAL MOMENTUM DISTRIBUTIONS 

Let us define the "structure function" for r- production according to 

FT (xF,W,Q2) = JE dNTd3(kJyQ2) 
dpL2d4 

2~ . * 

It is th.e projection of the invariant-inclusive r- distribution onto the 

longitudinal momentum variable. The distribution in longitudinal momentum 

is conveniently displayed in terms of the Feynman scaling variable xF. (3) 
* 

It is defined as % , in the y, - p roton center-of-mass system, where 
max 

This function is shown in Figure 3. To study kinematical trends, we break 

up the entire W range above 2.8 into two-Q2 ranges: 

0.5 I Q2 1. 1.2 

1.2 < Q2 
2.8 I w i 4.7. 

5 4.5 

Alternatively, we subdivide the full Q 2 range above 0.5 into two regimes: 

2.8 5 W 5 3.6 
0.5 5 Q2 2 4.5. 

3.6 5 W 5 4.7 

Also shown are the analogous distributions measured in n-p and IT+P reactions 

at comparable center-of-mass energies, (4) and the distribution seen in up 

scattering at much higher W. (5) 

We observe these principal features: 

1. Our data vary little if at all with w and Q2 in the momentum region 

-. 2 2 'f~ 2 .6. For xF < -.2, a rise with W may be indicated; however, the 

statistical errors here are large, The changes at large positive xF may be 

mainly reflecting the changes in the elastic (6) p O polarization. 

2. For negative xF, our distributions look similar to IT-P + IT- + X. 

3. The maximum value of Fr (+W,Q2) occurs at xF = .05, a feature equally 

observed for both pion-initiated reactions. 
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4. The data from FNAL tend to lie s 20 to 50% above the data at our energies, 

except at very large xE where errors are large . The former data correspond 
2 

to very large values of the scaling variable w' = q-G?- , where F 
+ 

%F,W,Q2) 

," F 
2 (5) 

(x,&Q >. In Section V we discuss in detaii the w' dependence; here, 
+ 

we only note that a parton model lets us expect (F' (xF,W,Q2)+Fr (xF,W,Q2)) 

to be independent of w'. Since we see a charge ratio = 2 (cf. -Section V) 

at our values of w', while expecting an approach to unity for o' + ~0, we 

foresee an increase of FT (%,W,Q2) by about 50% as w' gets large. The 

FNAL results are qualitatively in agreement with these expectations. 

To complement this discussion, we will plot the final-state distributions 

in terms of the related variable, z : Eh/v, in Section V below. In the 

photon fragmentation region, z = xE in the limit where mI, and pI can be 

ignored. The use of the z variable has the advantage that it is a Lorentz- 

invariant, and that proton contamination at large values of z- is smaller 

than for large x values. We thus will discuss distributions for 
F 

positive particles in terms of x only. The whole region xF < 0 is mapped 

into 2 = 0 at high energy. 

IV. TRANSVERSE MOMENTUM DISTRIBUTIONS 

The average transverse momentum for negative final-state hadrons 

can depend on all the variables W, Q2, xF. To display the dependence on 

dN 
these variables we show, in Fig. 4, <p,> = /p, - 2 dpt2 vs. W in four 

-dp, - 
xF bins; in Fig. 5, <p,> vs. xE in three Q2 bins. Here are the main 

features: 

1) - <p,> is an increasing function of W. However, for small xF 

values, the increase with W is much slower than at large xF : in this 

regime <p,> may be close to constant. 

2) <pl> does not depend on Q2, for any value of xE. This disagrees 

by about 2.5 standard deviations with the results quoted in Ref. 7, which 

show an increase of <p,> with Q2 at large xE. 
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3) <pL> has a minimum for "F = 0. It is approximately symmetric 

around zero in the % regime easily accessible to this experiment; we did 

not include the region % < -.4 since the 7~~ detection efficiency becomes 

small here, and varies strongly with pI. 

To understand the source of the dip in <pL' vs. xF, we plot,in Fig. 6, 

the detailed distribution dN 
dpL2 ' 

for both small and large values of xF. 

The range in % for each bin is chosen to correspond to a region over which 

<p,> is roughly constant (see Fig. 5). 

The pL2 distribution for small 3 has been fitted to a curve of the 

form 6 = No(,B1P12 + a;B2P~ 2L 

We find Bl = 15.5 -I .5, B2 = 5.3 f 1.0, c1 = .lO + .02, with a x2 parameter 

of 1.1 per degree of freedom. The distribution at large xF can be described 

by one exponential in pL2 with a slope of 5.3 (= B2 above). We also show 

the distribution for positive hadrons at large 
XF' since the proton 

contamination can be assumed to be small here. These data are seen to be 

well represented by a similar exponential of slope B2. The minimum for 

<pL> vs. xF at small XF' can therefore, for negatives, be attributed to the 

part of the distribution with a steep slope. 

These features can be compared to data available from the reaction 

+ - Trp-tv +x. (8) Here, again, the rr- distribution can be fitted in terms 

of two exponentials, but the fraction of rr-' s falling into the less steep 

exponential is 0.2 , as compared to .38 + .07 for our muon data (integrated 

over all XF)' 

Ref. 8 also contains ananalysis of inclusive p" production. The inclusive 
h 

PO PU cross section is large, 7 Z .2, and the <pl>(xF) for the p 01 s shows no dip 

in the central region. Its value is consistent with the large xF value of <pL> 

for T- seen in our experiment as extrapolated to a center of mass energy z 5.7GeV. 

These data suggest that the dip in <p,> at smalllx& for negative pions (Fig. 5), 
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may be largely due to the production of mesonic resonances whose subsequent 

decay yields the ~'s. 

These r- tend to populate mainly the region of small xF, since the 

parent momentum must be shared by two or more particles. For the low-mass 

resonances, p,w,n, the resulting pL distribution for pions is steeper than 

-5.3pi2 the parent distribution if the parent is produced with an e distribution. 

The increase with W of the riT- spectrum resulting from the decay of these 

mesons is also much slower than the increase of the parent distribution, 

which would explain the different W dependence of <p,> for large and small 

IXF(. 
+ If this picture were true, "direct" IT- and, by inference , r production, 

at our energies, -5.3p,2 might look like e irrespective of 9 We note that a 

large inclusive p" cross section has also been seen in photoproduction. (9) 

For an alternative interpretation, we note that quark counting 

rules can be translated into the prediction of typical power behavior of 

the transverse momentum dependence of secondary hadron production. In 

this framework, T production from the qi sea may explain the steep central 

component of our observed pL dependence where as the e 4.3PL2 component 

remains identified with r production off valence quarks. (10) 
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v. ENERGY DISTRIBUTIONS FOR HADRONS 

A. Energy Distribution Functions for Pions 

The structure of an interaction yielding a number of final-state particles 

can also be usefully described in terms of the values for the variable 

Eh z F - ; this simply indicates how much of the available energy any 
V 

particular hadron (or hadron resonance) 'll)Thus receives. , a diffractively 

produced system, such as in yN -+ p"N, would be expected to have z 
P 

"1 (i.e., 

zr+ + z -: 1). T 

The resulting distribution function 

F(h) =lz- dach) 
UP otot dz ' 

where och) is the inclusive cross-section for the production of h-type particles, 

is frequently called a hadronic "structure function',' although it is not related 

to the well-known nucleon structure functions. Clearly,these functions are 

interpretable in terms of models such as diffractive or parton-scattering 

pictures. Thus, elastic p" production could lead to a distribution FUp b) (z) 

displaying a spike at z = 1. 
P 

In Figure 7, we show plots of these functions 
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for both negative (7a) and positive (7b) particles; it is evident that 

breaking the data up into three bins of the scaling variable w' (and thereby 

of Q2, for given W) does not reveal any marked dependence of the energy 

distribution function on the mass-squared of the incident photon. This 

observation is parallel to what we saw in the x F distribution in Section III, 

Note that, to exclude data samples where IT + and p are both large, F (h+) 
l-lP 

is plotted for z > 0.3 only. 

To compare the fragmentation of spacelike and timelike photons, we 

plot, in Fig. 7c, our full data sample (F &+I + F(h-) 
UP 

up ) together with the 

+- corresponding energy distribution function from e e annihilation at & = 3 GeV. 

While our comparison is limited to z values above 0.3, the close similarity 

of the F (12) 
UP 

and Fe+e- functions appears striking. Note that, for proper 

normalization of the comparison, we had to plot SF e+e- ' since there are two 

leading partons in the annihilation process (vs. one in electroproduction). 

B. Quark-Parton Model Formulation of Inclusive Distributions 

In the quark-parton model, the distribution functions for hadrons which 

carry a finite fraction of the incident virtual photon's momentum have been 

described by a set of functions which give the probability for each type of 

parton to absorb the virtual photon multiplied by another set describing the 

hadron distributions resulting from each parton type. For the positively (or 

negatively) charged hadrons,we integrate over transverse momenta to find the 

inclusive distribution: 

do 
+ 

Z _I_- = 
o(w') dz c z Pi (w')Dt+(z) 

i 

where the sum runs over quark and anti-quark types i. (13) Pi (w'), the 

probability to find a quark of type i as the scattered quark, can be obtained 

from parton model fits to vW2(w'). For this purpose, we use the modified 

Kuti-Weisskopf quark-parton distributions used in Ref.13, and the notation 

u, d, s, 6, a, s) for the three quark types and their antiparticles. The 
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+ 
number of independent "quark fragmentation functions" Dt or D h- 

i can be 
+ - 

reduced considerably. C-invariance implies Dz = Dk , 

h+ h- h- h+ Dh- h+ 
Dd = Da , Dd = Dz , u+= DG+; if we assume only pions are produced, isospin 

symmetry gives D h- 
U 

= D; , Dh = D; . 
U 

C. Extraction of Quark Fragmentation Functions 

We can now use our data to extract these quark fragmentation functions. 

We assume that only non-strange quarks are scattered by the virtual photon, 

a rather good assumption in the quark-parton model of the proton, and also 

that pions dominate the final-state hadron distributions. The effect of 

the latter assumption is examined in the next section of the paper. We now 

write the inclusive distributions in terms of only two quark fragmentation 

functions: 

F (h+> + 
VP 

(w',z) = zcp,(w') D; (z)+(l -P,Jw'))D; (~11, 

F(h-) (w, 
UP 

,z> = z[pu(w') D;-(z)+(l -Pu(w'))D;+(z)l. 

These fragmentation functions have not been calculable in any model as yet; 

to test their fundamental significance, distributions measured in several 

different processes, or in the same process but in different kinematic regions, 

should be compared. 

To test these ideas, let us look again at Fig.'s 7a,b,c. The dashed 

curves shown in Fig. 7 give the average "elastic" p" contribution to the 

inclusive cross section; we single it out because it is not clear whether it 

should be included or not when we make parton model calculations and comparisons. 

Note that the 

a function of 

and negatives 

is equal to: 

distribution for each charge is expected to scale (i.e., be 

z only) only at fixed w'. However, the sum over both positives 

is expected to scale and be independent of w', W, and Q2. It 

Fth), z [Dh+ 

'CIP 
u (z) + D;-Cdl. 
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The comparison in Fig. 7c (and Table I) therefore tests the quark-hadron 

fragmentation idea without the necessity of knowing the exact quark distributions 

in the proton. The data for all three bins in w' are in excellent agreement. 

Also shown are data for 

+- in e e annihilation at 

"new resonanceM region. 

final-state hadrons (summed over both charges) produced 

a center-of-mass energy = 3.0 GeV, (14) just below the 

A parton model for this distribution gives: 

1/ZF($)_ = +[ zdah ] = z e e 0 tot dz 2c [ 
i,h 

Pi D; (2) + Pi D; (~11 , 

where Pi is proportional to the quark charge squared, and z = E had'E:zT ' 

Ignoring a small possible difference due to the production of strange quarks, 

h+ this should be equal to z(DU (z) + D: (z)). The agreement between the 

fragmentation functions seen in these two processes is excellent. 

For the modified Kuti-Weisskopf quark-parton distributions in the target 

proton,Pu(w') is equal to .80 for 0.0'> = 6.6, .77 for <w'> = 14.3, and .73 
that 

for <w'> = 26.4. /Note /the approximate independence of w' for F(h-)and F(h+hs 'due 
UP UP 

in this model, to the small variation ofPu(w') for our data. Using these 

values ofPu(w') we tabulate in Table II the extracted values for zDU h-(z) and 

zD;+(z) f or the first two w' bins. The third bin has too large a statistical 

error and low Q2 values, and is therefore not given. The two bins give values 

of zD;+(z) in excellent agreement. The values for zD:-(z) are typically 1.5 

to 2 standard deviations apart at each z value. The extracted value of this 

function is much more sensitive than zDh u+(Z) to the value ofPu(w'). Averaging 

the two w' bins, we obtain a charge ratio: 
+ 

D; (.4 1. z I .8) 

D;-(.4 
= 3.2 2 .6 , 

I z S .8) 

in reasonable agreement with the result of Ref.13. 
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D. Inclusion of Particle Types Other Than Pions 

We now attempt to correct for the approximate assumption that all final-state 

hadrons are pions. Using the data of Ref. 15, we estimate the proton and K+ 

content of our hf sample. (16) The result is: 

+ 
P - = .2 2 .l, 5 = + .2 +_ .l . 
7-r + TI 

The calculation of zDt'(z) in the last section is very insensitive to the 

above as long as we understand h+ to include all positive particles, not just 

+ 
-iT . Note, however, that the fractional proton component falls with W, If this 

trend continues up to FNAL energies, the asymptotic value of zD z+(z) is 

expected to be Q, 15% smaller than the value measured in this experiment. 

Based on these numbers, we have recalculated zD:-(z), using for pu(w'> the 

values previously quoted; we find that the presence of protons and kaons 

increases our value of D, h (z) by about 25%, or one standard deviation, for 

all z values in Table II. These corrections for positive as well as 
\ 

negative hadrons change the charge ratio for pions to 

+ 
DT, (.4 5 z 5 .8) 

“, 1.8 + .6 . 
D; (.4 5 z i .8) 

This is considerably smaller than the charge ratio for the full sample of 

charged hadrons. 
+ 

Our values of zD~ (z) and zDi (z) should also be able to describe the 

corresponding distributions observa& in v and 5 scattering. The relevant 

comparison is shown in Fig. 8, where we include a 15% reduction of ZD E+(Z) 

to approximately subtract out the proton component. (17) A similar distribution 

seems to describe the fractional momentum distribution of high-pi charged 

hadrons seen in p-p collisions yielding a large-transverse-momentum r o (18) . 
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This common distribution, for vp, Gp, e'e-, up, and certain hadronic inter- 

actions may point to a common mechanism in all these highly inelastic 

processes, as realized in the quark-parton model. We note that the existence 

of a large forward charge ratio as observed in these data, points in the same 

direction. (12) 

E. Correlations of Event Topolopy and Charge Ratio. 

Fig. 9 shows the distribution in the variable z for the fastest particle 

for each event, yielding one entry each for the quantity zmax. We divided the 

distribution into contributions from positive and negative particles,assigning pion 

rest masses to all of them. For zmax L 0.4, the distribution for positives is 

uniformly a factor of two larger than that for negatives,irrespective of z. 

Recall that the transverse momentum distribution for high-z positives and 

negatives, which we showed in Fig. 6, is similarly structureless, also giving 

a constant charge ratio of 2 for all pr values. The low-zmax region has a 

large excess for positives, stemming most probably from proton misidentification. 

How does this remarkable regularity come about? To study this question, 

we break these distributions down into contributing parts according to the 

event topology defined by the number of charged final state hadrons. This is 

shown in Fig. 10, where we see that the nearly constant charge ratio is not 

reproduced for each topology. For zmax 2 0.7, the ratio for 3-prong events 

alone is = 1. The overall charge ratio of two for all topologies is due to a 

collusion between the l-prong contribution, which is equal to the positive 

charged 3-prong contribution in this z max range. For 0.4 2 zmax 5 0.7, on the 

other hand, the l-prong contribution makes up a much smaller part of the total, 

and the charge ratio of two reflects a similar value for both 3-prong and 

S-prong events. An attempt to interpret this phenomenon in terms of individual 

contributing diagrams remains to be undertaken, and should yield telling insights. 
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VI. AZIMUTHAL DISTRIBUTIONS 

As a final topic,we show the inclusive distribution in the angle 4, 

defined for each hadron as the angle between the muon scatter plane and the 

plane containing the virtual photon and hadron. The most general form for 

this distribution, assuming one-photon exchange, is 

dN - = No [l + aces@ -t Scos2$], 
d+ 

where a,S, No are functions of z. The cos21$ term comes from a correlation 

of the hadron direction with the transverse photon polarization, while the 

COS$J term comes from an interference between transverse and longitudinal 

photon cross sections. 

Fig. lib shows the 4 distribution for tracks with z b 0.4. These are 

in the photon fragmentation region and most likely to show a correlation 

with the photon polarization. The best fit for dN/d$ gives Q = 0.02 t 0.05 

and B = 0.09 + 0.05. Fig. lla shows the $I distribution for tracks with small 

Z. This distribution is consistent with being flat in $I. We thus see that 

polarization effects are not strongly indicated by the $ distributions. 

Our procedure to integrate over the (p variable,.as indicated in Section II, 

therefore appears to be justified. 

VII. CONCLUSION 

In the foregoing, we have presented the distibutions of hadrons emerging 

from inelastic muon-proton collisions according to several energy and momentum 

variables. While doing this, we variously binned the data in terms of the 

hadronic energy W and virtual-photon mass-squared Q2, which together make up 

the scaling variable w'. 

We find the distribution in the fractional longitudinal momentum variable 

xF largely analogous to that observed in purely hadronic interactions, but 
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with the express absence of a leading-particle effect. Longitudinal momentum 

conservation and the observed (1) similarity of mean charged hadron multi- 

plicities make this result plausible. 

The transverse momentum distribution appears to show an interesting 

two-component behavior, with a universal slope describing successfully the pI 

dependence of all but the small -pI, low xP regime. This regime may well be 

governed by the decay of heavier mesons; alternately, the production from the 

quark-antiquark sea may populate this region. Remarkably, no Q2 trend is 

observed for the average transverse momentum. 

Distributions in the fractional energy variable z permit a linking of 

our data to quark fragmentation functions which are also accessible from v, 

<-nucleon scattering and from e+e- annihilation. The fact that our results 

are closely compatible with those data, and exhibit scaling behavior, makes 

a strong case for a parton model approach to the,three processes. 

The leading-particle distribution in z shows a charge ratio h+/h- of 

almost exactly 2 for the entire range 0.4 5 z 5 0.9. This ratio is seen to be 

due to an intricate conspiracy of the individual prong cross-sections. The 

same ratio is also exhibited by the entire pL dependence of higher-xP hadrons; 

it is the subject of an upcoming communication from this collaboration. (19) 

Parallel data from muon-neutron collisions are equally in preparation. 
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Table Captions 

Table 1: Measured values of energy distribution functions F (hi) 
I-lP 

, defined in 

text, for bins in the scaling variable w'. Data for positives are 

only given for z > 0.3 because of a large proton contamination at 

smaller z. F (h) 
UP 

is the sum of the distributions for positive and 

negative particles. 

Table 2: Extracted quark-fragmentation functions using data of Table 1 and 

the modified Kuti-Weisskopf quark distributions for the proton. 

In the calculation all particles are assumed to be pions. The 

limitations of this assumption are discussed in the text. Values 

calculated for the two w' bins are expected to agree in the quark- 

parton model. 
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TABLE 2 

z Range 

.3 to .4 .4 to .6 .6 to .8 $8 to 1.0 

zD;-(z) .19 2 .06 .18 a .04 .04 I!I .03 -.04 f .03 w'> = 6.6 

zD;+(z) .78 rf: .09 .42 Z!I .05 .22 I .05 . 32 t .07 

<fA'> = 14.3 
zD;-(z) 

zD;+(z) 

.13 * .04 

.79 2 .07 

.lO f .03 

.50 I!I .05 

.09 t .03 

. 27 iz .05 
- 

.ll t .03 

.15 f .03 

Average zD;-(z) .15 IL .04 .13 f .03 .07 t .02 .04 2 .02 

of 
Above zD;+(z) .79 + .06 .46 f .04 .25 * .04 .18 f .03 

Ratio: Dt (z) /D;+(z) .19 k .05 .28 ri .06 .38 t .08 .22 !I .lO 
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Figure Captions 

1) Plan view of the detection apparatus. The hodoscopes and lead wall have 

openings for the unscattered beam and the streamer chamber pulsing system. 

Also shown is a perspective view of the 2 x 0.8 x 0.6 m3 streamer chamber. 

2) Parton diagram for deeply inelastic process. 

3) Structure function defined as $ E*/Piax $5 , 
% 

for negative hadrons, 

assumed to be pions. Also shown are analogous data for pion-initiated 

reactions(') (error bars, not shown, are small) and higher energy 

muo-production(5) (error bars, not shown, are comparable to those for 

our points). 

4) Average transverse momentum for negative hadrons vs. W for given regions 

in the scaling variable x = p */p 
* 

F ,I * Axis used to define pI is the 
"max 

virtual photon-proton collision axis. 

5) Average transverse momentum for negative hadrons vs. xP for three bins 

in Q2. All data with W between 2.8 and 4.7 GeV are summed over. 

6) Detailed pL2 distribution for negatives in two bins in xF. Data for 

positives, also shown, are for large xP only. Relative normalization 

between points is correct, thus the h+/h- ratio is " 2 at all pI in 

the large xP kinematic region. Curves shown are given by No(e -15.5pL2+ 

0.10e-5*3p12) for small xF, and N o' e-5*3p12 for large xP. 

7) Inclusive distributions in the fractional energy variable z for positive 

and negative hadrons. Also shown is the analogous distribution for 

hadrons seen in e+e- annihilation. Dashed curve is elastic p" contribution. 

8) Inclusive distributions for negative hadrons seen in neutrino and anti- 

neutrino scattering compared to the extracted quark fragmentation functions 

using our data. Dashed curves are a prediction of L.M. Sehgal (Nucl. Phys. 

z, 471 (1975) using data of Ref. 13. See Ref. 17 for details. 
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9) Distribution in fractional energy for the fastest track in each event. 

Data for negatives have been multiplied by a factor of two. All tracks 

are assumed to be pions when calculating energies. Points with zmax > 1 

are spillover due to finite resolution. 

10) Distribution in fractional energy for the fastest track in each event 

broken down by event topology. Normalization is such that integral over 

sum of all curves is equal to 1. 

11) Phi distribution for tracks with small z (O.lto 0.4) and large z (0.4 < z). 

Dashed curves shown are best fitted using dN/d$ = constant. Dashed-dotted 

curve is dN/d$ = No(l + 0.02 cos$ + 0.09 ~0~24). 
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