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1. INTRODUCTION 

The aim of this paper is to investigate the consistency of a non-Abelian 

gauge theory model. l-3 The model is quantum chromodynamics in two dimen- 

sions with SU(N) as the gauge group, and only the lowest order diagrams in the 

l/N expansion are considered. Since the model is in two dimensions color 

confinement is straightforward, however, the full structure of the resulting 

color singlet sector has yet to be studied. In four dimensions this later task 

will come after the confinement has been established. 

We work in axial gauges in which n. A=O, n2=-1. These gauges have the 

attractive feature that no ghosts are needed for the quantization. This is also 

true when n2=0, or n2=1, however, in the spacelike or light-light case all 

dependent degrees of freedom can be explicitly eliminated, without the need 

for any operators that are constrained to vanish on the physical states (which 

is the case for n2=l). The case n2=0 has some singularities in contributions 

to Feynman integrals of individual terms in the propagator in four dimensional 

calculations. Thus the choice n. A=0 with n2=-1 seems to be the most advan- 

tageous one. 

For the case n2=-1 the most infrared singular terms are of the form 

l/(n* k)2. Thus in any member of dimensions we will have to encounter inte- 

grations of the form 

L!Q9 f(n. (k-p)) 
(n. k)2 

Therefore, our discussion will be relevant also to four dimensions. (See Ref. 4 

where certain terms in the Hamiltonian look exactly like the two dimensional 

model considered here. ) 
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In the paper of *t Hooft’ in which this model was first studied, the calcula- 

tions were performed in the light cone gauge (i. e. , the n2=0 gauge). The 

structure of amplitudes in the singlet space was later investigated by other 

authors, also in the light cone gauge. 2-3 

The infrared singularity in the gluon propagator is treated either by the 

principal value prescription5 or by the sharp cutoff method. Using the prin- 

1 cipal value prescription we replace - 
(n. k)2 

the sharp cutoff consists of taking out a small 

around the origin. We show that using the principal value prescription there 

is no solution to the integral equation for the fermion propagator, for sufficiently 

small but finite ma/g (m. is the bare mass of the fermions and g’the gauge field 

coupling constant). We should mention that the principal value prescription is 

an appealing one, since it leads directly to a linear potential and involves no 

extra dimensional constants, however we shall show that it is inconsistent in 

the general axial gauges. 

When we employ a sharp cutoff procedure, a solution to the fermion 

propagator can be found. We then attempt to solve the integral equations for 

the bound states at mo=O, and proceed to show that there is no solution with a 

covariant mass spectrum. This is surprising in view of the fact that in the light 

cone gauge the invariant mass spectrum is smooth in the limit mo--0. 

In Section11 we introduce our notation and derive the equations of motion 

and Feynman rules in a general axial gauge, and in Section III we derive the 

integral equation for the fermion propagator. In Section IV we demonstrate 

that this equation has no solution when mo=O, when the principal value cutoff 

prescription is used, and we solve the equation with a sharp cutoff. We use 

this solution in the next section to try and solve the bound state equation, however 
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this equation is found to have no covariant solutions. We digress in Section VI 

to show that even in the light cone gauge some, but not all, components of the 

wave function have singular behavior as m- 0. In Section VII we prove our 

strongest result, that with the principal value cutoff prescription the fermion 

self-energy equation has no solutions even for nonzero (although small) masses. 

Finally in Section VIII we present our conclusions. 

II. GAUGE CHOICE 

For reasons of clarity, we shall not be complete in this paper but shall 

refer the reader to the original papers l-3 for the clearest presentation of the 

model. Since our purpose is to explore the model in a particular family of 

axial gauges, it is convenient to define rotated coordinates by 

X a = cos 8 x0 + sin 8 xl 
(1) 

s = -sin 8 x0 + cos 0 x1 

so that the invariant length is x;=cos 28 xa-xb ( 2 “)- 2 sin 28 (xaxb), and to work in 

the class of gauges defined by 

n.A = %=O (2) 

Thus 8 is a “gauge parameter” which interpolates between the light-cone gauge 

(f3 = r/4) and the axial gauge (e=O) . In these coordinates, Lorentz invariant 

products will be written as A. B=AaBa+ AbBb 0 where x is defined by Eq. (1) 

but with raised Cartesian indices on the right. 

In this family of gauges, only terms linear in the vector field survive in 

the interaction Lagrangian and there are no ghosts. When one performs a 

Lorentz transform, one also performs a gauge transformation to return to the 

original gauge. The ligh+cone gauge is exceptional in the sense that no extra 

gauge transformation is needed, since the covariant Lore&z change leaves the 
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light-cone gauge invariant. We shall restrict our attention to gauges of the 

class +e-$ only, since there are certain complications in dealing with the 

proper quantization of lightlike and timelike gauges. Of course, while we 

expect that nonsinglet quantities will depend upon the gauge and hence may 

not be Lorentz covariant, the spectrum of singlet bound states must not depend 

upon the gauge nor the frame that we choose to work in. 

The Feynman rules for the theory under discussion are given in Fig. 1 in 

the gauge Ab=O. Note that the gluon propagator takes on the simple form 

i/k: (i.e., i/k: in the light-cone gauge). A simple way of seeing this is to note 

that the equations of motion for this vector field achieve the form 

a;Aa = -Ja 

where indices are raised according to 

and C= cos 28, S= sin20. In this gauge, J-A= JaAa. 

The matrix algebra in terms of a and b components is 

@)2 = c ; (yb)2 = -c ; yayb + ybya = -2s 

(3) 

(4) 

As a reminder, note that in the light-cone gauge C=O and S=l, and the algebra 

becomes particularly simple. 

Before proceeding with any calculations, a prescription must be given to 

deal with the infrared divergences. In the light-cone gauge, two cutoff pro- 

cedures have been most popular-the principal value (P. V.) prescription and 

restricting the integration so that lk 1 >h. In the former method, the gluon 
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propagator D is written in the form 

DpV = $ (k-+ie ) ‘[ -2+(k ie) -2 _- 1 
whereas in the latter method, 

(6) 

Both procedures have been shown to lead to the same bound state spectra (at 

least to leading order in the l/N expansion). The P. V. prescription has the 

aesthetic advantage that no new parameters are introduced and, most impor- 

tantly perhaps, the potential in a quark-antiquark system is automatically linear 

in their separation distance, whereas using the A cutoff it is perhaps easier to 

interpret physically the confining mechanism. A proof of confinement, however, 

must be carried out in both cases. Below, we shall consider both methods and 

apply them in the more general axial gauges. 

III. FERMION PROPAGATOR 

First, consider the fermion self-energy which is written in the form 

c = A+B.y = i - &)I 63) 

where So and S are respectively the bare and full propagator. Since only rain- 

bow graphs contribute to leading order in l/N, the integral equation satisfied 

by c is (in the C=l gauge for simplicity) 

C(P,) = - d /- d2k D@I-kl) ygS(k) y. 
47r2 

(see Fig. 2) or transforming to coordinate space, 

ctxp 0) Wo) = ; g2 1x1 I 6(x0) YOS(Xl’ 0) Y. (9) 

Since S(x) = <O lT(+(x) q(O)) IO> it is easy to show directly that S+(x,, 0) = 

Yowl’ WY0 where the x0=0 limit is the symmetrical limit as xo*fO. 
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Equation (9) then implies that x+(x,, 0) = y. x(-x,, O)yo, and thus 

c+w = YoCW Y. 

This equation implies directly that A and BP are real. 

Returning to the general gauge, the equation for C can be written as 

(10) 

~~~~~~~ - k2 / ya[rs O+B(k))+ m + AOi)lr” d2k 
47r2 (pb-k$2 [(k-B(k))3-(m+A(k))2] 

(11) 

and either the P.V. or A cutoff procedures are to be used to regulate the kb 

integration. The right hand side of Eq. (11) is independent of pa, hence so is 

A(p) and BP@). Thus the ka integration can be done immediately. 

Defining the components of BC1 as Ba = -SB and Bb = -CB, where B is a 

scalar function, the integral equations satisfied by A and B are (define k=kb, 

P=Pb) 

where 

a@) = & [m+ AGd 
k+ CB(k))2 + C(m+A(k))2] ‘I2 

NW = 
[k + CB (k)] 

k+ CB(k))2 + C(m+A(k))2]1’2 

(13) 

Setting 0 = 7r/4 immediately recovers the familiar light-cone results. Note that 

A(p) = A(-p), B(p) = -B(-p) , and a2+b2 = 1. 

As one might expect we have been unable to solve the above equations for 

arbitrary m and 8, nor have we been able to find a meaningful perturbation 

expansion (in m, e - 7r/4, or g for m=O). 
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IV. ZERO MASS LIMIT 

Let us start by examining the case m=O for arbitrary C. This should be 

compared to the familiar discussion of C=O for arbitrary m. Although the m=O 

case has certain problems, its bound state spectra presents no difficulties if 

calculated in the light-cone gauge. The case of m#O will be discussed shortly. 

In this limit, the equations for A and B become (recall p=pb k=kl) 

A(P) = 0 
(14) 

B(p) =gT /* 
k-W2 

sign [k + CB o(i) 

When the m#O case is discussed, it will be shown that a spontaneous nonzero 

solution for A cannot develop if m=O. 

P.V. Method 

By inspection it can be seen that the principal value definition of the inte- 

gral will generate poles in B(p) at those values of p where @+ CB(p)) changes 

sign. However, since C > 0, such a series of poles in B is inconsistent with 

Eq. (14) because even though the right hand side of Eq. (14) can reproduce such 

a series of poles, their residues necessarily have the wrong sign. Thus in any 

gauge with C>O, there is no solution to Eq. (14) for B for physical values of - 

g2. 

h-Method 

Using the A cutoff, a solution to Eq. (14) can be easily found for all C: 

2 1 
B(P) =& x - & 

( ) 
sign (p) 8 (p2 - h2) (15) 

This solution can also be shown to be unique. The e-function is not explicitly 

denoted in the solution given by It Hooft, but it is necessary to retain it for all 

C#O gauges for consistency. 
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Thus we arrive at the surprising conclusion that there are cutoff procedures 

which are inconsistent with the choice of gauge. In the above simple cases, 

this inconsistency was rather dramatic, namely there was no solution whatso- 

ever in the P.V., C#O case. Let us now proceed to check if the h-method is 

consistent in the singlet sector by examining the bound state spectrum. 

V. BOUND STATES 

The eigenvalue condition for the spectrum of bound states in the q-6 chan- 

nel can be discussed by decomposing the bound state wave function into the 

form (y5 =YoY1) 

r = r+y* + r-y- + rl(i+y5) + r2(i-y5) (16) 

The reason for using this expansion rather than a series in ya, yb, for example, 

is that the integral equations for the above F’s decouple. In any case, the y’s 

can be written simply as 

ya zz 2 (c+s) r+ - +2 (c-s) y- 

b - -qc-s)y-++ 
y -&J 

where c=cos 8, s=sin8. 

The integral equation for the F’s are depicted diagrammatically in Fig. 3. 

The equation for I’ can be written as (recall that m=A=O) 

e i x Lfi?L yar +, r) y aJ!ll 

@b-v2 02+ie p2+i e 
(17) 

where 
(y/J = Pp -B&l+,) 

pcl = P p-rp - B,tl$-‘j,) 

It is convenient to write (Y. y= a! y- 9 cu,y*, etc. so as to simplify the 

+2 -2 matrix algebra since y =Y = 0. Note the fact that for F -’ for example, one 
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can simplify expressions considerably 

where D&Q =Tpb+B$J. 

The bound state equation for I’ becomes 

r =ig “, [pa+ D(pb) -ir(Pb;]-1 [Pa -ra+D(qserb) -it(43-rbi-1 
47r 

/ 

d2k 
X 

c 1 43-153 2 e q&J2 - C a2 1 r (k,r) (19) 

Defining 

+i(pb’r) = J.mdp, ri@, r) 
-co 

the equation for Cp- becomes (for rb > 0) 

2 ‘tpb) ‘trb-s) 
w+) =& r + 1-s 

?b dkb 

C - r +JVqJ -B$,-+-j 
I 

a C b 0 [&,-%I2 
+-@b’ r)++,-$,)2 -l2] 12’) 

The cutoff dependent terms in this equation cancel identically as can be seen by 

writing 

+ $-(p,, r, E@bl r, 

where 9 means principal value and 

(21) 

33 = $ e(h2-p$ + i e ($-x2) + trbtpbj e(h2-tq,-rb)2) 
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Inserting this identity into Eq. (20), the h dependent terms cancel between E 

and the B’s. The final form of the bound state equation is achieved by intro- 

ducing scaled variables according to x= p,/rb, y =kl/rb, and one finds 

cl”_ $Jx> = 
1 e-(Y) 

- (;+&) O_(x,-9’~ dy- 
(Y-Xl2 - 

where 

2 pm = -2 [ rarb+ 1-s 2 7T 7 rb 1 2 g 

(22) 

(23) 

If C-O, the quantity p2 becomes equal to p2, the invariant mass of the bound 

system, and Eq. (22) is identical to that of 9 Hooft. However, the eigenvalue, 

(9 is not an invariant for general values of 8 , and Eq. (22) is not a physically 

meaningful equation in general gauges. 

A similar equation can be derived for the r+ component of the wave func- 

tion r. One finds an equation identical to Eq. (22) but with pt in place of p2, 

where 

_ 1-G r2 7r 
C “2 1 (24) 

which also suffers from the same difficulties as p2. It is important to note 

that the boundary conditions as x-- 0 and X--L- 1 are independent of 0 since they 

are driven by the l/x and 1/(1-x) terms on the right hand side of Eq. (22). The 

lack of covariance of the eigenvalue cannot be compensated by any corresponding 

change in the boundary conditions. 

The equations for lYl and I2 have even more severe problems than the 

above-the infrared cutoff h does not cancel out of the equations. 
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VI. SCALAR AND PSEUDOSCALAR DENSITIES 

Before proceeding further with the main issue of this note, let us consider 

the equations for I’ in the light-cone gauge for m#O. For this value of 8 , F- 

is the only independent amplitude, and one finds 

r,=$r- 

rzBrn r 
2 2(w)- - 

r+ = m2 
2p-tr-p)- r- 

and 

- 2 p-@-p)- 
r -(Py r)= -F d(p) d&r) 

2 
dk l?-(k,r) 
(k-p) 2 

where d(p) = p2 -m2+ g2/7r+ie. 

Since $ is a function of x only, it follows that 

(25) 

(26) 

(27) 

m2 o+ = - c 1 L L +Jx) 2r2 x l-x 

Now consider the limit m- 0. Since for x+ 0, + (x)- Exh , and 

G-(x)- E(~-x)~ for xM 1, where h = F f $ , one sees that @I(x) vanishes as 

m--O for any nonzero x. If x=0, however, $ I blows up in such a way that its 

integral is finite. Indeed, one finds that as m--O, 

- NP-) 
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f$2 =*$ Jj 6(1-x) 6(r -P ) - - 

G+-+O (28) 

Thus the scalar ($I,+ $,) and pseudoscalar ($I - $,) densities become delta 

functions in momentum space in the light-cone gauge as m- 0. 

VII. SMALL, NONZERO, MASS CASE 

In this section we prove that the self-energy equations (12)) (13) have no 

solution if the bare mass of the quarks is small and the principal value cutoff 

is used to regulate the infrared divergences. In the arguments below we shall 

frequently use the following two results: 

(i) a(k), b(k) (as defined in Eq. (13)) are respectively symmetric and 

antisymmetric functions of k. This follows readily from the requirement that 

the solution of the self-energy equation (12), be unique, 

(ii) 

9Jm ALEo 
-cc, (p-k)2 

(29) 

We start by showing that a(k) has no absolute minimum. Assume on the 

contrary that a(k) has such a minimum at k. 

Now 

A(E) = G&P/ dk (p [at&a(k)] ; G=( (30) 

where we have used (29). But at(k) = 0, so that the integration is now regular 

and the 9 symbol may be omitted. Since by definition a(k) > a( k) for all k it 

follows that A(k) > 0, and the minimum of a(k) be positive. From the integral 

equation (12) it can be readily shown that the asymptotic behavior of A and B 
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as k---m is 

A(k) - =log k2 
k -co k2 m2 

(3 14 

B(k) --T 
k -CO 

@lb) 

Now (31) implies that a(k)-0 as k -co and hence no global minimum of YVa1t exists, 

and rrar’ is always positive. Thus for all values of k 

A(k)+m>O . (32) 

Consider now 

A(0) = G& 1% [a(k) -a(01 
k 

(33) 

Again no regulation of this integral is necessary, this time because a(k) is 

an even function of k. From the antisymmetry of B, and the fact that no singu- 

lar solutions of B exist at the origin it follows that B vanishes at the origin and 

hence that a(O)=l, which is the maximal value of a(k). From (33) we now con- 

clude that 

A(0) < 0 (34) 

Combining (32) and (34) we see that A(O)-- 0 as m-0. Incidentally this result 

is sufficient to prove that no spontaneous solution for A is possible if m=O. 

We now prove that a(k) is a monotonically decreasing function of k in the 

region of k from zero to infinity, and hence also that b(k) is a monotonically 

increasing function of k in this region. Assume on the contrary that there is 

one local minimum at kl and one maximum at k 2. The notation is defined in 

Fig. 4 

A$) = G.JC 1 

W2) =G& J 

(35) 

(36) 
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We define the quantity A by 

A$, k2) = W1) - 4k2) 

G& /dk 
a(k) - aOr,) 

. [ 

aQ - a@,) = Or-k1)2 - w2j2 - 1 (37) 
Again since kl and k2 are by definition extrema of ?lall, no regulation of the 

integrals is necessary. We now show that the integral equation demands that 

A is positive. To this end it is convenient to divide the k integration into three 

regions: 

(i) -kg <k<ko 

In this region 

and 

(k-k,)2 < (k-k2) 2 

so that this region contributes positively to A. 

(ii) ko<k<k3 and -ko>k>-kg 

In this region a(k) - a(kI) > 0, but a(k) [ 1 L-3 a(k2 < 0 so that this region also 

contributes positively to A. 

(iii) Finally we consider the region - 00 < k < -kg and kg < k < m 

The contribution to A from this region is 

2 (38) 

The first term under the integral in (38) is larger than the second so that 

the contribution to A from this region is also positive. Thus we have shown 

that 
AOrl) ’ 45) (39) 
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Similarly it can be shown that 

Wl) < W2) (40) 

Combining (39) and (40) we see that a(kl) > a(k,) contrary to the initial assump- 

tion. This argument can be readily applied to the situation with an arbitrary 

number of maxima and minima. Let k2 be the positive position of the largest 

maximum of a(k) (except at the origin, of course), and kl be the position of 

the smallest minimum of a(k) under the condition 0 <kl<k2. k. is defined by 

a(k,) =a(k2) with 0 <kg < kl. Define A as in (37), and again it is possible to 

divide the range of integration into three regions in each of which A is positive. 

(a) -kg <k <kg where argument (i) above applies. 

(b) All k> kg, and all k < -kg such that a(k) > a$) where argument (ii) 

above applies. 

(c) All k > k2 and all k < -k2 such that a(k) < a(kl) where argument (iii) 

above applies. 

We have thus shown that a(k) is a monotonically decreasing function for 

positive k. Let us now choose a ke such that (E - 1) 

From (32) we have 

a(ke) = E 

m 1 -A(O) 

(41) 
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Hence 

k , 2G&(l-E) 
E- m (42) 

A useful parametrization is now defined by 

1-E = T ( 1 m2a 

where m2 <h and 0 <a < l/2, so that 

and 

for kl ke 

for kc kE 

k > 2 ,/-C G1’” m2a-1 E- 

b(k) = J 1 - a2Q) 5 fi for kc kE 

Then for a fixed p < ke 

B(p) = G 9j+ b(kj 
(P-k) 

kc 
=G / dkb(k) 

‘0 

03 
+G 

J 
[ 

1 dkb(k) A-- 

kE @-k12 @W2 1 

(@a) 

t44W 

(45) 

(46) 

(47) 

Both terms on the right hand side vanish like a positive power of m as m 

rnd 0. Similar expressions can be written to show that A-LO also like a positive 

power of the mass. Thus a(p)-0 like a power of the mass in contradiction to 

(44b), and we have demonstrated that there is no solution to the self-energy 

equations for a sufficiently small bare quark mass. 
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VIII. CONCLUSIONS 

We have shown that the principal value prescription for regulating the 

infrared divergences is inconsistent with the general axial gauges, with 

canonical quantization. The sharp A-cutoff is also inconsistent, but at a more 

subtle level. While our results have been shown only to leading order in the 

l/N expansion, it appears to us unlikely that this is the source for the incon- 

sistency. 

All our calculations and arguments hold for small bare masses, i. e., 

m0 << g, and it is conceivable that the theory is singular in this strong coupling 

regime (perhaps for m0 < g/Jr). The integral equations that we use should 

allow us to continue freely in the bare mass and certainly there is no signal for 

such a difficulty in the light-cone gauge solution. The weak coupling approxi- 

mation to the bound state kernel has been recently studied6 to see if this 

inconsistency manifests itself as a lack of invariance of the mass spectrum. It 

is found that the eigenvalues are invariant, however, the inconsistency is 

expected to show up only in higher orders. 

Our work here is incomplete in that we have been unable to state the gen- 

eral requirements which insure the consistency of the cutoff procedure and the 

choice of gauge. We believe that this new phenomenon also occurs in four 

dimensions, in particular, in axial gauges. The full effects of this new type 

of inconsistency should be further explored, in view of the interest in confining 

theories. Even if the above consistency can be guaranteed, one must then 

prove the uniqueness of the solution. Could it be that two different cutoff pro- 

cedures lead to different, finite, gauge invariant solutions. Unfortunately in 

the model we have studied we have been unable to find any solution. 
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FIGURE CAPTIONS 

1. Feynman rules for a general axial gauge in two dimensions. 

2. The Fermion self-energy equation. 

3. The bound state equation. 

4. Hypothetical form for the function a(k), shown to be inconsistent in 

Section VII. 
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