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ACCELERATOR BEAM DOSIMETRY’; 

W: R. Nelson** 

The Unrestricted Mass Stopping Power Introduction 

The phrase radiation dosimetry implies, from an ety- 
mological point of view, the measurement of radiation dose. 
In the broader sense of the phrase, radiation dosimetry 
also concerns itself with the estimation of energy deposited 
in an irradiated medium by the interaction of ionizing radia- 
tion with matter. Both theoretical and applied radiation do- 
simetry have been treated adequately in the texts by Fitz- 
gerald, Brownell, and Mahoney1 and by Attix, Roesch, and 
Tochilin. 2-5 In the present lecture we will concern our- 
selves with understanding what it is that we are measuring 
when we place an ionization chamber, for example, in a 
beam of high energy charged particles. In particular, we 
will take the point of view that a comprehensive knowledge 
of the physical interactions leading to excitation, ionization, 
and the production of delta-rays greatly aids in this under- 
standing. A large part of what will be presented here is 
detailed in Chapter 3 of the text by Kase and Nelson.6 

Secondary beams of charged particles are very common 
around high energy accelerators and each beam is generally 
well understood. An example might be a 10 GeV/c (i 4%) 
beam of pions with a flux density of 10 particles/cm2-set 
and with a beam spot size of about 1 cm2 that falls off radi- 
ally in a Gaussian fashion. The contamination of the pion 
beam by electrons, muons, etc., might also be known. 
With all this information it is rather straightforward to 
evaluate the dose rate in the beam. Dose rate measure- 
ments using ion chambers, for example, might yield re- 
sults in disagreement with these calculations, and many 
times it is due to the fact that the energy escaping the de- 
tector is not correctly accounted for. 

In this lecture, we will only consider the problem of 
charged particles losing energy by collision (i.e., excita- 
tion and ion”ization). We will also refer to the text L-y Kase 
and Nelsonb for the physics and related formulae concerned 
with the collision process itself. 

Collision with Free Electrons 

The differential collision probability Qcol(T, T’)dT’dx 
is defined as the probability for a charged p 

-3 
rticle of kinetic 

energy T, traversing a thickness dx (g-cm ), to transfer 
an energy dT’ about T’ to an atomic electron (assumed free). 
For high energy charged particles (T >> m), several formu- 
las have been derived for these hard collisions, 6 
on the type of incident particle. 7 For an electron 

depending 

qcol(T, T’)dT’ = 2Cm 

= probability that either electron is in dT’ 
about T’ (the Mdller cross section) , 

C = ?r No(Z/A)rz = 0.150 Z/A (cm 2 - g-j, 

Z = atomic number, 

A = atomic weight. 
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The average energy loss per unit path length (also 
known as the average stopping power) from ionization (and 
excitation) is determined from 
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where we have broken up the integration into a “soft” (dis- , 
tant) contribution and a “hard” (close) contribution,6 and H 
is an arbitrarily chosen energy. We can calculate the hard- 
collision term by using Eq. (1). The soft-collision term is 
more difficult due to the binding effects of the electrons to 
the atoms. As derived by Bethe** g 

(3) 

If we now combine the soft and hard contributions, we get 

-P2+cr2/8-(2r+1)f.n2]/(r+l)2 -6 
1 

= L, (4) 

= T/m, and where we have also included a density 
correction term, d . This is the equation used in the 

tables of Berger and Seltzer. I1 The unrestricted stopping 
power is numerically equivalent to LET, (or L& . 

The Restricted Mass Stopping Power 

The difference between the restricted and the unre- 
stricted stopping power involves the upper limit of integration 
in the previous derivation of the hard-collision contribution. 
Mathematically, the restricted stopping power is defined by 

T’ 
C 

kg’i,=i$$)Si T’GcoldT’ (MeV-cm’-g-l) (5) 

where Th is the kinetic energy of the delta-ray that just es- 
capes the region of interest (such as the sensitive volume of 
an ion chamber). Using the nomenclature of Berger and 
Seltzer, 11 the restricted stopping power for electrons is 

2Cm 
L-(T,A)=- 

P2 
(6) 

(Lecture given at the EXtore Hajorana International School of Radiation mmage and Protection, 
Course on High Energy Radiation Dosimetry and Protection, Erice, Sicily, 1 - 10 October 1975) 



where 

F-(r,A)=-I-$+In[(r -A)A]+ T/(T -A) 

+ C A2/2+(27+I)fn(I-A/r) /(~+2)~ 1 (7) 

and where T = T/m and A = TL/m. The restricted stopping 
power is numerically equivalent to LETA, although the latter 

L is usually expressed in units of energy per linear path length. 

Application 

A recent paper by Kase and Domenx2 illustrates very 
nicely the use of the restricted stopping power and the re- 
lated equations. In this experiment, a portable carbon calo- 
rimeter built at the National Bureau of Standards was used in 
a 19.5-GeV electron beam at SLAC to measure absorbed 
dose. The dose measurements were normalized to a given 
number of incident electrons by monitoring the beam with a 
transmission ion chamber as indicated in Fig. 1. The ion 

Fig. 2. Illustration of the distance 
travelled by a secondary electron gen- 
erated in the core of thickness X. 
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which can be used to calculate TG, as a function of x, with 
the help of range-energy tables. II To obtain the energy 
deposited in the core by secondaries with energies Tk or 

0 5 IOcm ,..I., 
less, one Simply integrates L-(T, A) Over X 

X 

Fig. 1. Setup for Kase and Domen experiment. I2 

chamber was calibrated against a quantameter during which 
time the calorimeter was removed from the beam. Zie cal- 
orimeter measurements gave an energy deposition per inci- 
dent electron of 

‘A= I 
L-(7, A) dx (11) 

0 

Using X = 452 mg-cm 
-2 

, the integral was evaluated numer- 
ically with the result 

c meas = 0.815 ( f 8%) MeV/electron 
‘A 

= 0.718 MeV/electron, 

for a carbon thickness of 452 mg-cme2. Using the unre- 
stricted stopping power formula, we get (for carbon) 

Lee 
2 -1 

= 2.36 MeV-cm -g , 

and correspondingly, for a thickness of 452 g-cme2, 

E M = 1.07 MeV/electron, 

which is 240/o higher than the measured value. 
A better estimate can be made by using the restricted 

stopping power, L- (T, A), which represents the energy per 
unit path length transferred from a primary electron of ener- 
gy T to secondary electrons with energies less than Tb (=mA). 
It is assumed that any secondary that receives an energy 
greater than Tb escapes the core and deposits no energy, and 
that all secondaries with energies less than or equal to Tb 
deposit all of their energy in the core. An illustration of the 
distance travelled, t(T’,x), by a delta-ray of energy T’ gen- 
erated at position x in the core of thickness X, is given in 
Fig. 2. If we equate t(T’,x) with the range, R(Tk(x)), of an 
electron with energy T&, we can write 

cos t? = x-x 
.(T;:W) * 

which is 12% lower than the measurement. 
The next step ln the calculation is to correct for the 

fact that we have ignored those secondaries having energies 
greater than Tb, even though they do lose some energy in 
the core. This energy can be estimated from the equation 

x TLx 

E = 
e IS 

4col(T, T’)S(T’)t(T’,x)d t’dx (12) 
0 T;(x) 

where 

Gcol(T, T’)dT’ = Mfller cross section (Eq. (I)) for 
electron-electron collisions, 

S(T’) = unrestricted mass stopping power for electrons 
having energy T’, 

and 

Tmax = T/2 = 9.75 GeV. 

This integral was also evaluated numerically with the re- 
sult 

‘e = 0.021 MeV/electron, 

Furthermore, it is easy to show from kinematics that which is a 3% addition to the estimation, in the direction of 
the measured value. 

A third calculation is made by Kase and Domen” in 
T’ Z 2m cos26 

1 -cos2e 
(9) order to account for the energy deposited in the core by 

secondaries that are produced in the 635 mg-cme2 thick 
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carbon jacket-assembly that is positioned immediately up- 
stream. The details of the calculation are given in their 
paper and the method is very similar to that above. They 
obtain 

EW 
= 0.029 MeV/electron 

which is another 3-470 addition to the total. Energy deposi- 
tion by secondaries generated in the air path upstream of 
the calorimeter, as well as the backscatter contribution, 
was found to be negligible in this particular situation. This 
may not always be true in general. 

The total mean energy deposited in the core by a 19.5- 
GeV electron is therefore estimated to be 

‘= eA+e +e e w 
= 0.768 MeV/electron , 

which is only 5.5% smaller than the measured value of 
0.815 MeV/electron, and certainly within the maximum un- 
certainty in the measurements of 8%. 

In the above calculational technique, the change in the 
stopping power, S, along the track of the secondaries has 
been ignored. Furthermore, it has been assumed that the 
secondaries travel in straight lines, and we know that mul- 
tiple scattering will add to the total path length of each 
delta-ray. Both of these effects will lead to an underestima- 
tion of the energy deposition, E , and the 5.5% discrepancy 
can in theory be lowered even further. 

Summary and Concluding Remarks 

12 
Bv means of a recent investigation bv Kase and Domen, 

we have demonstrated that high energy charged particle beam 
dosimetry can be understood using rather simple models and 
basic concepts of physics. This does not mean that all beam 
dosimetry situations are this simple. We have not, for ex- 
ample, discussed recombination problems that might be as- : 
sociated with ion chambers. In a recent paper by Kase, 
Nelson, and Keller, l3 the Boag theory of recombination 
loss in a pulsed beam2 is extended and used for electron 
beams whose dimensions 9:~ smaller than the ion chamber. 
Another paper by Dinter and Tesch14 is also of interest for 
measurements that are made in pulsed fields of electromag- 
netic radiation. 
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