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These lectures are devoted to a nonperturbative approach ,to quantum field 

theories .l We would like to discuss phenomenon for which the usual weak coupling 

perturbative approach in terms of Feynman diagrams is of no help. We would be 

interested in studying properties associated with the large distance behavior; 

i.e., phase transitions, low lying spectra, coherent excitations which are pre- 

sumably built out of the long wave structure of the theory. These methods will 

be particularly important for the study of stron g coupling field theories and the 

question of quarks confinement. 

Any dynamical theory which incorporate the idea of quarks as fundamental 

constituents of matter must cope with the fact that quarks behave as if they have 

!i&t mass and are bound together by relatively soft forces although single 

i;ioiaLed quarks have never been observed. Attempts to meet this challenge fall 

into two categories. There are those schemes which attempt to develop a cal- 

culable theory of confined quarks by starting from fundamentally new theoretical 

concepts like the MIT-bag model: and there are those schemes which seek to work 

within the more conservative framework of conventional local quantum field theory, 

recognizing from the outset that weak coupling perturbation calculations are quite 

hopeless (at least for the discussions of low lying spectra). 3’4our efforts are along 

the second line. Questions of the structure of the vacuum, phase transitions, 

existence of low lying coherent extended states are central to almost all of these 

approaches. 

The methods developed will be applied to calculating the ground state and 

low lying excitations of various quantum field theories that. are rendered finite in 

terms of a cutoff. The cutoff is expressed by formulating the field theory on a 

lattice. Since we are interested in studying large distances phenomena, we 

believe that the lattice theory can teach us (as far as these questions are con- 

cerned) about the behavior of the continuum theory. This does not mean that one 
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can forget about the continuum limit. As a matter of fact as far as the lattice 

theory is concern there are two limits we should consider 

1. The limit of V (the universe volume) - m . 

2. The limit of a (the lattice spacing) - 0 . 

The limit V-y is very important to us since we are interested in phase transi- 

tions . As is well known there are no phase transitions in systems of finite volume. 

The limit a-0 is associated with the short distances behavior and is related to 

the renormalization of the quantum field theory. To take the limit a-0 we shall 
: 

probably have to use renormalization group ideas. This limit is the more diffi- 
_-.--- 

cult one and we shall have very little to say about it. In the large coupling regime 

we shall be able, however, to exhibit in most of the theories we are going to 

d.i scuss, low lying states which remain low lying even when the lattice spacing 

a- 0 (or alternatively the momentum cutoff A = + - ~0). 

1. c$~ THEORY 

A. Semiclassical Discussion 
5,6 

We shall start our discussion by considering scalar Q4 theory in one space- 

one time dimension. The dynamic of this theory is described by the Hamiltonian 

(1.1) 

with 

U(c#l) = A($2-f2)2 , f2>0 (1.2) 

1 This theory will serve us as an example of a theory which undergos phase transi- 

tion corresponding to the spontaneous breaking of the discrete symmetry Cp --$. 

Moreover, the classical version of this theory possesses a soliton-like %ink” 

solution which for strong coupling is the low lying state of the theory. In 3.x - It 

dimensions there is an exactly conserved charge which distinguishes this state 

from the vacuum state so one might expect that the existence of this extended state 
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will survive quantization. The scalar e4 theory is part of the SLAC-bag model 

and the “kink” is the analogue of the bag in Ix - It dimensions. 

29 Ignoring quantum aspects of the theory, we drop the momentum r = at . To 

find time independent solutions, Hamiltonian’s principle reduces to 

(1.3) 

This is equivalent to the mechanical problem of a unit mass particle motion in a 

potential -U(x) 

6/dt L = GJdt [$ (g) -I- U(x;l = 0 (I. 4) 

Figure 1 gives the potential. We are looking for solutions of finite energy. For 

the energy integral (1.1) to converge, Q must go to a zero of u as x goes to 

f infinity.’ ‘There are two classes of such solutions. The first class which gi.ves 

the ground state corresponds to a trivial motion where the particle stays forever 

at one of the two maxima $f (which are also zeroes of TJ) of U. The other class 

corresponds to a motion in which the particle starts at time -W at one of the 

maxima and ends at time + 00 at the other maximum. This solution is known as 

the kink solution. The explicit solutions of the equation of motion gives 

$$O) = &f (1.5) 

qkink = %f tanh II (2h) l/2 f (x-a) 1 (1:6) 

Note that for theories (1.1) with u which has only one zero, namely the ground 

state of the theory is unique, there are no nontrivial time independent solutions of 

finite energy. Substituting the solutions (1.5) in (1.6) we get the classical energies 

E(O) = 0 (1.7) 

E =4 $2x f3 
kink 3 (1.8) 
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The kink ‘describes a stable corfiguration even though its energy lies above the 

ground state energy E (O)=O for the constant configuration. In lx - It dimensions 

the current 

jp W = E pv “v@ 
E C-E 
PV VP 

(1.9) 
eol= 1 

is conserved, hence 

Q = /b j,(x) = W4 - M-4 (1.10) 5 

+ c: ti.m.e independent, This conserved charge is zero for the vacuum state (1.5); 

ior the kink (1.6)) however, Q kink = &2f f 0. Hencethe kink is stable. 

To discuss quantum fluctuation a,bout a classical solution g(x) we write 

: $(x,t) = g’(x) + O’(x,t) 

Introducing (1.11) into the Hamiltonian (1.1) we obtain 

(1.11) 

H = /& $($f f h(g2-f2)2 -I- 
iI 

; 1r2 + f (s)” -I- + r$f2(4h(3g2-f2)) 

- 
+ 4A gcpt3 -I- ?Lp4 

I 
(1.12) 

where the equation of motion was used to eliminate the linear terms in $I’. The 

usual weak coupling approach correspond to an expansion about the minimum in 

the classical energy g = +f. The quadratic terms in (1.12) lead then to normal 

mode motion for oscillation of mass 

mf=JG.f (1.13) 

The condition for the kink to be the low lying state is 

Ekink << m f (1.14) 

or 

f2<< 1 (1.15) 
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This corresponds to stron, v coupling since for fixed oscillator mass (1.14)) it is 

equivalent to the condition 

h >> rnf and hf >> rnt (1.16) 

In this regime the nonlinear cubic and quartic corrections in (1.12) will be large 

and their higher order contribution important. 

The classical energy difference between the kink solution in the Q-2f sector 

and the ground state in the Q=O sector is given by (Eqs. (1.7) and (1.8)) 

(E kink _ E(O)) =-qz f3 classical 3 (1.17) 

The lowest order quantum mechanical energy difference is due to the zero point 

energies. The one loop correction is calculated by neglecting the cubic and 

quartic terms in (1.12). The field C#I” (1.11) is expanded in normal modes 

+yx, t) = C -L (u,Cx, t) an+ U~(XA ai) 
nq 

E 
4(x, t) = r(x, t) = -i C d- -$ (unan- up:) 

n 

-I- 
[ 1 a n’ “nt 

= 6 n, ni 

(1.18) 

(1.19) 

For a given classical solution g(x) the unls and En’s are determined from the 

solution to the Schrcedinger equation derived from (1.12) 

4A(3g2-f”) 
I 

un = Ei”n 

! This equaiion is easily solved for the g=f case 

(1.21) 

(1.22) 
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It can also be solved for the kink case g=f tanh J% fx and the sift of the zero point 

energy can be evaluated after performing mass renormalization’ 

AEQM = i c Enlsink) - En (const) = ($ - 3) fij f (1.23) 
n. 

The kink energy is shifted down as a result of the quantum excitation being drawn 

into the potential well at the kink boundary. The shift in the l-loop approximation 

is of the order of mf , much larger than the classical energy for the region of 

interest where f2 << 1. An iterative expansion about the classical soliton solution 
7 

is, therefore, not adequate for the discussion of strong coupling regime. 

B. Going to the Lattice 

We are going to define the scalar $4 theory on a spatial lattice. To do it the 

continuum F is replaced by a discrete lattice of linear dimension L and spacing 

a=1 R defined so that there are 2N+l points along each direction (see Fig. 2) 

L = (2N+l)/A 

The allowed momenta on the lattice are 

v = Lp (1.24) 

k =2np 
P 

np=O,*l, . . . ,fN 
(1.25) 

k max 
+N 

The volume integral becomes 

/ dpx - 1 c 
A’ j 

The fields at the lattice sites can be expanded in terms of their Fourier compo- 

nents 
k max 

dx) -, lr. = c 
eiT; *y/A 

’ k=-kmax 
n-(k) ; 7r(k) = ’ c rjeBigTA (1.27) 

(ZN-tl)’ j 

k max 
eir.T/A 

@J(k) ; @(k) = ’ CO 
-i’f;: T/A (1.28) 

(ZN-tl)’ j J 
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From the’ canonical commutation relations on the l.attice 

it follows 

(1.30) 

$(k) and r(k) can be written in terms of creation and annihilation operators 

(1.29) 

(1.31) 

Note that the ak can be arbitrary. 

To complete our formulation we have to define the gradient operator on the 

lattice, The most direct way is to define the gradient as a difference operator 

vn $J = we+1 -’ $1) (1.32) 

However this definition leads to undesirable difficulties with the introduction of 

fermions as we shall see later on. 

Our definition of the gradient starts with the Fourier expansion. For 

f 4= j Ce 
iiC j+/A f(z) 

& 

we define 

(1.33) 

(1.34) 

Hence, 
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where L 

D(j -j*) E (1.36) 

In one space dimension p=l 

D,=,(j) = (1.37) 

(2r)2(- )j cos (?lj/(2N+I)) --) 2(-)j 

2(2N-t1) sin (?rj/(2N+1))2 N -co j2 
j#O 

For p>l we get a sum of such correlations in each variable. The important 

properties of this definition are: 

(i) It allows us to define the lattice theory in a way which is essentially 

isomorphic to momentum cutoff field theory. la 

(ii) For a free field theory the energy momentum dispersion relation 

has the rel.ativistic form E(k) = $“--i k f p for all k 5 kmLW. 

(iii) It automatically avoids doubling of the fermion degrees of freedom 

which result from the fermionic analogue of (1. 32).lb 

(iv) It allows us to write down fermion theories which have local y5 

invariance. 
lb 

The last two properties will become clear when we discuss fermionic theories. 

As far as meson theories are concern these properties are not essential and we 

can use both definitions of the gradient equally well. 

The Hamiltonian of the free scalar field on the lattice is given by 

Using the definition (1.34) for the gradient and going to momentum space 

(1.38) 

Ho = V c ($ r(x) (1.39) 

Iis 
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which leads to the relativistic spectrum LLQ for all kc km,, , rather than 

the form $2- 1-1 +4~ sin2(k/2A) which would emerge from the nearest neighbors 

prescription (1.32). 

The lattice version of the $4-theory we choose to work with is 

(1.40) 

Resealing to dimensions1 variables we introduce 

x-;t= 
3 

*1/2(1-P) $ 7 
J 

(1.41) 
- &2(1-P) r- PT- j 

[ 1 p’, xY+, 
J J 

= -iSTF 
, 

Together &th 

ho = up-3 

fi = f2A(1-p) 
this gives _ 

H=AC 
--L i 

4 pF++ (7x7)2 -I- .ho(xy-f;) 
> 

3 

(1.42) 

(1.43) 

(1.44) 

From now on we shall focus on e4-theory in lx - It dimensions. The methods 

developed will, however, be more general. These methods can be classified as 

variational and “renormalization group” methods. 

c. Momentum Space Variational Calculation I 

The momentum space variational calculation is a straightforward example 

of a variational calculation in quantum field theory. This approach is equivalent 

to an “average field” or Hartree-Fock approximation8 in which the cubic and 

quartic terms in (1.12) are replaced by 

(1.45a) 
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‘ 
e4 - 6< (b2> G2 -t 3< $2> (1.45b) 

In the fermionic case this method reproduces the effective potential calculation in 

the one loop approximation. 

The trial state we take is a displaced Gaussian packet for each k-mode 

i$(ak;+ = e 
-icV7r(k=O) , o , 

ok 

where 

a IO >=O for all k 
ok ok 

(1.46) 

(1.47) 

The creation and annihilation operators were introduced in (1.31). The orkts 

which correspond to the width of the packet and c which gives the position of the 

center of the packet are our variational parameters. 

It is easy to calculate the variational ground state energy of the Hamiltonian 

E(rrk;c) = <$(ok;c) IH I$(ok;c)> (1.48) 

by using Eqs. (1.44), (1.27), (1.28) and (1.31). 

The variation with respect to akts gives o$ = * k2+ c$, with a0 satisfying the 

gap equation 

a; = 4h(Q(YO) -f2+ 3c2 ) (1.49) 

where 

’ To illustrate the behavior for weak i ft >> 1, hg fixed , intermediate and strong 1 

( ft << 1, ho fixed ) coupling regimes, we plot in Fig. 3 the ground state energy 

E. = E (oo(c), c) as a function of the displacement c. The solution of the gap 

equation (1.49) gives ao=czO(c). There is always a local minimum at c=O. As fz 

increases, for fixed ho, two local minima appear at &c#O. For how1 these 

minima appear when fi- 1. For large enough f: the minima at c#O cross the one 
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at c=O. They then become the degenerate ground states of the theory with < $ > =fc 

or -c respectively, because the overlap between them vanishes in the V-a, limit, 

i.e., 

-a! v2c 
<2j(crk;c) l$(or,;-c)> = e O (1.50) 

Assuming we choose the one at +c, Fig. 3 shows that as we vary f the lowest 

eigenstate jumps discontinuously from a state such that < #> = c-f to < r$> = 0 at 

some critical value. This first order phase transition is an incorrect prediction 

coming from the variation choice (1.46) for the ground state; we know this since 

the behavior implied by it violates a rigorous theorem (specific to this model in 

Ix-It dimensions) proved by Simon and Griffiths? The theorem states that in the 

presence of an external source J$ tlne expectation value of the field < @> is a 

monotonic inalytic function of J for finite J#O. 

The ground state energy of the system in the presence of the source is 

Eb(ao(c), 4 = Eo(aO, c) - Jc (1.51) 

Figure 4 gives.Wschenlatically the phase diagram. As illustrated in the region 

f;< f;, , a ground state developin, 2 0‘ from the c=O minimum of E. when J < Jcrit(h), 

jumps discontinuously to the one developing from the c#O minimum of E. when 

J’ Jcrit’ It is this behavior which is forbidden by the Simon-Griffiths theorem. 

This result suggests that this method is inadequate for studying the strong coupling 

regime where the M-critical behavior sets in. It is precisely this region with 

0 <ft < 1 that the semi-classical analysis suggests we must study to find the kink 

as a low lying state. Note that if this calculation were valid, the ‘*kink” could 

never exist as a low lying state since by the time the vacuum expectation value 

<@> decreases to order of 1, it jumps discontinuously to zero. For the existence 

of the kink as a low lying state we need to find a region where < c$> is arbitrarily 

small but different from zero. 
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D. Variational Calculation in the Single Site Basis 

To understand the failure of the momentum space calculation let us consider 

our Hamiltonian (1.44). The single site terms 

describe a Schrijdinger problem of a particle moving in an anharmonic potential 

depicted in Fig. 5. The potential has a bump of height M4 near its center at x=0, 

whereas for small oscillations about the minimum near x= f, the zero point ener,? 

is - m f given by the curvature at the minimum. For weak coupling, i. e. , for 

small field amplitude and harmonic motion near the bottom of the potential well 

we have 

or 

1’2f3 >> 1 ho 0 

(1.52) 

(1.53) 

In this limit the energy splitting between the two lowest energy levels (the sym- 

metric and antisymmetric solutions of the Schrijdinger problem) is very small 

due to the suppressed tunneling of the oscillation ampl.itude through the center 

bump. The gradient term in (1.44) mixes the even and odd parity solutions, the 

amount of mixing is inversely proportional to the energy difference, Hence, in 

the weak coupling region the mixing is large and it becomes important to treat the 

gradient term accurately, which of course is precisely what we do by working in 

momentum space which diagonalizes the kinetic term and by the choice of the 

ground state. Indeed in the weak coupling region the system is in the c#O pha.se 

for its ground state (see Fig. 3). As we approach the strong coupling region the 

energy difference between the even and odd solutions increases and the relative 

strength of the gradient term decreases. In this situation a site basis, i.e., a 

trial state diagonalizing the terms at individual lattice sites is more natural. 
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The gradient term in the Hamiltonian is the only term which couples different 

sites . Neglecting the gradient term leaves us with identical anharmonic Schrijdinger 

problems at each site. In this approximation the eigenstates of our system are a 

product of eigenstates at each site j. The lowest energy state will be 

wo> = I7 IdJo>j (1.54) 
j 

where I$ >. is the ground state at the site j. 
OJ 

The next level up will correspond to 

a state for which at each site j the oscillator is in its ground state apart from one 

site in which it is in the first excited state. 

(1.55) 

Since the site i can be any of the sites, we have a huge degeneracy. The role of the 

gradient is to lift this degeneracy. It is when these gradient-induced splittings 

are small relative to the spacing between the single site excited states that the 

single site basis is expected to give a good description of the ground state. 

The single site variational basis is introduced in terms of creation and annihi- 

lation operators at each site j 

x =A--- (aj+ii) 
j I/2Lyj 

ip. = 
J d- 2 (aj-a$ 

+ 

II 1 

aj,ajf = 
6 

jj l 

The vacuum at site j is defined by 

and 

aj I Oj> = 0 

Inj> = lL- (aI$j I oj> 
diiy 

(1.56) 

(1.57) 

(1.58) 
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The trial ‘state will have the form 

where 

Iqbj> = 2 C Inj> 
n.=O 

3 nj 

(1.59) 

(1.60) 

We assume the ground state to be translationally invariant hence lGj> is the same 

for each site j. [Note that in this approximation we essentially neglect correlations 

between sites. Keeping I1cij> as a variational wave function we allow, however, 

for mixing between all the single site levels.] For Hamiltonian of the form 

I31 W,-j,) xj xj 

I 

(1.61) 

‘1 ‘2 12 

(the diagonal terms in the gradient (j,=j,) have been taken as a part of the sing1.e 

site Hamiltonian KS,(j)), the energy in trial state (1.59) is 

< 11) IH I$> IH,,(j) l$j> + i 

(1.62) 

Using the translational invariant of the state and .the identity (1.36) 

c W l-j2) = 0 
jl 

so that 

c 
j lfj2 

D(j,-j,) = -c D(0) = -LD(O) 
j 

(1.63) 

(1.64) 

we get 

Eo($) = <$ IH I$> = AL - ;D(O) <7c, Ix l$>2 I (1.65) 

Next we vary the trial state I$> so as to minimize EO($). If it were not for the 

last term, which involves the expectation value square we would just solve the 
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single site Schrodinger problem Hss (j). The actual minimization can be carried 

in two steps. First the variation is carried with < $ Ix I$> held fixed by introducing 

a Lagrange multiplier J, then Eo($) is varied over all values of <#lx I+>. We 

define 

E(J) = Hss - Jx (1.66) 

and denote by 

l?(J) = q. lIi(J) I$,> ; -X(J) (1.67) 
, 

its ground state eigenvalue. The energy 

g(J) =A+ E(J) 

and the problem of minimizing E. (1.65) 

I that ’ 

density associated with E. (1.65) 

=JI’(J) -I- Jx(J) - +D(O) x2(J) (1.68) 

is reduced to finding the value of J such 

E. A Simple Example-Free Field 

The free field Hamiltonian 

has as its single site part 

(1.70) 

Ho is completely diagonalized in momentum space and the exact ground state 

with a mass gap ,U to the first single particle exdted state, i.e. , 

ex ET-E0 =p (1.72) 
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and the splitting among the excited single particle is 

n=O,&l, . . . , &N (1.73) 

Following the steps described before for the single site variational basis we find 

that the energy minimizes at J=O with x(J=O) = 0 and 

(1.74) 

with a gap to the first excited state 

l-site 
E1 

_ El-site = 
0 (1.75) 

The accuracy of the single site ca,lculation is measured by A2 D(0)/P2. When this 

ratio is smaller than one the gaps between higher excitations in the site basis are 

large compared to the splittings amorg the degenerate one particle levels and 

hence relatively unimportant. 

F. Q4 Theory 

In this case 

and 

H ss 
+2 r D(0) x2 

Ef(J) = 

(1.76) 

(1.77) 

For J=O the Schr’ddinger problem (1.77) has a symmetrical potential and the lowest 

state is symmetric, hence x(J=O) = 0. Since the term -Jx is an analytic perturba- 
1 

tion on g(J=O) we have for small J 

x(J) = CIJ l+C3J2+ C5J4+. . . (1.78) 

Recall that the small J (and therefore small x) is of interest in exploring the region 

of small kink mass. 
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From Eqs. (1.67) and (1.78) 

r(J) = r(o) - $ ClJ2 - + ClC3J4 

and (1.6s) 

&(J) =r(o) +$Cl(l-ClD(0))J2+ ClC3(~-ClD(0))J4~ . . . 

Using Eq. (1.78) 

where 

c3 1 8(x(q) = r (0) - $$- x2 - c (z +7$x4 
1 1 

(1. Sl) 
7 

q = -1 Jr ClD(0) (1.82) 

(1.79) 

(1.80) 

Since Cl is always positive according to (1.77) and (1.78) this will minimize for 

small x if ; 

o<q <<l and c3 < 0 (1.83) 

with the minimum x C occurring at 

2 

x ‘2 (l-4?-/) 2 
C (1.84) 

3 

Hence xE<< 1 if 

TC”1 
lCQl<< l (1.85) 

It remains to show there exists a. range of A0 and f. for which the conditions on 

Cl and C3 are satisfied. This can be done analytically by introducing a displ.aced 

Gaussian trial state I+,> 

I+0 > =e -iCp 
IO> ; q) 1 xlqbo> = c (1.86) 
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The displacement C and mass Q! (see Eq. (1.56)) are the variational parameters, 

I’ll skip the details of the calculatior%nd just &ote the result. For 

f; > fir = 3 - o.s3 
2m N--m 

and 

X0 < + (D(0))3’2 N- 
3 

- -1.0 
-.* 18fi 

we find a second order phase transition 

X = oL>a J f2 f2 
C O- cr 

(1.87) 

(1.88) 

F. Upper Bound on the Kink Mass 

To calculate the energy of the kink configuration in the single site basis we 

modify Eq. ‘(1.62) by adding and subtractin, c the diagonal term j,=j, in the double 

sum, 

+ f C D(j,-j,) ‘~j~IxjIl~jl”~j21xj21~j2> 
j,j, 

(1.89) 

The last term is essentially the classical gradient term with the matrix element 

of the field replacing its classical strength. The form of the kink configuration 

<xj> is shown in Fig. 6. This state is orthogonal to the vacuum in the limit 

L -.CO since the conserved charge Q (1.10) is different from zero. 

The minimization is done by repeatin, m the steps for the vacuum calculation. 

At each site a Lagrange multiplier J(j) is introduced and we define 

2 
~(J(j))=$l~ - J(j)x. 

j 
I 3 

(1.90) 
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and * 
, 

J3JW = <$ &-.< I H I Ijid.<> = 
&Ii C rjfJtj)) 

(1.91) 
j 

where rj is the same functidn calculated in (1.73). Then we are instructed to find 

the local minima with respect to J(j) 

1 1 
2N-k1 Ekink = m rj(J(j))+ J(j) <xj> - 5 D(0) < xj>2 

I 

* -2-c 2N-k1 . i D(j,-j,) <x. ><x. > (1.92) 

hJ2 Jl J2 

Since apart from a finite length on the lattice <x(j)> must be arbitrarily close to 

the expectation value &xc in the vacuum state (1.88) to assure a finite kink energy, 

a crude approximation which reveals the dependence of the kink ener,gy on the 

parameters of the theory is 

<x.> =-i-x 
3 C 

for j > j, 

<x.> = - x 
J C 

for j< j, (1.93j 

D = (2j,+ 1)/A 

The transition width D is treated as a variationat parameter. Once again I’ll omit 

the detailed calculatioznd quote just the result 

minimizing with respect to D we find 
L 

A-l = (2 Ali2 Xc)-’ 

(1.94) 

(1.95) 

and 

E kink- Ed M 4A 
l/2 3 

xc (1 + WC)) (1.96) 

Assuming that the ground state energy has been evaluated accurately, the kink 

energy is a resealed version of the semiclassical result -h 
l/2 3 f (1.17). The 

t 
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effect of the quantum correction has been simpIy to rescale the classical field 

strength f to xc for site outside the transition region. The kink mass 

(1.97) 

can be made finite and small no matter how large the cutoff A is by going into the 

region where kc is small enough. This result (1.97) is not an artifact of the lattice 

since the kink width extends over many lattice sites ((1.93)) (1.95)) 

(Zj,+l)- DA - ’ 
2hiT/2x’ 0 c 
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2. THE ‘FINITE SPIN APPROXIMATION 
, 

A. General Formalism 
11 

The G4 theory with nearest neighbor interactions is described on the 

lattice by the Hamiltonian 

(2.1) 

with periodic boundary conditions. 

At each site the single site terms describe the quantum mechanical problem 

of an anharmonic oscillator. Solving this Schrijdinger problem 

n In> (2.2) 

and choosing as a basis the tensor product of the anharmonic oscillator at each 

site 

@ Inj> 

j 
Olnj(m 

the Hamiltonian (2.1) can be written as 

H = -&j - xj@,j+‘) 

(2.3) 

(2.4) 

where we work with the dimensionless H (H - H/A). E is a diagonal matrix whose 

entries are the single site eigenvalues En . { I X is a matrix with nonvanishing 
I 

elements between even and odd parity states, X nm =<nlxlm>. 

The finite spin approximation is defined by truncating the base to a finite 

number S of levels at each site 

63 Inj> 0 2 nj 5 S-l (2.5) 
j 

The truncated Hamiltonian then represent coupled spin s system with 2s+l= S. 
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B. Spin l/2 Approximation 12 

In this approximation S=2 namely only the two low lying states of the single site 

Schr’ddinger problem are retained. This approximation is reasonable as long as 

the coupling is small enough to mix higher states only weakly. In the region 

~1 2 > 0 the low lying energy levels are dominated by the harmonic term and the 

levels are equally spaced. As p2 becomes more negative we reach the situation 

where the potential has two minima, and tunneling between the two wells splits 

the energies of the two lowest eigenstates slightly. The deeper the wells become, 

the tunneling between them and therefore the splitting of the two lowest levels, 

decrease exponentially, while the excited states are pushed to higher energies. 

The Hamiltonian matrix in this approximation 

Ii L jEN (rl ;J - co ,:,> <l’i’O’) co lbi,,, “‘I’“‘,,+l 

where 

E =+ (Eo+E1) 

E = (E l-Eo) 

A= I<0 1x11, I2 

CJ- N-t? a-N 

(2.6) 

(2.7) 

and the (T’S are the usual Pauli matrices. Since only two states are considered for 

each oscillator they can also be represented by the presence or absence of a 

fermion. The formal transformation to this language is known as the Wigner- 

Jordan transformation 

(-) 
“Q + 

bj 
n1 = bTbe 
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j-l n1 
~3 = 7 (-> “j 

I 

oZ=2n -1 
j j 

(2.8) 

where the bits and brls are Fermi operators satisfying anticommutation relations. 
.I .J 

It is easy to check that for -NI j 5 N-l 

+ 
+ = b+b 

= -b.b+ 
Oj aj+l j j+l 

gj(Tj+l J j+l 

-I-+ 
, uj aj-l-l 

zz b+b+ 
j j-l-l 

(2.9) 

vjUj+l = -b.b 
J j+l 

For the cyclic chain we also have the terms 

N-l 

bkbeN=-exp (i7m) bib-N 

where 
N 

n= En 
Q ’ 

is the total number of particles. 
- 

Similarly 

(2.10) 

(2.11) 

-I-+ 
uN”-N = -exp (inn) b&TN . 

(2.12) 

“Na-N = ev tim) bNb-N CT~U+~ = exp (i7m) bNbrN 

In the fermionic representation the Hamiltonian is 

N N-l 

1 
H = LEO + E C b’b.- A ;rI: 

j=-N J J j=-N 

cbj-b~~~+l+bj+l 

+ A(b+N- bN)(b:N+ beN) exP (inn) 

N 
ZZ LEO + E zbtb.- 

j:z-N 
J J 

-I- AvN- bN) (bzN+bvN) (exp (i7@ + l) (2.13) 
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H does not conserve particle number but it does preserve the evenness or oddness 

of the particle number. 

For odd number of particles 

N 
H Odd= LEO -I- E c b:b. 

j=-N J J 
- A ~ (bt-bj)~~~l+bj+~) 

j=-N ’ 
(2.14) 

which amounts to having periodic boundary conditions bN+l=b-N, hence the al.lowed 

k’s for odd number of particles are 

3 k=O , *22 
L’ 

*ti 2Nn 
L 9 * . ‘. ,A- - L 

For even number of particl.es 

L=2N+l (2.15) 

N N 
H even = LEO + E C Bob. - A cjbt-bj)@~+l+bj,l) 

j=-N J J j=-N J 
(2.16) 

with antiperiodic boundary condition bN+l= -bmN, hence the allowed k’s for even 

number of particles are 

k=+, *: L-2 
L ,*-*, - r, L 7l (2.17) 

Both Heven and H odd are quadratic in the fermion creation and annihilation oper- 

ators and therefore can be diagonalized by going into momentum space. 

bj = 2 5 bk (2.18) 

H Odd= LEO -I- (+2A)bbg f c (E-2Acos k)(b;bk+b+kb-k) 
k>O 

i sink bEb’k - 2i sink bkb k - -) 

H even= LEO -I- (e+2A)b;bn+ c ( k>O E - 2A cos k) (b;bk + b+kb-l,) 

- A kFo (-2i sink bibTIC - 2i sin k bkbWk) (2.20) 

(2.19) 
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The Hamiltonian is now block dia.gonalized with k coupled only to -k. The 

resulting quadratic form can be easily diagonalized and the ground state energy 

of H odd with odd-particle-number and Heven with even-particle-number can be 

computed. 

I 

E odd = LEO++2A+ e+2A “c”” cos k - 2T’L J,2+4A2-4Aecosk 
l-2 7T/L k=27r/L 

(2. 23.) 
2N-1 ,r 2Nn 

E ” event LEO +- E- L;l - 2A $ cask - e2+4A2 -4Ae cask 
k=n/L k=2r/L 

In the large L limit the sums can be replaced by integrals 

remember that kodd=keven+ t, Eqs. (2. 15), (2.17)) with 

E odd = Eeven f (E-2A) 0 (e-24) 

(2.22) 

(however one should 

the result 

(2.23) 

E odd and Eeven are the two lowest state of our system (2.13). For 02A the 

ground state is unique. At e=2A the two states coalesce and stay together for 

e<2A. e=2A defines a phase transition. It has been showk2!that this calculation 

produces the exact two dimensional Ising critical index l/8, i. e. , 

<x> N (-E-F 2A)l’* (2.24) 

(Recall that the lx-lt scalar $4 theory is formally related to the two dimensional 

Ising model. In this respect see Ref. 13.) 

The energy of the kink state in this spin l/2 approximation was computed by 
12 

Scalapino and Stoeckly . The solution is obtained by noting that the kink state is 

generated from the original Hamiltonian (2.1) and therefore also (2.6) by 

requiring antiperiodic boundary condition ($,+,= -$-,). The kink solutions are, 

therefore, the even-particle-number solutions of H Odd (2.19) and the odd-particle- 

number solutions of Reven (2.20). The calculation of the lowest even-particle- 

number eigenvalue of H odd and the lowest odd-particle-number eigenvalue of 
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H even is straightforward with the result (L - “) 

Ekink = 
0 E>ZA 

ZA- E E<ZA (2.25) 

where E ltinli is the energy of the kink relative to the ground state. Hence, (2.24) 

Ekink - <x>8 (2.26) 

which for small <x> (strong coupling) is lower than the single site result (1.96). 

Having the exact result to the truncated problem we can check various varia- 

tional approximations and compare them to the exact result. This will give us 

an idea how reliable these variational approximations are. In particular we shall 

try the mean field (or single site) approximation and a “renormalization group” 

type of approach. 

C. The Mean Field Approximation ” 

Starting with the spin l/2 Hamiltonian (2.6) the mean field approximation on 

this Hamiltonian is obtained by taking as a variational trial wave function 

I$> = R bpj ; 
j 

iqj = (;;; ;) 
j 

(2.27) 

G(e) = <$ IH 1+/L = const -l-i ~0s 28- A sin’ 20 (2.28) 

Hence 

LX= 
a(w 

0 = sin28 5-2Acos 20 

For e>4A, & minimizes at 8=0, while for E <4A the minimum occurs at 

cos 28=-•/4A. The order parameter is 

ax> = sin 20 = 

I 
g&g 114: 

(2.30) 

Note that in this approximation we miss on the true transition point E = 2A by a 

factor of 2. Near the phase transition <ox> -.,/E producing the critical indes 

l/2 which is characteristic to the mean field approximation. 
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D. The henormalization Group Approach 

The idea behind the renormalization group approach is to form blocks of 

coupled adjacent lattice sites, to diagonalize the Hamiltonian within each block, 

to couple the original blocks into new big blocks, and then to repeat the process. 

At each stage as the length scale changes the number of participating degrees of 

freedom is reduced. The procedure is repeated again and again until the quan- 

tities we are interested in computing converge. This will happen when a fixed 

point of the iteration is found. 

The Hamiltonian (2. 1) can be rewritten (up to an irrelevant constant) in the 

form 

H=f (&EO)-XjXj+l 
j=l L 

(2.31) 

where E is the diagonal matrix whose entries are the single site eigenvalues En 

Ej In> = En In> for each j (2.32) 

We are going to keep only the two lowest states at each site, which can be denoted 

by IO> and Il>. Next we couple each two adjacent sites (i. e. , site 1 with 2, site 3 

with 4, etc.). Within each block we have a 4x4 matrix which we have to diagonalize 

IL 1> ll,O> IO, b IO, o> 

Il>i Il’i+l 2 II, l> 2E0 0 0 -AO 

Il>i Io'i+l = I l,O> 0 EO -AO 0 

(2.33) 
Io>i Ibi+l f IO, I> 0 -AO EO 0 

Io’i lo’i+l = IO, o> -A 
0 0 0 

T 

where co= El-E0 is the original gap and A0 = I< 11x IO> 1’. Note that the states 

II> IO> and IO> II> just mix between themselves, while the lowest state IO> IO> 

mixes only with the state I l> I l> . We can, therefore, diagonalize each sub 2x2 
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matrix alone. The diagonalization yields the following eigensiates and corre- 

sponding eigenvalues 

state eigenvalue 

1 

J---- l+at 

E -I- O J----- ,;+ A; 

( IO, l> - ILO> 1 co + A 0 

1 
( lo, O>+al il, 1> 

J-- 1-i-a; 
) EO - J E;+ A; 

with 

ti 
2 2 
0 O-EO 

al = 
AO 

Let’s denote the two lowest levels by 

I$,> = 1 ( IO, O>+al II, 1> 

J----- l+at 
) 

I$,> = 1 
J2 ( IO, I> -I- 11, o> ) 

The new gap is 

cl = d&if- A0 (2.37) 

(2.34) 

7 

(2.35) 

(2.36) 

In the next-iteration we start with the states I$,> and I$,> within each block and 

couple each two adjacent blocks (i. e. , block (1,2) with (3,4), block (5,6) with 

(7,8), etc.). The term in the Hamiltonian (2.31) which couples block (i, i-tl) to 

block (i-i-2, i-t-3) is 

H int 
= -A0 ai+l + aT+l )( ai+ -t aT+2 (2.38) 
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It is important to note that the state I+o> IGo> mixes Only witi I$,> IJ/,> and the 

state '$2 lql > mixes only with I$,> lqQo>. Consider the block (i, i-f-l) and (i”r2, i+3) 

AO 
= - 

l+aZ, . [I 
I0~ill~j~l-lll~i+2l0~i+3+alIl~ilO~i+lll~i,~2l0~i+3+allO~ill~i+llO~i+2Il~i+3 

“I 

-I-a; 11'i~o'i+110zi+211'i+3] (2.39) 

The new overl.ap parameter is determined by taking the scalar product of (2.39) 

with ivy 1;p 

(2.40) 

A1 is also the overlap between Hint Iqo> 1+1> and I#,> I z,Oo>. Hence the new 4x4 

matrix we have to diagonalize is the same as (2.33) with the replacement 

EO - 5 
(2.41) 

AO - A1 

We obtain, therefore, the following renormalization group equations 

‘P = J ep-1 p-l p-l 

ap = i h,sl - ep-l) (2.42) 

A -1 tl+a )’ 
a,=-$- ---+- 

1-I-a 
P 
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For e. <ci A0 the equations give 

= xpc EO 
‘P 0’ x=w<1 

0 

hence the gap goes to zero which is an indication of a phase transition, 

For eO >> A0 

ep = l o -A p-l 

hence 

ap = 1 

A -1 Ap= -+- 

E= lim 
0 - 2A. 

P-co . 

(2.44) 

(2.45) 

The order parameter for our system is [ = <a-tit+> which is closely related 

to the vacuum expectation value of the field (1.56). The expectation value of < in 

either IGo> or I#,> is zero. It is only when the phase transition occurs and I$,> 

and I$,> become degenerate that the expectation value of [ in the ground state 

(which is then an arbitrary linear combination of I$,> and lql>) can be different 

from zero. In the first iteration 

<5>1 = ‘$$ I( I$,> = 
l+al 

J&q 
(2.46) 

The next iteration the two lowest states are 

(2.47) 
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and * 

(2.48) 

Recalling Eq. (2.40) 

In the p-th iteration the order parameter is 

<[> 
P 

(2.49) 

(2.50) 

The numerical solution of the renormalization group equations (2.42) yields 

co = 2. 55A. as the phase transition point. Above the phase transition (co > 2.55 Ao) 

<[> = 0. Below the phase transition. point (co ~2. 55Ao) <[> # 0. The critical 

index which determine the approach of < 5 > to zero near the phase transition point 

turns out to be -0.5. 

To conclude let us see for what range of the original parameters of the +” 

theory (Eq. (1.44) or Eq. (2.1.)) the spin l/2 appkoximation is reasonable. The 

single site potential for the @4 theory with negative mass p2= -2hf’ < 0 is depicted 

in Fig. 10. The two lowest states are the symmetric and antisymmetric states 

whose energy difference is governed by the amount of tunneling through the H4 

barrier. Since we want the gap to be small we shall demand 

hf4 >> h1’2f 

or (2.51) 

z E Y2f3 >> 1 

where w M h l/2 
0 f is the curvature at the minimum of the well. Under this condi- 

tion the first energy gap is given by 

co M e -(A 1’2r)f2, hl/2f, M -z 
e lpl (2.52) 
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The next btate up is at energy i,u I relative to these two states (Fig. 10). The 

spin l/2 calculation demands 

E << IpI 
0 

(2.53) 

which is clearly satisfied ((2.52), (2.52)). 

The parameter A0 (2.7) is the matrix element square of x between the sym- 

metric and antisymmetric skates 

A0 fi: f2 (2.54) 
l 

7 

At the phase tra.nsition (2. 23) 

co = 2A. (2.55) 

hence, 

(2.56) 

-2 Z 
e ZZ- 

l/-J2 I 
(2.57) 

For large z , Ifi I should also be large. Condition (2.57) determine the regime of 

h and f for which the spin l/2 calculation of the phase transition is reliable. 
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3. COMPLEX o4 THEORY AND THE ABSENCE OF GOLDSTONE BOSON IN 

lx-lt DIMENSIONS 

A. General Survey 

The Lagrangian for the complex Q4 theory is given by 

2=f (ap+*)(ap+) - h(+*cp-f2j2 

This Lagrangian ca.n be written in terms of two scalar fields P and n 

- h(92+r2.-f2)2 (3.2) 
3 

The theory has a continuous rotation symmetry in the (P, r) plane. Classically 

the theory undergoes spontaneous symmetry breaking in which (T and/or 1~ acquire 

nonvanishing vacuum expectation value. To be precise if we first restrict the 

system to.fjnite volwne V and add a source term Ja which singles out the direction 

of u in the (u’,7i) plane, then 

<G’> = lim lim < 0 IcF(x) I O> # 0 (3.3) 
J-0 V-L=’ 

The Hamiltonian obtained from (3.2) is a sum of positive terms. Classically it is 

clear that a constant vector [u, T] of length f2 minimizes the energy. The added 

source term Jo tend to fix the direction of this vector to be along g. The classical 

lowest energy state is therefore a=f and -0. The spontaneous symmetry breaking 

is known also as the Goldstone phenomenon and Goldstone’s theorem states that 

this phenomenon is accompanied by the appearance of massless scalar boson 

(the Goldstone boson) .14 

When t&e full quantum mechanical aspect of the theory is taken into account 

there are quantum fluctuations which should be considered. If the quantum fluc- 

tuations are large enough all memory of the classical preferred direction may be 

lost and the ground state expectation value of cr and 7r will be then <g>= CT>= 0. l5 In 

this case no long range order associated with spontaneous symmetry breaking 

will occur, This is what happens in Ix-It dimensions and is the basis for 
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Coleman’s theorem which states that there are no Goldstone boson in 1x-R 
16 

d.imensions. 

At this point it is convenient to introduce pol.ar coordinates 

cr = r sin 13 
0cJ.H”; 09 <2n 

T = r cos 6 

2 = $1’2 ($Sj2 -I- ; (8l-Lr)2 - h(r2-f2)2 

(3.4) 

(3.5) 

It is the 8 field which is the candidate to be the Goldstone boson. It is, therefore, 

the fluctuation in 0 which we want t.o consider. For this we can replace r by its 

average c-number value f. The r-potential is shown in Fig. 7. It is clear that 

for ?if4>h1’2’ f the r part of the ground state wave function is well localized at r=f. 

Once r is frozen t.0 he equal to f the 0 part of the Lagrangian is 

Pe = $ f2(ape)” (3.6) 

which looks like a free massless field Lagrangian apart from the fact that 

050 127r. 

B. Going to the Lattice 

In our lattice formulation the Hamiltonian obtained from the Lagrangian (3.2) 

is 

+ h(c2+r2-f2) t- f c D(j,-j,) jlj2 -t h. c. 1 
(3.7) 

: where _ 
i0. 

$j = rje j = r. cos 0. -t- ir. sin 6. = o.+in. 
J J.l JJJ 

p,=&g, p,=&$- 
(3.3) 
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In polar coordinates 

2 
---$--$+Aky-f2) 

2 ,1 
f 

2rj ae’ 

Try+; 3j D(j,-j2)rj ri 

jl ‘2 1 -2 
J 

(3.9) 

If we freeze the radial coordinate as argued before we are left with the O- 

Hamiltonian 

J+I=x-L2+,f2 J3J D(j,-j,) 
-ie. 

2f2 aef 
e 

ie. J2 

je -kh. c. (3.10) 
, j ‘1 ‘2 7 

which can be rewritten as 

H = c-$ J:(j) -t if” Js, D(j,-j,) 
j 2f ‘1 ‘2 

(3.11) 

Now we can see in what sense we can think of 0 as a free massless field. Note 

that for f2 -0 the Jz term is the most important term and we get a theory with 

an energy gap. On the other hand we can consider the theory for veiy large f 

starting with the Hamiltonian (3.10) with nearest neighbors interactions and adding 

a small source term e-f2 sin2 8 in the (r direction 

H=C 
j L -1 a2 --- 

2f2 80; 
2f2 cos (e j-l-1 - Oj) -1- cl2 sin2 8. 

I 

(3.12) 
3 

Note that this source term does not break completely the rotation symmetry; there 

is still a symmetry under rotation by T. 

Choosing 0 to lie between - T/B and 3n/2 and resealing the 0 variable 

F = fe (3.13) 

we have 

(3.14) 
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The potential term in (3.14) has the form depicted in Fig. 3 . The height of the 

middle bump is wef2 while the tunneling distance (the distance between the two 

minima) is 7rf. The curvature at the bottom of the well E determine the energies 

of the low lying levels in the well. For large f the amount of tunneling is small, 

the energy of the. symmetric state is 

$ &+emd2 

$& and of the antisymmetric state 

hence these states are almost degenerate. The next level up is at 

energy -+&I. Tl me number of levels which can be accurately described by 

harmonic states within one well is of the order of the height at the middle (ef2) 

divided by the energy gap “JE . We want this number to be large 

Jr = f = & f2 >> 1 (3.15) 
E 

Since the wave functions are of the form e 
-k/X2 the condition that all of these 

states will be well localized is that their width will be small relative to the 

tunnel.ing distance f 

or (3.16) 

E l/4 f >> 1 

This last condition (3.16) allows us to expand both the cos and sin in the e?rpres- 

sion (3.14) of the Hamiltonian. Note also that the condition (3.15) .A/ >> 1 is 

compatible with the condition 

(3.17) 

which states that the source term is an arbitrar ‘ily sma .I.1 perturbation. The 

Hamiltonian is now (up to irrelevant constant) 

(3.18) 
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which is a free field Hamiltonian (-” ( 02~ for f - ~3). Once we established the 

fact that for large f, e” is essentially a free field of mass & it is easy to 

understand Coleman theorem (in the region for which the free field approximation 

is acceptable). 15 

The bigger f is more level & (3.15) are correctly described by a free field 

expansion of 0” 

Tj = C .+ (ake-ikj =i-<eikj) 
k (297) 

(3.19) 

The ground state is 10, = fl I Ok> and the correlation function is 
k 

A(j) = lim < 0 lo(j) O(0) IO> = + lim < 0 l?(j) 30) IO> = 
V-03 f v*---* 

(3.20) 

It is cl.ear that in lx-lt dimensions due to the infra-red singularity as E -+ 0 the 

fluctuations in 8 are infinitely large, In fact 

_ < ol eW) I o, = e-W)/2 + o 

E- 0 

(3.21) 

and therefore 

<~-CC <sin 8>= 0 
(3.22) 

< m cc <cos e> = 0 

C. Renormalization Group Approach to the Goldstone Boson 

The argument presented before is heuristic and nonrigorous. We would like 

now to present a simple renormalization group computation from which the physics 

of the Goldstone boson becomes more clear. 

Starting with the Hamiltonian (3. 11) with nearest neighbors interactions 

H = c j - Ao(Jmb(j) J (j-+lj 411. c.) 1 ( ) 3.23 
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where ’ 

1 
EO -2 

A0 = f2 (3.24) 

The calculation is similar to ,the one done for the spin l/2 case. At each site we 

take the three lowest levels of EJ~ which we shall denote by IO>, I+l>, I-1,. 

Note that we cannot truncate at two levels since the states 1+1> and i-l> are 

degenerate. Coupling into blocks of two adjacent sites there are g-states we have 

to consider, The states are shown in Fig. 9 . The states II, l> and l-l, -I> are 

ejgenstates of the Hamiltonian. The state IO, O> can be connected only to the 

state 4 ( 11, -l> + I-1,1>) while the state Il,O> mixes only with IO, l>, and the 
2 

state I-1,0> mixes only with IO, - l>. The matrices we are instructed to diagon- 

alize are : 

IO, o> -$+1,-l>+ I-1,1>) 

IO, o> 

! 

0 

-L( 11, -l> + l-l, l>) 
J-5 

-,1’2,Ao i 

(3.25) 

2E 

with eigenvalues E -f- 0 J $+2A; and 

IO, -l> I-1, o> 

( 
E 

-a, i 

(3.26) 
-AO 
E 

with eigenvalues co+ A 0 . 
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The level’structure of the 3 lowest states in each block is 

with 

state 

Iii,,>= l 
J1+, 2 ( 

al IO, o>+ - 
$2 

( II, -l>-+ l-l, l>) 
) 

1 

I$+> = i (IO, 1>+ Il,O>) 

I S’ .= -L ( IO, -1>+ l-l, O>) 
J2 

energy 

Eo-Ao (3.27) 

Eo-Ao 

J ,;+ 2A; - E 0 a1 = 

fi eAo 

(3.28) 

Note that as in the zeroth iteration we have two degenerate levels I$++ and I+ >. 

The new gap is 

cl=&& A0 (3.29) 

In the next iteration we start with these three states within each block of two and 

couple each two adjacent blocks (i. e. , block (1,2) to block (3, 4)) block (5,6) to 

block (7, 8)) etc. ) . The term in the Hamiltonian which couple block (i, i+l) to 

block (i+2, i+3) is 

H int = -Ao(J+(i+l) J-(i+2) -t. J-(i+l) J+(i+2)) (3.30) 

Once again we have the same pattern of levels depicted in Fig. 9. Note that the 

’ state I$,> i$,> mixes only with the state $ (I$+> I$->+ I#-> I$+>), and that the 
2 

state I$,> I$+> ( I$,> I$->) mixes only with I$+> I$.J,> ( I+-> I$,>). The new 2x2 

matrices to be diagonalized turn out to be identical to the matrices in the zeroth 

iteration (3.25, 3. 26) with the replacement 
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Y 
AO (3.31) 

(The calculation of A1 is straightforward and proceeds in the same way as for 

the spin. l/2 case. ) 

The renormalization group equations obtained in the p-th iteration are, 

therefore 

, 
a 

A -1 Ap = + 
1 -t a2 

P 

(3.32) 

In this case it is clear that there can be no fixed point for which E iterates to zero 

while A stays finite. It is also easy to see that for a solution with E #O, a --+ A 
3A 45 

and therefore AI1 = q hence A-+0. To summarize, the only fixed points are 

those with A=O. As for the spin l/2 case the order para.meter is proportional to 

(A/Ao)1’2. The actual numerical solution gives’ eO = 1.7 A0 as the transition 

point. However, even when the phase transition occurs and the gap goes to zero, 

A=0 which means that there is no long range order in the system. 

The obvious question now is what happens when we go to higher dimensi.ons. 

Repeating the renormalization group calculation we have preliminary indications 

that in higher dimensions the system undergoes a phase transition with long range 

order . The difference from the Ix-It dimensions is due to the fact that now we have 

more interactions (the number of nearest neighbors at each stage of the iteration 

grows), more degenerate levels appear and the mixing pattern is more complicated. 

The difference betvdeen lx and higher dimensions, which allows Goldstone boson and 

long range order to appear in higher dimensions is, in short, phase space. 
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4. FERRIIONS ON A LATTICE 

Following our study of scalar field theories formulated on a spatial lattice 
17 

we turn to fermionic field theories. For fermion fields our definition of the 

gradient will turn out to be of great importance. It allows us to overcome the 

problem of doubling of states encountered in the nearest neighbor prescription 

and also allows us to write down lattice theories which are locally y5 invariant. 

We will concentrate on the behavior of these theories in the large coupling regime. 

We wil.1 show that in this case the usual fermionic degrees of freedom become . . 

very massive, but new massless degrees of freedom (fermion-antifermion bound 

states) become low lying (even when the lattice spacing a= $ -0). Since we 

consider theories with y5 invariance, the question of the y5 symmetry properties 

of the ground state (the realization of the y5 -symmetry) will be of great interest, 

At least for large coupling constant we shall once agai.n (as for the G4 case) see 

that diagonalizing first the single site terms in the Hamiltonian leads to the cor- 

rect physical picture (e.g. , the y5 symmetry of the ground state). The role of 

the gradient term is to split the huge degeneracy which occurs in the single site 

di.agonalization by allowing states to move. 

A. Back to the Gradient Definition-The Free Field Example 

The simplest fermion theory is of course the free field theory 

(4.1) 

which yields the Dirac equation for the fermion field 

(4.2) 

For simplicity let us consider the lattice version of the Dirac equation in lx-lt 

dimensions. If we try to adopt the usual transcription of the gradient as a differ- 

ence operator 

(V$)j = A($tj+U - $0)) (4.3) 
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we have li 

Using the representation 

and the Fourier expansion 

(4.4) 

(4.5) 

(4.6) 

we find, for a free Dirac particle, the energy momentum dispersion relation 

E(k) = J m2+A2 sin 2 k x (4.7) 

where -7r~ kA 5 7~. As illustrated in Fig. II this formula shows that to each eigen- 

value E there correspond two distinct states of k>O and two of k<O; hence the spec- 

trum of states possesses a doubling of levels not encountered in the continuum 

theory. Kogut and Susskind have proposed one technique for avoiding this problem. 18 

In Ix-t-It dimensions they simply put the upper (lower) components of the Dirac 

spinors on even (odd) lattice sites. The disadvantage of this procedure is that it 

makes it impossible to write down local.ly chiral invariant interactions since one 

does not have both particles and antiparticles at the same point. In higher dimen- 

sions this procedure will demand to split spin components in 2x+lt dimensions 

and to double the number of fermions in 3x-l-N dimensions. An alternative projec- 

tion operator technique which was introduced by Wilsor!?n his action formulation 

also destroys local y 5 invariance. Our way of defining the gradient operator on 

the lattice avoid this difficulty (i. e. , there is no doubling of states and we can 

write down theories which are locally y5-invariant on the lattice). To see why 

this is so recall that for 

f(j) = c f(k) eil’j/n 
k 

(4.8) 
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we def inec 

(Vf) j = C ik f(k) eikj/n 
k 

ik(j-j’)/A 
(4.9) 

where (2Nc1) is the number of sites in the lattice. In 3x dimensions (4.9) becomes 

(v$)j j j = C f(j;, jyT jz) (- 6Yj,-j&)) 

xyz jf 
, X 

(4.10) 

It is easy to check that this prescription gives the exact relativistic energy mo- 

mentum relation for free fermj.on of mass m 

E(k) = J k2+m2 (4.11) 

The only difference from the continuum free fermion theory is that the lattice 

version has a maximum allowable momentum lkmax I = ~~4. Since there is no 

doubling of states and no need to split field components onto different lattice sites, 

we can easily incorporate exact y5 (chiral) invariance into theories with this 

formalism. _ 

B. Lattice Thirring Models 

We first study the lattice 

chirally invariant Hamiltonian 

version of the pure fermionic theory based upon the 

(4.12) 

which canbe Fierz transformed into a current-current interaction 

The theory is invariant under the transformations 

i6 
#--+e ?cI 

and 

ij-ije 
-iy5 8 

(4.14) 
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for constant 0. Hence the generators 

(4.15) 

commute with H. 

In constructing the lattice version of (4.12) we introduce the dimensionless 

variables i(j), x(j) and g via 

?gj =*p’2 x(jj , 
g(r) ,,pP ;i(T) 

80 =gA 1-P 

The canonical anticommutation relations are 

(4.16) 

(4.17) 

and 

H = A x*(Tl) i z3(Tl-G) ~(7~) - 2 C (:(3~(3)~- (X(jJ~~x(j))~ 
3 1 

(4.18) 

The conserved charges are 

Q = c x+(3x(j) 
Y 
J 

(4.19) 

We can also construct conserved but nonlocal currents on the lattice jp(T) and 

j,$T) which have the form 

j,(7) = x+(T) ~(3 , 



Where S(T;yl,T9) is uniquely clefined. If we evaluate commutators involving time 
d 

and space components of these currents we obtain a nonlocal term which, in the 

continuum limit, becomes the familiar Schwinger term. 

C. Momentum Space Variational Approach 

The momentum space variational approach is equivalent to the effective 

potential calculation in the one loop approximation first carried out by Nambu and 
20 

Jona-Lasinio. To obtain their equation for the mass gap we take the expectation 

val.ue of the Hamiltonian (4.18) in the trial ground state 1$(m)> defined by 

b,(k) l+(m)> = 0 

d,(k) 1$(m)> = 0 
(4.21) 

where the bmk) and din(k) are the fermion (antifermion) annihilation operators 

defined by a plane wave expansion with an arbi.trary mass m 

(4.22) 

The u:(r) (vzl(x)) are the positive (negative) energy 7 solutions to the Dirac equa- 

tion. The expectation value of the Hamiltonian (4.18) in this state is 
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Minimizing c?(m) with respect to m leads to the gap equation 

[ 

Al-P 
m 1-4g- 

LP 
c 
k Lk 1 = 0 

2 
(4.24) 

Whenever g has values such fiat there exist a solution besides m=O, this solution 

(m#O) corresponds to a local minimum. Due to the continuous y 5 symmetry when 

m$O, corresponding to the existence of massive fermion states, the ground state 

is infinitely degenerate implying the existence of massless Goldstone boson. 

This result’is in conflict with Coleman’s theorem for p=l which states that no 
16 

Goldstone boson occurs in lx-lt dimensions. Moreover for p=3 one can show 
17 

that both in the strong and weak coupling regimes the ground state is unique. The 

lesson to be drawn is that the one-loop effective potential method which is equiva- 

lent to the Hartree-Fock approximati.dn 

< tw2> + 2<$+>2 (4.25) 

is misleading for determining chiral properties of the ground state. As we argued 

in our study of the scalar q4 theory, the momentum space variational approach 

which diagonalizes the gradient term exactly might be reliable for weak coupling, 

but it can be very misleading when applied in the. strong coupling regime. We turn 

therefore to a configuration space approach to discuss the large coupling g?l. It 

will turn out that a site basis gives a lower ground state energy and furthermore 

the y5 symmetry of the theory is realized in a normal way. 

D. The Thirring Model in Two Dimensions 

/ The Th-irring model in lx-lt dimen.sions will serve us as an example of strong 
21 

coupling calculation in a fermionic theory. This theory has important features in 

common with gauge theories so that this analysis will prove useful to our subse- 

quent discussions. As we shall see the strong coupling limit of this model 

describes a system of massless fermion-antii‘ermion bound states in addition to 

super-massive charged fermions of mass WgA >> A. Hence this model provides 
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a concrete example of a theory for which, as g-L@, the original fermionic degrees 

of freedom become “frozen out”, but new massless degrees of freedom are left 

behind. 

For g >> 1 we first diagonalize the quartic part of the Hamiltonian (4.18) 

exactly. A convenient representation is 

1 0 

Y5=a= ( ) 0 -1 

0 1 
Yo = ( ) 1 0 

(4.26) 3 b(j) 
x(j) = 

( ) d+(j) 

b(j) and d(j) sktisfy the anticommutation relations 

{b(j), b+(j’)t = {d(j), d+tj’)l = 6 jj’ 

{b(j), d(j’)} = 0 , etc. 

In this representation the I-IamiItonian (4.18) has th.e form 

H =A 

i-v (4.28) 

where we have used S’(jl-j,) = -S’(j,-j,) and 

n,(j) = btb. 
J J 

n,(j) = d-!-d. 
J J 

2 1 

(4. 27) 

(4.29) 

Since the potential V is a sum of commuting single site terms we can diagonalize 

each term separat.ely and form a product basis over all sites, Jf we define IO(j)> 

by 

b(j) IO(j)> = d(j) I O(j)> = 0 (4.30) 
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we have the following four eigenstates at each s.ite 

state eigenvalue of -gA (n,Q) +nd(j) - 1)2 

to> --fiTA 

I+>=b+ IO> 

I->=d+ IO> 

I&>=b+d+ IO> 

0 

0 

--ETA 
(4.31) 

At the single site level the ground state is two-fold degenerate with 

Eo(j) = E&(j) = %A 

The electric and y5 charges are given in accordance with (4.15) 

(4.32) 

Q = C nb(j) -d(j) = C Q(j) 
j 1 j 

Q5 = C [n,(j) + ndtj) - l] = CQ,tJ) 
j j 

(4.33) 

As we shall see later on the ground state of t.he full Hamiltonian in the large coupling 

regime is also two-fold degenerate. Note that the single site charged states with 

Q(j) =&l, Q,(j) = 0 lie high above the ground state from which they are separated 

by a gap -gh. 

The two-fold degeneracy at the single site level means that the ground state of 

V (4.28) is 2 2N+l -fold degenerate. The total electric charge of these degenerate 

states is zero and their y5 charge Q, can take any odd integer value from -(2Ni-1) 

to (2N+l) depending on the number of sites occupied by pairs. The role of K, the 

kinetic term in (4.28) is to split the degeneracies among the low lying Q=O states. 

Since K commutes with Q and Q, it connects only state within each Q and Qr. 3 

Thus, we will treat it 2s a perturbation for g >; 1 and work within the Q=O sect,or 

to construct the low lying energy spectrum. It is clear from the form (4.28) that 

K which moves a single fermion or antifermion fro.m one lattice site to another, 

gives no first order energy shift to the low lying states, We are forced, therefore, 
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to do second order degenerate perturbation theory in the ground state sector which 

is characterized by having n b (j) =n,(j) for each site j. Since 211 energy denomjn- 

ators between the ground state 2nd an excited state with one unbound pair are the 

same, Ex-EO = 2gA, the intermediate state sum can be performed to obtain an 

effective second order Hamiltonian for the ground state sector 

H A 
eff = - 2g 

A spjn formalism is suggestive at this stage. At each site only two eigenstates, 

IO> 2nd I-+>, which correspond to “spin down” and “spin up”, respectively, occur 

in the Q=O sector. Hence we define “spin” raising and lowering operators 

S+(j) =_ d+(j)bh 

S-(j) = WW = {S+(j)}+ 

such that 

and introduce - 

l*(j)> = S+(j) IO(j)> 

n,(j) = ndtj) = ‘3(j) + + 

(4.36) 

(4.37) 

H eff 
can be rewritten 

H eff = - $ C (6t(j,-j2))2{+ + s+(Q) S-U,) - s,(j,) s3(j2)} (4.38) 

jlj2 

Except for the relative minus sign between the spin-spin terms Heff describes the 

’ Heisenberg-antiferromagnetic chain. This analogy is even clearer if we return for 

a moment to the definition of the gradient 2s a difference, in which case (4.38) 

contains only nearest neighbor interactions. Now we can make 2 unitary trans- 

formation ch2nging the representation ((4.35)) (4.37)) by rotating through angle T 

about the three axis at every other lattice site; i. e. , 

s,(j) - (-)j S,(j) ; s,(j) - s,(j) (4.39) 
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The effective Hamiltonian becomes 

H eff 
= f x(5(j) l Z+(j+1) - 2) 

j 
(4.40) 

The eigenstates of Heff can be classified into degenerate multiplets of the total 

spin as well as of its third component, ;Q5 = ES,(j). If we further assume that 
j 

the lattice has an even number of sites and impose cyclic boundary conditions we 

can refer to two exact theorems. 
22 

Theorem 1 When t > 0 corresponding to an antiferromagnetic 

in.teraction, the ground state of (4.40) has tot.21 spin S=O and is uniq,ue. 

Th.eorem 2 The theory has no mass gap in the limit 2s the length 

of the linear chain becomes infinite. 

A corollary to theorem 1 which is independent of having nearest neighbors inter- 

actions in’the antiferromagnetic chain”(and therefore applies directly to our case) 

states that within each S3 sector the ground state is unique. This, however, still 

does not tell us that the real ground state of the system is unique since a priori 

the various Iowest states within each S3 sector could have been degenerate. For 

nearest neighbors interaction we have theorem 1 which assures us that the ground 

state is indeed unique, 

For 2 lattice with an odd number of sites it is impossible to form a state of 

S3=0. In this case S3=*i is the lowest possible value and the ground state is two- 

fold degenerate corresponding to the invariance Q,----Q,. The original solution 
23 for the ground state and excitation spectrum of (4.40) is due to Bethe. His method 

also shows-that the excitation spectrum starts off linearly in k, correspondi.ng to 

a massless particle spectrum. 

If these results carry over to the solution of (4.38), whi.ch we constructed 

using (4.9) to avoid the doubling of the free fermion states on lattice, we see from 

the theorems that to leading order in l/g there exists a low lying spectrum of 

massless excitations of the Thirring model in addition to the arbitrarily massive 
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(-gA) normal fermion escitations. This low lying excitation spectrum corresponds 

to bounded fermion-antifermion pairs but, like 2 fermion, obeys the exclusion 

principle of no more than one pair per lattice site. This spectrum is built upon a 

unique or doubly degenerate vacuum (depending on whether we use an even or odd 

number of lattice sites), and there is no spontaneous breaking of the y 5 -invariance. 

On the basis of the analysis of (4.40) we expect the ground state solution of 

(4.38) to lie in the Q, = il= 2S3 sector. This can be easily verified for a lattice 

of three or five sites. For the general. case we must, however, rely on varia- 

tional calculations to construct upper bounds on the ground &ate energy in each 

Q5 sector. Before describing the variational calculation note that the sectors 

with S3=s i(ZN-;I), corresponding to all sites empty, or all occupied by a pair, 

are eigenstates of I-1 eff and are the nondegenerate ground states in their respective 

sectors of Q, =r (2N+1). The energy of these states is -gf (2N+l). A less trivial. 

case is the exact solution of (4.38) in the sector Q, =r(2N-1) in which a single 

bound pair is present (or absent). The ground state in this sector lies below the 

one in the &,=?$2N+l) sector and the excitation spectrum is found to start off 

linearly in k, 
17 

i..e., 

E(k) = II -g(2N+l) 
Q5=+(2N-1) 

For the variational calculation in the sector, Q, = -(2N+l) + 2p, with pairs 

at 0 < p 5 2N+l sites,we use a fully symmetrized trial state - 

2 
c . s+ sl‘ . ..s+ IO> 

+‘lP 
ll l2 lp 

e IO> (4.42) 
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The upper bound on the total energy obtained is 

E&p) = -(2N+l)Ag -$$ @$$=@jl p=O, 1,. . . ,2Ni-1 
b 

(4.43) 

This bound is also the exact result for p=O and p=l. Equation (4.43) describes a 

parabola as a function of p with a doubly degenerate minimum at p=N and p=N+l 

corresponding to S3’F i. This suggests that (4.35) has the same general structure 

as the theory defined by (4.40); namely, the ground state is a y5 doublet, and the 

spectru.m has no mass gap. 

As a check on our choice of t.he variational wave function we can use it to 

calculate the ground state (p-N) for the nearest neighbor case 

Evar(N) ~-1 -(2N+l)Ag - k(N+l) 

This should be compared with Bethe’s esact result 

(4.44) 

EBethe(N) = -(2N+l)hg - ;(N+1)(2 log 2) (4.45) 

This comparison suggests that the trial state (4.40) of a symmetric spin function 

without correlations is a reasonable guess. 
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5. GAUGE THEORIES ON THE LATTICE 

Since the current opinion holds that non-Abelian gauge theories of quarks 

coupled to color gauge gluons comprise the class from which “the theory” will 

emerge, we would like next to discuss such theories. Being familiar by now with 

the description of a fermion field on the lattice, the new ingredient here is the 

gauge field. We shall. adopt the prescription of Wilson?and Kogut-Susskind’ in 

which we associate a gauge field with the links between lattice points. Hence, 

each link corresponds to an independent degree of freedom. The simplest model * 
of interacting fermions plus gauge fields is the Schwinger model, or QED in 

24 1x-Z dimensions. This model is soluble in the continuum; we shall show that it is 

soluble also on the lattice for strong coupling since then we can reduce it to a 

variant of the linear Heisenberg antiferromagnetic chain. We shall encounter 

once again the phenomenon that while the usual degrees of freedom become very 

massive there are low lying gauge invariant states corresponding to bound stztes 

of fermion-antifermion left behind. This result is intimately connected to the fact 

that our formalism for handling the fermion field allows for gauge invariant states 

wi.th fermions and antifermions at the same lattice site and no flux links. 

The same phenomenon occurs also for the non-Abelian gauge theory in 3x-lt 

dimensions. The most interesting results obtained in the large coupling limit 

are : 

(i) The only “gauge invariant states” which remain at low mass have 

the quantum number of physical hadrons. 

(ii) The resulting “effective strong coupling” theory preserves the full 

chiral symmetry of the exact theory (SU(3) X SU(3) for three colors 

and three flavors) and describes a theory of “massless bare hadrons” 

interacting with one another through a quark interchange mechanism 

of finite strength. 
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In obtaining these results for the non-Abelian gauge theory we were using I<o,qt-- 

Susskind formalism for the gauge field. In this formalism the Hamiltonian is 

written in terms of angle variables (rotors). An important question is whether 

by adopting the prescription to work in terms of angle variable one does not build 

in implicitly confinement. In this respect the Abe1ia.n case (QED), which is known 

experimentally not to confine, should serve as a test case. 

A. The Schwinger Model 

The Hamiltonian of the Schwinger model on a lattice in lx-lt dimension in the 

gauge 

is written as 

H=A 

A0 = 0 (5.1) 

C XT cW’tj,-j,) . . 
3132 ‘1 

Utjl-j2)Xj + 1. -j-+E21r) 

2 2Q 1 (5.2) 

in terms of the fermion field xj and the gauge field A(Q). The electric field E(Q) 

is given by 

E(Q) = -A(Q) (5.3) 

The index j runs over the lattice points, while Q runs over all the links. 

U(j,-j,) s II 
j,lQlj, 

U(Q) = UtQ* * +I) U(Qj +I j +2)* l l UtQj -l,j ) 
31’ J1 1 ’ 1 2 2 

(5 ’ 4) 

where the product goes over all links, Q, between the lattice points 1 
and j,. 

U(Q) = e %a A(Q) = e igo4Q) 
azl/A, g()=ga 

with the convention 

AtQ1 , 2) = -AtQ2, 1) = -N-Q1 2) , 

so that 

U(Q, 2) = U+(Q2 1) = U+(-Ql 2 , , , ) 

(5.5) 

(5.6) 

(5.7) 
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Note that Ihe electric flux has a direction associated with it. We have scaled all 

degrees of freedom by the appropriate powers’of A so a.s to work with dimension- 

less fields. The dimensionless coupling constant is go= ga. 

Formally the Hamiltonian (5.2) reduces to the usual continuum Schwinger 

model in the limit a- 0. The canonical commutation relations of the fermion 

field is given by (4.17), while those for the gauge field are 

[&WWN] = [W),Wm)] = 0 

[A(n), W.-O] = ibn m , 
(5 l 8) 

, 

The condition (5.1) does not fix the gauge completely. The Hamiltonian (5.2) is 

still invariant under time independent gauge transformation 

+ 
‘j 

-X; e -igOh j (5.9) 

A(Q j, j+l) --A(Qj j+l) + (“j+l - “j) , 

We can talk about gauge transformation at each given po.int joon the lattice. Under 

such a transformation only A. 
JO 

in (5.9) is different from zero. The generator of 

this transformation is 

G. = E(P-. 
-I- 

- 
JO JO’ Jo 

t-1} - E(Q. -Jo-1, j,) - gOxjox j, (5.10) 

The gauge invariance condition demands that G. 
JO 

annihilate every physical state 

G. I# lo physical 
>=o (5.11) 

which gives us the lattice version of Gauss law (VE =p). Using the canonical com- 

mutation relations (5.8) it is easy to compute 

[E(n), U(m)] = = gOeQoA(II)IIII m = goLJ(n)G 
n, m (5.12) > 
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Hence, the operator U acts as a ladder operator,on the eigenstates of E shifting 

them by the value 80. U(QI 2) is, therefore, an operator which create a unit flux 
, 

(of magnitude igi oriented from site 1 to site 2). We are interested in studying 

the strong coupling behavior of (5.2)) go--*. Note that this limit means that 

g= gO/a >r I/a as a -0. It is convenient to rescale the gauge field by means of a 

canonical transformation 

d(Q) = goAt 

&(I) = 1 E(B) 
80 

(5.13) 

so that 

(5.14) 

When U(n) operates on an eigenstate of & containing S unit of gauge flux on link n, 

i.e., 

g(n) IS(n) > = S I S(n)> (5.15) 

it increases the flux by one unit 

U(n) IS(n)> = I(S+l)(n)> (5.16) 

The resealed version of the Hamiltonian is 

kg: C&2(~) + C XT a(S(jl-j2)) n ,id(Q) 
Q . . 

JlJ2 J1 j,Cj, *j, 
1 

= Ho+K (5.17) 

From this expression it is clear that the free gauge field Ho is dominant for large 

go>>l. The ground state of Ho 

A 2 Ho= ~go~~2(Q) 
Q 

(5.18) 

is the state of zero flux at each link. All other states with one or more nonzero 

flux links lie higher by at least $ gili >> A. Since Ho contains no reference to the 

fermionic configuration, all zero flux states I$, O>, where $ is any fermionic 
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configuration, are degenerate. It is up to the kinetic term K to lift this degen- _ 

eracy. We are going to do perturbation theory in K. It is clear that, since 

U(j,-j,) connects I$, O> to state with nonzero flux link whose energy is Y *I j,-j, lgf$, 

there is no energy shift in first order. 

The first contribution is obtained in second order. Using the representation 

(4.26) we find the effective second order Hamiltonian 

H eff 
zz -A c (-Wj,-j,)) (-W,-j,)) x ( j, j, 

1 j,j,j,j, 
n 1 bf b -dj:;2)U(j,-j2) In> 

(5.19) 

The only intermediate states which contribute are those for- which the electric flux 

created by U(j,-j,) is annihilated by U(j,-j,). Hence, the sums are restricted to 

j,=j,, &=I,. The energy denominator En is 
^_ 

I = Ho I? U(Q) IO> =$gi Ij,-j, I {U(jl-j,) IO>} (5.20) 
j15K5j2 

Therefore 

(5.21) 

where 

C. - d.b. 
.l 3 J 

The gauge invariant condition (5.11) demands that any nonzero charge should be 

accompanied by the appropriate electric field. Since we limit ourselves to zero 

flux states there must be either a fermion-antifermion pair or nothing at each 

lattice site. Note that the huge degeneracy encountered has to do with the fact 

that our definition of the gradient allows particle and antiparticle to be at the same 
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site. As &for the Thirring model we can define ticnserved fermion charges Q and 

Q5 (4.33). All the zero flux gauge invariant s’tates have Q=O but differ in their 

Q5 eigenvalues depending on the number of sites, p , occupied by pairs, i.e., 

_ 

Q5 - -(2N+1) + 2p. Within this subspace rib(j)) =n,(j) 

& c (6w2ti2 t (1-n ) i c+ c H eff = - 2 
go .i,j, Q-j, 1 jl j2 j, j, 

j 

, = _ iI+ c 

80 jlJ2 

@(j1-j2)j2 ($ + s+ $- _ s3 s3 ) 

Q-j, 1 j, j, j, j, 

(5.22) 

where the spin operators have been introduced in the same way as for the Thirring 

model. For the low lying gauge invariant states in the strong coupling limit the 

Schwinger Fodel is equivalent to a linear Heisenberg antiferromagnetic chain, 

and the analysis applied to the Thirring model is relevant for this case too. More- 

over due to the extra convergence factor in the correlation function of the Schwinger 

model 

W,-j,) = 
(@Q-j,))2 

(5.23) 
Q-j, 1 

relative to that of the Thirring model (4.38) we can prove, provided we neglect 

boundary effects at the end points of the lattice so that Heff describe a transla- 

tionally invariant system, that there is no mass gap in the excitation spectrum. 

We encounter here once again a situation in which for l.arge coupling the normal 

excitations become extremely heavy. However there is a zero mass spectrum 

’ left behind (even when a -0) which after a ‘wave function renormalization looks 

perfectly relativistic. 

The continuum Schwinger model has been solved exactly. It is known that in 

the sector of gauge invariant states only fermion-antifermion bound states exist 

which cannot be pulled apart. This is due to the fact that in lx dimensions the 

Coulomb energy is proportional to the distance between the fermion and the 
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antifermibn. The same thing happens also for the lattice theory. All gauge 

invariant states must have zero total charge, Q=O, and a fermion at site j 1 must 

be joined to an antifermion at site j, by a flux line which costs an energy 

$gt Ij,-j, IA. 
24 

The Schwinger model is exactly soluble in the continuum. It is 

knov,z5that the solution is equivalent to the solution of the Thirring model plus 

extra massive photon whose mass is proportional to the coupling constant. Clearly 

we find the same result in the strong coupling limit of the lattice theory. The 

Hamiltonian, (5.22) is equivalent to the strong coupling Thirring model (4.38) aside 

from the extra factor l/ljl--j, I in Heff. The massive “photon” state will 

comprise of a quark and an antiquark joined together via a flux line (to ensure 

, 

gauge invariant e) . Since the “mass” of a flux link is proportional to the coupling 

constant, the mass of this state is proportional too to the coupling constant. In 

particular Banks, Kogut, and Susskind sho\!f8that the gauge invariant state 

Ir> = c bjU(lj j+l) d;+l IO> 
j ’ 

(5.24) 

represents a massive “photon” with zero momentum. 

In comparing the lattice Schwinger model spectrum to the continuum spectrum 

the following comments should be remembered. 25 The diagonalization of the 

Hamiltonian in the continuum leads to a spectrum consisting of a massive photon 

and a massless scalar boson (corresponding to a solution of the Thirring model). 

The full theory is therefore equivalent to a direct sum of two free noninteracting 

theories and in this respect is in a way uninteresting. If we restrict ourselves 

to the states created by the algebra of gauge invariant operators and choose to 

work in one of the noncovariant gzuges we can select out the massive photon part 

of the theory. This is the reason why in the usual continuum treatment one talks 

only about the massive photon state. The algebra of gauge invariant operators 

contains, besides the electric field,bilocal quantities defined by a split point method 
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which in the lattice language corresponds to having particles and antiparticles at 

different lattice sites with gauge field links between them. States created by 

these operators will be very massive in the large coupling limit. In particular 

the operator q(x) $(x) whose discrete analogue on the lattice does create the zero 

mass state is singular and must be defined in an appropriate way (by splitting the 

points and subtracting away the singularity in the limit). The usual normal 

ordering definition using the split point method decouples the zero mass state 

from the algebra of gauge invariant operators. On the lattice, however, the zero , 

mass states are created by the well defined gauge invariant operator $j$j. Hence 

the algebra of gauge invariant operators on the lattice is larger and does not select 

the massive photon. The question of the continuunz limit is certainly nontrivial and 

deserved much more study. 
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B. The Icon-Abelian Color Gauge Theories in 3x-lt Dimensions 

The results obtained in the preceding discussion can be directly generalized 

to non-Abelian gauge models in higher dimensions. As in the preceding discus- 

sion, because our formalism-includes gauge invariant states with fermions and 

antifermions at the same lattice site and no flux links, there are low mass states 

in the strong coupling limit. We follow the same prescription of Wilson’ and 

Kogut and Susslrind’ for the gauge field in 3x-lt dimensions. For the fermion 

field the gradient operator as defined in (1.6) leads to the Hamiltonian 

H = P-1 electric part of 
0 gauge field 

wli er e 

S\(T-T) “S’(j -1 )6. 
1 1 j2,~26j3y~3 ’ 

et.c. 

and U(ji-72) is a product of terms of the form 

(5.25) 

. 

(5.26) 

(5.27) 

where A(J) are the canonical link fields, and h are c-number matrices belonging 

to a specific (N, R) representation of the gauge group as determined by the choice 

of representation for the fermion fields. Equation (5.2) defines the obvious 

straight line path on the lattice for the flux links joining Tl to T2. 

In the strong coupling region of large go the important properties of (5.25) 

are: 

1) The low mass states are those with zero flux links and an arbitrary 

configuration of fermions. All others are pushed up in energy above - go 2A . 
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2) When U(f) hits an unoccupied link-i. e., one for which no gauge field 

has been excited-it excites the link and increases the energy of the state by - g$. 

At this point we proceed in close parallel to the discussion of the Schwinger 

model with strong coupling. Focusing our attention on the sector of gauge invari- 

ant states, we study the way in which the fermionic part of H mixes all-the zero 

energy eigenstates of Ho (gauge) that have no flux links to split their degeneracy. 

In a theory with the SU(3)x [SU(3j] color symmetry of the quark model all states 

with (qa or (qqq) at a lattice site in color singlet states are included in the low 

lying sector of gauge invariant states. These are the states having the quantum 

numbers of ordinary hadrons. 

If we choose the spinor representation 

we can rewrite the fermionic part of H as 

r- 
K = c iz (rl-T2) U(Tl-T2) r(jl)zB(j2)-D(jl)zD’(j2) 1 (5.25) 

TlT2 

As before K moves a quark in a straight line from T2 to T1+T2 (or an antiquark 

from Tl to T2) and at the same time excites a unit of gauge flux on each intervening 

link, Therefore we must go to second or higher order in K in order to mix the 

’ degenerate color singlet fluxless states. 

Furthermore since 6’(O) = 0, the action of K in second order allows scattering 

and interaction among these states but it introduces no self mass term involving 

only quarks all at the same lattice site. Hence our effective Hamiltonian for the 

low lying gauge invariant states of “bare colorless hadrons” ,corresponds to a 

theory of bare massless strongly interacting particles. Our starting point is a 
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strong coupling theory with the full chiral SU(3)‘xSU(3) symmetry if we choose a 

fundamental quark triplet. Instead of having to drive the pion mass down to zero 

to insure PCAC we have a zero mass starting point and must solve the problem 

of generating the hadronic masses either by a dynamical breakdown mechanism 

yet to be explored or by explicitly introducin, w chiral breaking interactions into 

H ab initio. 

The real work of solving for the hadronic spectra and interactions still 

remains to be done. What we have formulated here is a starting point in terms -. * 
of a chirally invariant gauge theory (of color) which reduces in the strong coupling 

region to a system of interacting “bare” particles with hadronic quantum numbers. 

In the gauge invariant sector the quark and gluon degrees of freedom are frozen 

out since such states with excited fluxlinks are pushed up to very high energy 

above =g$ > A. This is a very different starting point from earlier formulations 

that destroy local chiral invariance by splitting fermion field components onto 

different lattice sites. 

In conclusion we make some general observations: 

1) According to (5.28) K acting on a fluxless gauge invariant state moves a 

quark or an antiquark, creating the associated flux link. To second order it can 

either move a quark (or antiquark) from an initial site to an intermediate one, and 
i/ 

then move it back again to where it started, thereby cancelling the flux link, since 

U(j,-j,) U(j,-j,) = 1; or it can move both a quark and an antiquark from site j, to 

j, without creating flux links in the final state. This is illustrated in Figs. 12a 
/ 

and b. This amounts to a kinetic energy term as we saw in the analysis of the 

Thirring and Schwinger models. 

2) If there are two hadrons present on different sites, the second order 

application of K can lead to a quark interchange interaction between them, as 

illustrated in Fig, 13. Starting from color singlet states the hadrons will also 
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end up as jndividual color singlets if no flux links are created in the final state. 

However, SU(3) quantum numbers can be chanbed. 

3) A single three-quark baryon can move from one site to another on the 

lattice only as a result of 3rd and higher order applications of K. This is because 

each order of K can move but one quark at a time. This means that baryonic 

masses are displaced relative to the zero order degenerate eigenvalue of Ho by 

factors of order l/g: in contrast to the l/g: shift from second order application of 

K to the meson states. The significance of this for hadronic mass spectra and for 
.i _ 

the choice of coupling strengths gi remains to be studied. So does the entire 

question of how our bare massless mesonic states become dressed to form the 

true physical. states containing (qq) clouds with which they can interact via the 

quark inter:hange mechanism. . 

4) In the gauge invariant sector, all exotic states of nonzero triality contain 

flux links and are therefore pushed very high up in energy above gih . Exotic 

states of the second kind-namely, states such as (q~)octet(q~)octet singlet with 

quarks and antiquarks finally coupled to color singlet configurations, but not con- 

tained in the normal quark model-do occur. However, whereas the vacuum and 

ordinary cl5 mesonic states will have their degenkracy split and can be pushed 

down in energy with second order application of K, these exotics of the second kind 

are shifted only in higher order since it takes fourth order application of K to move 

them on the lattice. Hence, if they were stable, we would expect to find them 

lying higher in th.e energy spectrum. In fact, it is easy to see that such states 

j can decay, in second order, to ordinary separated q(r states. 

5) Glue balls-that is states of pure gluon, or flux link, configurations-lie 

very high in energy above our low mass gauge invariant sector since they will have 

the energy of at least four flux links, 2g$. 
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* FIGURE CAPTICNS 

1. The equivalent potential of the $4 theory. 

2. The lattice notation. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

The ground state energy .as a function of the vacuum expectation value c 

for fixed h and different f, for the momentum space variational calculation. 

Phase diagram for the momentum space calculation in the presence of an 

external source J. 

The single site anha.rmonic potential. 

The “kink” configuration. 

The radial potential. 

The 0 -potential. 

The level structure for the renormalization group calculation of the spin 

1 problem. 

The levels in the anharmonic potential of the $4 theory. 

Energy momentum dispersion relation for a free Dirac particle. 

Motion of a q?j state on a lattice to second order l/g2. (a) q (or c) moves 

to a different lattice site exciting the intervening flux links and then returns; 

(b) q moves to a new site and is then followed by the <. 

13. Quark interchange interaction between mesons. 
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