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ABSTRACT 

Weyl’s unified theory of the gravitational and the electromagnetic 

field is directly generalized to a unified theory of the gravitational 

field and a non-Abelian, internal symmetry gauge field. We show that 

a second gauge field naturally arises which transforms homogeneously 

under transformations of the gauge group. Certain formal similarities 

with a quark confining model of the strong interactions are pointed out. 
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In a series of papers [l] beginning in 1918, Weyl developed a unified theory 

of gravitation and electromagnetism which was based on a generalization of 

Riemannian geometry. While the theory failed as a model of the universe, it 

has had a seminal impact on theoretical physics because it contained the essence 

of the gauge group concept. Indeed, the name “gauge group” is indicative of its 

origin in Weyl’s theory. 

In this paper we shall generalize Weyl’s theory in a straightforward way to 

obtain a unified theory of the gravitational field, and a gauge field transforming 

according to a non-Abelian internal symmetry group. We shall see that this 

theory necessarily contains two Yang-Mills fields-one which is introduced by 

hand through the Weyl ansatz and which transforms inhomogeneously under 

gauge group transformations; and another which becomes prominent in certain 

contractions of the Riemann tensor and which transforms homogeneously under 

gauge group transformations. Some formal similarities to a gauge theory of the 

strong interactions will also become apparent. 

We shall first outline Weylvs theory [2]. In Riemannian geometry the trans- 

ference of the direction of a vector from a point P to a point P’ depends in general 

on the path taken. Weyl goes beyond this by permitting a path dependence for the 

transference of length. As a result it is only possible to compare lengths 

measured at one and the same world point. Suppose we assume the existence of 

a metric, g 
Pv ’ 

and define a length 

where d are the coordinate differences of the endpoints of the length in ques- 

tion. Suppose further that the length is displaced along a certain curve, 2 =2(t), 

from the point P(t) to the point P’(t+dt). Weyl makes the ansatz that the length 
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changes by a definite fraction of Q 

de2 
dt= -Q2 J$ 

where $I is a function of t but independent of Q. Weyl then assumes that the 

components of a vector remain unchanged (in a certain coordinate system) 

under an infinitesimal parallel displacement, so that 

dVP -= 
dt 

-If dxg VA 
Aa37 * 

Consistency between eqs. (2) and (3) requires d@/dt to be linear in dx”/dt: 

(2) 

(3) 

(4) 

and leads to the relation 

Under a gauge transformation ’ 

we find that 

(f-5) 

(7) 

from eq. (2) and I? 
P,hQ 

remains unchanged. The gauge transformation of eq. 

(6) corresponds to a change of scale. However there is a marked similarity [3] 

to the gawe transformation of electrodynamics which becomes apparent when 

we make the substitution 

and let A --, exp[iO(x)]. We shall exploit this similarity in generalizing the analog 

of the electromagnetic field to a non-Abelian gauge field. 
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Let us assume the existence of a ~~rnetric” tensor which, besides being a 

second rank covariant tensor under general coordinate transformations, is a 

matrix in the fundamental representation of SU(N) 

where ?!a is a matrix representing a generator of SU(N) for a=l, 2, . . . , N2-1 

and !?a is proportional to the identity matrix, T, for a=N2. We define an inverse 

bY 

(10) 

with tildes indicating matrical quantities while gPv= 6Pv . Consider a fllengthl*, 

P =gcLvddxV , (11) 

which, in analogy to eq. (2)) changes by a definite fraction upon displacement 

along a curve 

where g x “c = %“c - “CE. We provisionally let 

and rewrite eq. (12) in the form 

where 

(12) 

(13) 

(14) 

(15) 

Note that the part of y2 proportional to the identity matrix, T, is unchanged upon 

displacement along a curve. 
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We now generalize eq. (3), which describes the effect of an infinitesimal 

(19) 

parallel displacement on the direction of a vector, to 

N dx” D& = ?$oVcr dt 

where gOz=$%+"cB" andFQ! =Fa! 
P w’ 

If we let 

Tp=E va 
w 

then eqs. (14) and (16) imply 

(16) 

(17) 

where 

F 
P-L,va 

= P$og 
Q/J * 

Algebraic manipulation of eq. (18) gives 

2FP, v(T = (au+iiux)~pv + ‘d, + iX,x)zPo - (aP + L$x)j&, (20) 

in close analogy to eq. (5). Now if we consider a local gauge transformation, 

=sw, of Epv 

%J + s-lg s 
PV 

then we find that gauge covariance of eq. (15) requires 

(21) 

x 
P 

-) S-1X.PS-iS-18pS (22) 

so that xP is a Yang-Mills gauge field 141. In addition, eq. (20) implies that 

F ~ v(T (and thus ?Fo) transforms homogeneously 
> 

F 
PI, vu 

- s-lr” s . 
Pu,VU (23) 

Equation (20) also reveals an interesting facet of the general coordinate trans- 

formation properties of P 
P,VU’ 

Under a general coordinate transformation we 
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find 

so &&P - Pa-a * 

VfJ 
= rvoT 1s a tensor with respect to general coordinate transforma- 

tions except for the coefficient of ?, namely I?: for a=N2, which is not a tensor. 

Derivatives which are covariant both under general coordinate transforma- 

tions and gauge transformations are defined by 

(25) 

(27) 

for a scalar, covariant vector and second rank covariant tensor respectively. 

We note that 

(28) 

by eqs. (27) and (20). 

We shall now turn to an examination of the covariant derivative of “deter- 

minants’1 to obtain the generalization of the usual form of the covariant deriva- 

tive of a density. Let TPv be a tensor, 

and 

(29) 

(30) 

where T [. ..l means a totally symmetric sum of products of the matrices. Then 

following our definition of covariant derivative, eqs. (25)) (26)) and (27)) we see 
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which, taking account of the total antisymmetry of v c&G’ 
leads to 

D7v = 
( 
a7’z,” - F70 

) 
v (32) 

with FT = r”” (Y7-’ 
The curvature tensor can be obtained from the commutator of covariant 

derivatives of a vector, VP = V;?‘, 

( DUD,-DAD& = -RF&V; . (33) 

After some algebra we find 

Rpa = -i$” 
VhU 

F” xT”+fy 
v oh 

*OTa- P~o(F$AoP) + F$o(q&o;F”) (34) 

with - 

and 

(35) 

(36) 

The Ricci tensor is 

Its antisymmetric part is 

2A~o=R~o-R~v = -2iFov ~?!‘~+tio~o!?~+ (Fp xpr )x Ta 
VY 60 

with 

(38) 

(3% 

Another nontrivial contraction of the curvature tensor is 

PP appears in the antisymmetric contractions of the curvature tensor (eqs. (38) 

and (40)) through the second rank tensors Rev. If we eliminate the nonvector 
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part of ‘;L by defining 

p =F -ATTry 
P P N P (41) 

then we find that this generalization of Weyl’s model contains a second Yang- 

Mills field which transforms homogeneously under gauge transformations 

P P J1”r;s , (42) 

and as a covariant vector under general coordinate transformations. Further- 

more, one finds that its gauge covariant curl, 

(43) 

naturally arises in contractions of the curvature tensor. g, would appear to 

play the same role with respect to F; as F” plays with respect to X 
c1’ 

The 
lJV 

set of quantities, X p’ 
P F 

v’ pv’ and ??I 
PV ’ 

with their attendant gauge group 

transformation properties are in complete analogy with non-Abelian gluon fields 

which have been used to construct a field theory of the strong interactions with 

quark confinement [5]. The geometrical origin of !?G together with other con- 

siderations have led us to propose a unified theory of gravitation and the strong 

interaction which is described elsewhere [6]. 
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