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1. INTRODUCTION 

Aside from their intrinsic interest, Dirac monopoles in non-Abelian gauge 

theories, l-5 may be of relevance to the issue of quark-confinement and provide 

a possible field theoretic foundation for dual string models. 3,697 In this context 

Mandelstam’ pointed out that at most (N-l) topologically distinct types of Dirac 

monopoles exist in a local SU(N) gauge theory. These monopoles are in a one 

to one correspondence with the (N-l) nontrivial elements of the center ZN of 

SU(N) . 3 Later, Wu and Yang4 emphasized the importance of the distinction 

between the local and global symmetry groups, taking the example of SU(2) and 

O(3) = SU(2)/Z,. While locally isomorphic, they differ in their global structures, 

one is simply connected, the other two-fold connected. Accordingly, there are 

no monopole solutions for SU(2), but there is one for SU(Z)/Z,. In general, we 

can introduce only (n-l) varieties of Dirac monopoles into a gauge theory if its 

global group is n-fold connected.8 In this paper, we present a Lagrangian theory 

of Dirac monopoles with a non-Abelian gauge symmetry. The gauge theory group 

is taken to be SU(N)/ZN, but the generalization to any other compact groups is 

straightforward once its Lie algebra is known. 

A Lagrangian formalism was once attempted’ following the work of 
” 

Mandelstam. a However the scheme is imperfect on two counts: (i) an unneces- 

sary concept, the measuring operator, plays an essential role, and (ii) the 

problems inherent to Dirac strings, such as Dirac’s veto 179 come about. The 

measuring operator was introduced to construct a gauge invariant magnetic 

charge. In the present paper, the path-dependent formulation 10 is used for this 

purpose. The problems associated with the Dirac strings are solved in the light 

of the global formulation of gauge theories. 4 Our paper is organized as follows. 
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In Section II we formulate a theory of Abelian Dirac monopoles with strings 

in the framework of the global formulation of gauge theories. The difference 

with the theory of Wu and Yang’ is as follows. In their theory of Dirac mono- 

poles without strings, two potentials Acl and A;L are taken on two overlapping 

domains V(A) and V(A’) about a monopole. The definition of these domains is 

quite flexible. We can immediately see that, without violating the global 

analysis, the domain V(A) is extensible to the (3+1) dimensional space-time 

minus a certain world sheet. 5 Such a maximum domain is used for a coordinate 

patch in the present formalism. The Dirac string is defined as the boundary of 

the coordinate patch at each time. It is purely a global geometrical concept. 

The potential Acl(x) and the charged field $(x) are not defined along Dirac strings. 

As the electromagnetic field Fpy (x) is the gauge invariant representative Acl(x), 

the path-dependent field $(x, P) is the gauge invariant counterpart of 4(x). Only 

Fpu(x) and 4(x, P) are defined all over space-time. It is pointed out that the 

present theory can be elegantly formulated in the theory of fibre bundles. 11 

In Section III, starting from elementary concepts in fibre bundles, we for- 

mulate a Lagrangian theory of Dirac monopoles with a non-Abelian compact 

gauge symmetry. 

II. ABELIAN MONOPOLES 

We first formulate a Lagrangian theory of Abelian monopoles. It will be 

seen to share all the essential features of the non-Abelian theory. Magnetic 

monopoles are assumed to be classical point particles tracing out world lines 

zti) 5 
P l 

The electromagnetic field Fpv(x) is in interaction with the electrically 

charged field C+(X) and the monopoles. The Maxwell equations are 

(2.1) 
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and 

(2.2) 

where the magnetic current j:(x) must have support only along the world lines 

0). 
zP - 

jFtx) = c gti) / ij4(x-z(i)) & 
i 

The magnetic charge g (9 satisfies the Dirac quantization condition 

,(i) = 27mti)/e 9 ,(i) = . integer 

(2.3) 

(3.4) 

as we shall later show. 

We define a manifold M to be the (3+1) dimensional space-time R4 minus 

these world lines z@. 
P 

Because 8,FlV(x) = 0 for x E M, there must exist a gauge 

potential AP (x) . 

(2.5) 

As originally discussed by Dirac, ’ at each time t, the potential AP(x) becomes 

singular along so-called Dirac strings L(A) each terminating at one monopole. 

The positions of strings can be changed arbitrarily, Li(A1) - Li(A2), by a gauge 

transformation 

A2&~~ = Alrutx) + k ~ps21(x) szl(x)-l 
(2.6) 

with S21(x) =exp{-ieAZl(x)}. 

Recently Wu and Yang4 made a simple but important observation. According 

to them, the above encounter with singularities merely indicates that we cannot 

use a single potential A,,(x) all over space-time. Obviously the domain on which 
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Ap(x) is defined as a differentiable function is the manifold M minus the world 

sheets swept by Dirac strings. We denote this domain by V(A). Similarly the 

field $(x) is defined as a differentiable function on the same open set V(A). 

We call an open set V(A) a coordinate patch by regarding V(Al) #V(A2) 

provided that Al(x) #AZ(X) even if V(Al) and V(A2) are the same as subsets of 

M. A coordinate patch V(Ai) fixes uniquely a potential Ai( an electric field 

Gi(x) and Dirac strings L(Ai) . The quantities on different coordinate patches 

are related by the gauge transformation (2.6). The electromagnetic field 

FpV(x) is gauge invariant, so, it does not depend on the choice of coordinate 

patches to calculate it. Fp,(x) is differentiable on M. In the terminology of 

fibre bundles, 11 the gauge potential Acl and the field $ are respectively a con- 

nection and a cross section on the principal fibre bundle P(M, G), G= U(l), where 

the covering of M is provided by a set of coordinate patches V(Ai). For the 

uninitiated, a fibre bundle dictionary is provided in Ref. 4 and the connection 

with gauge fields is amply discussed in Ref. 12. Here we shall assume familiar- 

ity with at least the basic concepts of fibre bundles. 

Electrodynamics without monopoles are described by the principal fibre 

bundle P(R4, G) , G= U(l), where a single coordinate patch covers R4. The 

essence of the present theory is the singular behavior of A,,(x) at the boundary 

of V(A), which prevents the extension of the covering V(A) over R4. We shall 

now analyze this behavior. 

We take a loop C around a Dirac string L(A) at fixed time. We choose 

another coordinate patch V(A’) which covers the loop C as well as the string 

L(A). These two potentials are related by (2.6) or 

AC1 (x) = A;(x) + apA (x) . (2.7) 
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We integrate (2.7) along the loop C from a point x0 to x0: 

(2.8) 

The term 

does not vanish because A(x) is in general multivalued. However, 

must be single-valued for the gauge transformation (2.6) to be 

definable. We obtain 

4 dypAp = jb dypA;l + 27m/e , n = integer . 
C C 

(2.9) 

Equation (2.9) is the essence of the Abelian monopole theory. 
4 - 

Now let us continuously shrink the loop C to the string position L(a) in (2.10). 

Since AL is finite along L(A), $ dypAL -+ 0, hence 

d LtA) dypAp = 2de (2.10) 

with the integration being performed along an infinitesimal loop C around L(A). 

This condition characterizes the singular behavior of Ap(x) along the Dirac string 

L(A) l 
Equations (2.9) and (2.10) are equivalent to one another. They define 

uniquely the fibre bundle P(M, G) with the connection A . P 
The Maxwell equation (2.3) with (2.4) is also equivalent 

fixed time we take a closed surface S= 8V enclosing a single 

loop C around it. We obtain 

da F = 
PV Pv 

dycl(Acl-A;) = 27m 

by use of (2.9). FpV(x) is a differentiable function and a F* 
v PV 

,(x) = 0 holds for x 

in the volume V except for a point where the monopole exists. We define the 

to (2.9). At each 

monopole with the 

(2.11) 
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distribution GPv(x) for x eR4, such that 

~/Jx) = F,J~~ , xeM (2.12) 

and 

I dVc, avF;v = 2nn (2.13) 
V 

Equations (2.12) and (2.13) uniquely define 9 ?* v TV in the form (2.3) with (2.4). 

Thus the Maxwell equation (2.3) is purely a kinematical equation. 

Our goal is to give the action principle for the Abelian monopole system. 

Dirac used a single coordinate patch for this purpose. This method as such 

results in some serious problems associated with the Dirac strings. The main 

difficulty is known as Dirac’s Veto. 1 In order to derive the field equations and 

the proper Lorentz equations for both types of charges from his action principle, 

Dirac had to impose the extra condition that his strings must never cross an 

electrically charged particle. This veto is not derivable from his action prin- 

ciple. 13 From our global outlook of this problem, the source of this difficulty 

is apparent. The electrically charged field $ is being used in a region of space- 

time where it is not defined. This observation then implies the need to work 

with gauge invariant quantities in constructing a workable action principle. To 

write down FPV(x), Wu and Yang 4,5 use two potentials with a subsidiary con- 

dition (2.9). While this method solves the problem caused by the Dirac strings 

the actual formalism seems rather tedious especially when we generalize their 

scheme to non-Abelian monopoles. We choose to express FPv(x) in terms of a 

single potential and Dirac strings, as in Dirac’s original paper, ’ but with a 

subsidiary condition (2.10). For the electrically charged field $(x), we shall 

use a path-dependent formulation to construct its gauge invariant representative. 

Our essential observation is that the potential AP(x) is defined almost everywhere 
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in R4 and, that conditions (2.9) and (2.10) are equivalent. 
._ 

In fact, the measure 

of the domain R4-V(A) is zero. First we notice that 

F/Jx, L(A)) = a,/+,(X) - $,A,(X) , (2.14) 

with the global condition (2. lo), is a distribution on R4 such that - 

Fpv(X, L(A)) = FpVO , x ~Vt4 , (2.15) 

Al ,d~,&JU44) = 2&e , J (2.16) 

and 

J V 
dVPaVFPV(x, L(A)) = 0 . (2.17) 

In (2.16), S is an infinitesimal area crossed by the string L(A). Equation (2.16) 

is a consequence of (2.10) while (2.15) and (2.10) follow from (2.14). 

Now we introduce another distribution GPv(x, L(A)): 

G,Jx,L(A)) = ~gti)/dudT s4(x-yti)). 
a(y(i), yW) 

a; $ , (2.18) 

0) The yP (o, T) labels the position of the points on the world sheet swept out by the 

Dirac strings Li(A) Is. It is trivial to see that 

and 

Gpv(x, L(A)) = 0 , xfV(A) , (2.19) 

/ , (2.20) 
S 

dyJ$,@, L(A)) = 2m/e 

J dVp avGEv(x, L(A)) = &m/e . (2.21) 
S 

Combining (2.14) and (2.18)) we deduce that 

$Jx) = FpV(x, L(A)) - G;v(x’ L(A)) (2.22) 
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with (2.10) is a distribution defined on R4 such that (2.12) and (2.13) are satis- 

fied. By a direct calculation, ’ (2.22) yields 

&(i) 
av$;v(q = Cg@)J -&- S4(x-z@)) . (2.23) 

This is nothing but (2.17) and (2.21). 

The distribution c,,(x) depends only on a potential Ap and the monopole 

position z(i). 
P 

The string L(A) is not a dynamical variable because of the topo- 

logical constraint (2.10). Our formalism differs from Dirac’s at this point. In 

fact, when we do a variation in L(A), the potential Ap changes to guarantee (2.10) 

in addition to Gpv(x, L(A)). Then the net effect on F ,,(x) in (2.22) is zero. 

The electromagnetic field FpV(x) is expressible by a single potential, as we 

have shown, because the difference between two potentials AcI(x) and A,‘(x) is a 

pure gauge term. We cannot use a single field q(x) all over space-time. 

We introduce the gauge invariant field by the path-dependent formalism. 

Following Mandelstam, 10 we associate a path P to each space-time point x. 

P is a semi-infinite path leading from infinity to x. If the path P exists in a 

single coordinate patch, we define 

WG’) = exp[ie ix dy,pp] @lx) (2.24) 

where the integration is along the path P. For the path P to be covered by two 

coordinate patches V(A1) and V(A2), we take a point x0 E V(A1) n V(A2) to -define 

(2.25) 
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with Szl(x) being the gauge transformation (2.6). Equation (2.25) does not 

depend on the choice of x0. When we use more than two coordinate patches to 

cover the path P, we define +(x, P) by an obvious generalization of (2.25). 

$(x, P) is gauge invariant, or it does not depend on the choice of coordinate 

patches to define it. 

Clearly the path P does not correspond to any new dynamical variable. It 

is not difficult to prove that the path-dependence is given by 

Nx, P’) = exp (2.26) 

where S is a surface bounded by P and P?, The consistency of the path-dependent 

formalism is assured by (2.9). Instead of using #(x)‘s on each coordinate 

patches we can use a single @(x, P) , subject to the kinematical constraint (2.26). 

Having thus made all the above technical preparations, we can give the 

action as 

d = /d4x g(x) - m C Jcdi) (2.27) 

where the Lagrangian is taken, for instance, to be 

.9(x) = -$ Qp) PJX) + iapm, P) I2 

+ c,IQ,(x,P) I2 - c41qw,P) I4 (2.28) 

with (2.22)) (2.10) and (2.26). The dynamical variables are A&x), +(x, P) and 

the monopole position z (9 
P * 

The variation S@ is taken independently to give 

aim,p) = -2 c,$(x,P) + 4 c,I~~x,P)I~ CP(X,P) (2.29) 

The variation dAct must be supplemented by S+ due to the kinematical constraint 

6+(x, P) = -ie $(x, P)]* dyc16Ap . 
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We obtain: 

The variation 6~:’ yields 

avGpv(x) = ie $*(x, P)?$ @(x, P) 

d2z ti) ,(i) 
m -Ai = g@)$* (z) 2 

dS2 /.LV dS 

(2.30) 

(2.31) 

with g(i) = 2rm(i)/e . The global condition (2.10) with (2.22) is replacable by 

(2.23). The equations of motions are (2.29), (2.30), (2.31), (2.23) and (2.26). 

Naturally they are gauge invariant. 

When we take c2=c4=0 in (2.28)) the system is made up of a massless elec- 

trically charged field C#J(X, P), a massless gauge field FpV(x), and the classical 

monopoles with mass m. When we take c2>0 and c4>0 in (2.28)) the system 

would undergo spontaneous symmetry breakdown. This could give rise to 

Nielsen-Olesen vortices 14 bridging monopoles; the vortices exemplifying possible 

coherent vacuum excitations. 7,8 

III. NON-ABELIAN MONOPOLES 

We proceed to a theory with non-Abelian gauge symmetry. To emphasize 

the topological aspects of monopoles, we make use of the compact terminology 

of fibre bundles. 11,12 However as the formalism is completely analogous to the 

Abelian case, readers will follow our arguments without much knowledge of the 

theory of fibre bundles. 

We consider a principal fibre bundle P(M, G*) and a connection Acl on it. 

Being simplest and physically most interesting, the structure group G* is taken 

to be the matrix Lie group SU(N). The base space M is defined by subtracting 

a certain number of world lines from the (3+1) dimensional space-time R4. We 

call these world lines the trajectories of classical Dirac monopoles. At each 
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time t, we attach a string L to a monopole., The position of the string is 

arbitrary. These strings trace out world sheets in M whose boundaries are 

the trajectories of monopoles. By subtracting these world sheets from M, we 

get an open set V i. All possible such open sets make up a system of coor- 

dinate patches that covers M. For historical reasons’ we call the string L the 

Dirac string. 

A connection All on P(M, G*) is the assignment of a differentiable function 

Ai&x) for each coordinate patch Vi. The function AiCl(x) takes value in the Lie 

algebra of G* . It obeys the relation 

A2&@ = f5’21(x) AlpS21(X) -' -$ aps21(x) s~~(x)-~ (3.1) 

for xol n v,#o with s2+x) EG. 

We define the curvature matrix 

F,Jx) = a,&(x) - $,A,(@ - ie A,&~), Au(x) 
C 1 

on each coordinate patch. The relation 

F 2pvw = s2pJ F/Jx) s2pr1 

follows. The covariant derivative is defined as 

VvFpV(X) = $,Fpv(X) + ie 

And the Bianchi identity 

. 

VVF;v(~) = 0 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

is the integrability condition for the existence of Acl(x) on each coordinate patch. 

It is important to remember that the group G*=SU(N) acts on the connection” 

AC1 through the adjoint representation. The matrix S21(x) satisfying (3.1) is not 

unique; there are N such matrices, w mS2 ,(x) where w = exp 24/N and 

m=O, 1,2 , . . . , N-l. In other words our structure group is actually G= SU(N)/ZN, 
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ZN being the center of SU(N) . The discrete Abelian subgroup ZN has the form 

ZN = e, we, w2e,. . . , w 
N-l, (3.6) 

where e is the unit matrix. 

For physicists, Ap and F 
PV 

are known as the gauge potentials and the gauge 

field respectively. Equations (3.1) and (3.3) are the gauge transformations. 

Only the difference from the usual gauge theories is that a single coordinate 

patch cannot cover the manif old M. Indeed the existence of monopoles is cor- 

related to the global structure of the gauge group. 

Let us denote by V(Ai) a coordinate patch to which a gauge potential A. has 
l/J 

been assigned. The coordinate patch V(Ai) uniquely defines a Dirac string L(Ai) 

at each fixed time. It is essential that Ai.Jx) is singular as x -L(Ai). Other- 

wise, the coordinate patch V(Ai) would be extendable to cover M. This would 

result in a trivial topology of the field manifold and there will be no monopoles. 

In what follows we analyze mainly this singular behavior of A&(x) as x - L(Ai). 

We first define the parallel transport U(x, xo;P) which maps a path P in the 

base space M to a path P* in the group space G* as x moves from x0 along the 

path P. In the case when P is covered by a single coordinate patch V(Ai) , we 

define 

. (3.7) 

Where T indicates the ordering of A. 
l/J 

along P. Taking three points x, x1 and 

x0 on P , we find 

Ui(X’ xo;P) = Ui(X’ xl;P) Ui(X1, xo;P) * (3.3) 

If two coordinate patches V(Al) and V(A2) cover P separately, the relation 

U,@, xo;w = s2p~ u4x,x0;w szl(xorl (3.9) 
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is proved. In general, when P is covered by n coordinate patches V(Ai), 

i=l, 2, . . . , n, with x eV(Al) and x0 eV(A,), define 

Uln(X’ x(p) = up> x1;w s12(x1) u2P+ x29) 

x S23(x2). * * Snml, ,(“,-ll u,tx,-l’ x(p) - (3.10) 

by choosing xi E P arbitrarily from V(Ai) n V(Ai+l). The definition (3.10) does 

not depend on xi nor on V(Ai) except for x, x0, V(Ai) and V(An). The proof is 

easy with the aid of (3.8) and (3.9). 

We take a loop C around the Dirac string L(Ai) at fixed time. We choose 

another coordinate patch V(A2) which covers the loop C as well as the string 

L(AlL Alp and A 
2P 

are related by (3. l), or 

ul(x’xo;c) = SW U2(x,xo;C) S@,)-l (3.11) 

when x makes a complete turn along the loop G, we obtain 

U&x0, xo;C) = @x0) U2(XO’ xo;C) morl ’ (3.12) 

Here, we have distinguished $(x0) from S(xo) because S(x) is not single-valued 

in general. This is so since S(x) is an element of G*=SU(N) but our structure 

group is G=SU(N)/ZN. S(x) and S(x) can be different by an element belonging to 

the center ZN: 

S(x) = ornS(x) (3.13) 

with w = exp[27ri/N]. I n our fibre bundle, S(x) and S(x) cannot be distinguished. 

Later, we shall give an example in which these two are distinguishable. 

Let us continuously shrink the loop C to the string position L(AI) in (3. 12). 

Because A 
w 

is finite along L(A1), U2(xo,xo;C)~1, hence 

ul(xo’xo;c -0) = cd m . (3. 14) 
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This result can be used to fix the singularity of AP(x) as x - L(A). Equation 

(3.14) reads 

T exp{ie $dyPAP} = om (3.15) 

where the integration is along an infinitesimal circle around L(A) at fixed time. 

This relation is satisfied if and only if6 

d dyPAP = F A(x) 
(3.16) 

n=m+NI, I= integer . 

where A(x) = S(x) A S(x)-‘, S(x) being an arbitrary element of SU(N) and h being 

the last generator of the Lie algebra, viz. , 

diag (1, 1, . . . , 1-N) . (3.17) 

Thus there is a gauge transformation which set the singularity in the last compo- 

nent Of APtx): 
dyPA; = 0 , i#N2-1 

(3.18) 

dyPA; = % , i=N2-1 

First it appears that there exists an infinite varieties of string singularities, 

corresponding to all integers n as in the Abelian theory. This turns out to be a 

gauge illusion. 8 For completeness we prove this fact. 

We consider 

where C is an infinitesimal loop around the Dirac string L(A). There is a one- 

to-one correspondence between AP(x) and U(x, xo;C): 

ie AP(x) = aP U(x, xo;C)* U(x, xo;C) -1 (3.20) 
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U(x,xo;C) maps the loop C to a curve C(A)* in SU(N), whose end-points are the 

unit element e and w m, an element of ZN. Suppose there are two potentials 

Ap(x) and A;(x), yielding (3.16) with m and n, n=m+BN (1#0), respectively. The 

corresponding curves C(A)* and C(A’)* have the joint end-points e and w 
m . 

Because SU(N) is a simply connected space, these curves are homotopic to one 

another. This implies the existence of a continuous gauge transformation which 

connects Ap and A’ . 
P 

Therefore, the two string singularities are not distinguish- 

able. In all there are only N-l varieties of topologically distinct string singu- 

larities .8 

Having completed the analysis of the singular behavior of Ap(x), we proceed 

to formulate a Lagrangian theory of classical monopoles. 

We take a semifinite path P leading from infinity to a point x. Two arbitrary 

points on P are space-like separated. Following Mandelstam 10 and Bialynicki- 

Birula15 we define 

Fpv tx, W = UP, P)-’ F,Jx) U(x, P) (3.21) 

where U(x, P) = U(x, xo+=;P) with (3.10). It is proved that FpV(x, P) is gauge 

invariant, or 

it. 

The path 

that it does not depend on the choice of coordinate patches to define 

P does not correspond to a new dynamical variable. For another 

path P* leading to x, we find 

FJx, P’) = W(P, P’) FJx, P) WP, P’) 
(3.22) 

W(P,P’) = u(x,P)-l U@, P’) 

When P’ differs from P by an infinitesimal area (7 
aP 

at the point y, (3.22) reads 

(3.23) 
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The path 5 is the portion of P leading to y . In the gauge-invariant formulation 

the path-dependence is determined by the kinematical equation (3.23); it has 

nothing to do with the action principle. 

The Bianchi identity (2.5) is rewritten as 

dvFiv(x, P) = 0 

This implies the existence of a path-dependent gauge potential: 

FpVtx> P) = a&,(x, P) - 8vAptx, P) 

such that 

[i$, 3 ]A (x,P) = 0 
P I-J 

. 

Acl (x, P) is written in terms of Ap(x): 

(3.24) 

(3.25) 

(3.25’) 

A,$ PI = Utx, P)-lAp(x) U(x, P) + r,$x, P) , (3.26) 

r&x, P) = & fxdyll dpIJ-l avU- ~$J%~U . 
“P 

(3.26’) 

The coordinate patch to which Ap(x, P) is assigned is the same as V(A). The 

gauge transformation is Abelian: 

A2&x, W = Aw(x, P) + $Nx, 9 (3.27) 

such that 

pp, dJR(X, P) = 0 . (3. 279) 

Thus all the equations are linearized in the path-dependent formalism once the 

path P is fixed. 

As AcL(x) becomes singular along the Dirac string L(A), so does Ap(x, P). 

The singularity is calculated from (3.26) and (3.16). We calculate it in a special 

gauge for Ap(x), i.e., (3. 18). It is not difficult to derive 

$ 27rmh LtA)dyirAp(Y, p) = e , 05 nz N-l (3.28) 
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where the integration is along an infinitesimal loop around the Dirac string L(A) 

at each fixed time. 

The principal fibre bundle P(M, G) with (3.16) is equivalent to the path- 

dependent system with (3.28). We have derived the latter uniquely from the 

former. Conversely, we can reconstruct the former from the latter. Noticing 

the Abelian character, we first make P(M, U(1)). Using the open covering Vi 
i I 

of this P(M, U(l)), we construct uniquely P(M, G). As in the Abelian case, we 

can define the distributions 

F,Jx, P%(A)) = dpAV(x, P) - $,A,Jx, P) (3.29) 

and 

~,Jx> W = F&X’ P, L(A)) -1 G&,(x, L(A)) (3.30) 

for XE R4, Gzv(x, L) being given by (2.18), with 

F,Jx, P;LtA)) = F,Jx, P) (3.31) 

for x E V(A) and 

~,Jx’P) = F,Jxs W (3.32) 

for XE M. Here again the Dirac string L(A) is not a dynamical variable due to 

the global constraint (3.28). Equation (3.30) gives 

&(i) 
$,$(x’ p) = A~gO/- + a4(x-z) dS (3.33) 

which is a kinematical equation resulting from the topology of P(M, G). 

Having set the stage we now give the action for the non-Abelian monopole 

system: 

at = /-d4x Z(x) - m c /d#) 

G?(x) = -$ Tr ppv(x, P) Gpv(x’ P)} 

(3.34) 

(3.35) 
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with (3.23)) (3.28) and (3.30). The dynamical variables are AF(x, P) and the 

monopole positions z (i) 
P l 

The variations 6Ap and 6~:) yield 

tppv(X’ P) = 0 

m d2z,f’ _ g(i)$,(N2-l)*(z,p) dz$ * 
dS2 PV 

(3.36) 

(3.37) 

witi gti) = 2 mti)/e. Equations (3.33) and (3.36) correspond to the Maxwell equa- 

tions in the Abelian theory. 

Dirac monopoles are possible in pure gauge theories because the gauge field 

itself is charged. We can introduce Higgs fields into the scheme. They provide 

an expedient means of implementing spontaneous symmetry breakdown, and 

would give rise to non-Abelian vortices bridging the monopoles. 3,677 

We consider a fibre bundle B(M, Y, G) in addition to P(M, G*) Y is the fibre 

space on which the structure group G acts effectively. We give two typical 

examples. When G= SU(N), Y is taken to be a vector space made up of N- 

component vectors . When G = SU(N) /Z N, Y is taken to be a vector space made 

up of NxN-matrices. 

A cross section of B(M, Y, G) is a collection of differentiable mappings $I~(x) 

from each coordinate patch Vi into Y. They obey the relation 

G,(x) = f&&x) dp (3.38) 

for N-component vectors, i.e., G= SU(N), and 

I, = S24x) Q,(x) s2p 
-1 (3.39) 

for NxN-matrices, i. e. , G= SU(N)/ZN. Here we hasten to add that Dirac mono- 

poles are incompatible with G= SU(N). This is so because S(x) should be single- 

valued. Only the case m=O is realizable in (3.13) or (3.28), as results in the 

trivial topology. 8 
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So we choose Cp(x) to be a NxN matrix. $(x) corresponds to the familiar 

Higgs field of unified gauge theories. The covariant derivative is defined as 

(3.40) 

on each coordinate patch. All the analysis concerning the singularitie-s of the 

gauge potential follows without any modification. 

The path-dependent field is defined similarly to (3.21). 

@(x,W = w,p)%x) U(x,P) (3.41) 

C$ (x, P) is gauge-invariant. Its path-dependence is a kinematical equation; 

6,$(x, W = ie W, P), F,pDr,% C 1 CJ @ (3.42) 

as (3.23) for FpV(x, P). 

The action is given by (3.34); the Lagrangian is taken, for instance, to be 

L?(x) = -z l Tr f$Jxy P) $Jx, P)) 

+ f Tr kp W, 3 dp y3tx, W} 

+-$ c2 Tr [$(x,P)Z] -i c4 Tr [+(x,P)4] (3.43) 

The dynamical variables are Acl(x, P), z (9 
P 

, and one set of Higgs fields $(x, P). 

The variations 6A p, S$, and c?z(~) c1 give 

(3.44) 

8; 4 (x, P) = -2 c,@(x, P) + 4 c,@(x, P)” (3.45) 

and (3.37). Our system is composed of dynamical equations (3.44)) (3.45)) 

(3.37) and kinematical equations (3.33), (3.23), (3.42). The introduction into the 

Lagrangian (3.43) of several Higgs fields @,(x, P) necessary to have well-defined 

vortices is straightforward but is not relevant to the main theme of this work. 
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IV. CONCLUDING REMARKS 

By way of elementary concepts inthe topology of fibre bundles, we have 

formulated a Lagrangian theory of classical non-Abelian Dirac monopoles. As 
. 

a modification of Dirac’s original approach, 1 our string formulation is in har- 

mony with the Wu-Yang global approach to gauge theories. In Wu and Yang’s 

work, 5 Dirac strings have been discarded as being pathological means to 

describe Dirac monopoles. By properly defining the Dirac strings as global 

geometrical objects, we have thus restored their status as very useful non- 

pathological devices to accommodate monopoles. 

In the foregoing analysis, we have introduced path-dependent fields in order 

to write the action in a compact form. However, to solve the equations of motion, 

we have to go back to the path-independent fields, for instance, 

W = exp[-ie 7 dy,p,#W? (4.1) 

as defined by (2.24) in the Abelian case. The function r#~(x) is not defined along 

the Dirac string L(A). We must work in each coordinate patch V(A). Once a 

set of solutions Ap(x) and @(x) is obtained for a coordinate patch V(A), it is in 

principle easy to construct sets of solutions for any other coordinate patches. 

All these sets of solutions with coordinate patches make up the principal fibre 

bundle P(M, G) with connection A . 
I-1 

In the present formalism the monopoles are point particles with definite 

world lines. Their replacement by a magnetically charged field +(x) is yet to 

be done. This step is necessary if one wishes to construct a second quantized 

monopole theory. This program was once attempted by Cabibbo and Ferrari 

for the Abelian theory. 16 They define the field G(x) via its path-dependent form 

+(x, PI) = exp ig J do F* [ s clv ,v]~(.,p, 
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After some arguments they postulate a set of equations 

ia W, W = wW, W 

and 

(4.3) 

$)F;p = ig 3(x, PI YpW, P) (4.4) 

which replace (2.31) and (2.23), respectively. We can imitate their approach 

for non-Abelian monopoles. 3 Remembering that the monopole interacts directly 

only with the last element F lN2-l)(x, P) of the gauge field FCtV(x, P), we define 
IJV 

the magnetic field $(x, P) by its path-dependence: 

$(x, P’) = exp 
I 
ig J da FtN2-l)* z,6(x,P) 

S PV PV I 
(4.5) 

Following Cabibbo and Ferrari, we postulate 

&/J~x, PI = mW, P) 

and 

(4.6) 

8 F* (x, P) = igh $(x, P) y,$(x, P) 
v /Jv (4.7) 

to replace (3.37) and (3.33), respectively. However, the self-consistency of 

(4.6)) (4.7) and the other equations is an open question. This is so because the 

Cabibbo-Ferrari scheme lacks an action principle in the presence of both the 

electrically and the magnetically charged fields. Our efforts in this direction are 

continuing. 
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