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ABSTRACT 

We investigate the form Levinson’s theorem takes when the two- 

body scattering amplitude is not decomposed into partial waves. It is 

found that the theorem changes its structure in this case and is not 

merely the sum over angular momentum of the well-known partial 

wave results. The energy dependent quantity that replaces the partial 

wave phase shift turns out to be the trace of the two-body time delay 

operator. This new version of the theorem remains valid for scat- 

tering by nonspherically symmetric potentials. 
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I. INTRODUCTION 

2- 

We study an extension of Levinson’s theorem for two particle scattering. 

This extension states the theorem as a moment property of the trace of the two- 

body time delay operator. In this form obtained here the theorem is valid for 

the entire-nonpartial wave decomposed-amplitude. The resultant form of the 

theorem found here is not what one would surmise on the basis of simply summing 

the well-known partial wave statements in terms of phase shifts. Our derivation 

will be rigorously carried out for the class of local potentials that belong to 

Lo n L2. 

To begin with we list the known features of time delay in two-particle poten- 

tial scattering which we must employ in this analysis. This outline is too brief 

to be a balanced introduc/tion to the theory of time delay concepts in scattering. 

Such a general discussion is found in Ref. 1, which also gives a survey of the 

recent literature on this topic. 

The scattering system studied here is characterized by an interacting 

Hamiltonian h and an asymptotic Hamiltonian ho. In these two Hamiltonians the 

center-of-mass motion has been removed. If Z is the vector separation of the 

two particles, then h and ho act on a Hilbert space 3% composed of square inte- 

grable functions of 2;‘. On 36 one defines the Mfller wave operator by the strong 

limit, 

a(*) = s _ lim eiht e 
-ihot 

ii--+Tm 
(I* 1) 

where t is the real parameter denoting time. Each f in Z@ may correspond to a 

possible incident wave packet. The symbol $(t) will always represent the time 

dependent noninteracting wave packet associated with f. Likewise q(t) will be the 

function that is the fully interacting wave packet evolving in time according to h. 
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These two functions are given by 

-ihot 
W)=e f, (1.2) 

#tt) = e 
-iht ,(&) f . (I-3) 

The time delay of a scattering process is defined by the following construc- 

tion. Let us describe a family of projection operators that is specified by the 

equations 

P@) 6) = m x<R _ 
(1.4) 

=o x>R 

where g is any function belonging to ,X. Thus P(R) projects any function onto a 

sphere of radius R measured from the collision center at ??i;‘= 0. Given an incident 

wave packet f and a specific value of R the time delay is determined by the 

expression, 

The inner product is that of SK The second member of the integrand gives the 

probability that at time t the wave packet $(t) is inside the sphere P(R). The 

integral over t of this real quantity is just the total time +(t) spends inside the 

sphere P(R) . The same interpretation applies to the first inner product involving 

z/.(t). Consequently T(R, f) is the difference of time the two waves reside in the 

sphere . 

Consider now the description of the scattering problem in momentum space. 

The relative two-particle momentum will be the vector F. The corresponding 

kinetic energy of relative motion will be E =F2/2p., where p is the reduced mass 

of the two particles. The symbol i will denote the unit vector direction of 5. We 

introduce a Hilbert space &X&of L2 functions of &namely that space determined 
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by the inner product, 

tg,g’)A = -[g&J* g’<i;, 6 - (I-6) 

The theory of time delay allows one to construct a family of operators q(E, R) 

acting on 3YA. This family has the property 2,3 

T@,f> = /“dE pz$- d: d$ f*(p;) <: lq(E, R) I;'> f(pi;') (I. 7) 
0 

where p= m . In expression (I. 7) <G Iq(E, R) l$V is the kernel representation 

of the operator q(E, R) . Furthermore, for well behaved potentials, the R--L-oo 

limit of T(R,f) exists and is associated with an operator q(R), viz. 

lim T(R,f) = /“dE pp/l drj d$ f*@;) <i; Iq(E) I+> f(p+) - (1.8) 
R-tm 0 

The operator q(E) is known2 to be simply determined by the S-matrix. The 

full S-matrix that acts on Xis defined by the product of wave operators: 

s = ,t-)t ,(-+I . (I. 9) 

If one takes the momentum space matrix elements of Eq. (I. 9) one is led to a 

natural definition of a reduced, energy dependent S-matrix, s(E), that acts on 

3%. The operator s(E) is specified by its kernel<; Is(E) I;%, which is deter- 

mined from S by the expression, 

<F IS IE;t> = F <; Is(E) I$> , (I. 10) 

for E =F2/211.. The energy dependent delta function, of course, indicates the 

physical conservation of energy in the scattering process. In terms of s(E) the 

operator q(E) may be expressed 2y4 as , 

q(E) = -i s?(E) (I. 11) 

It is interesting to note here that structure of Eq. (I. 11) is such that the unitarily 

of s(E) implies that q(E) must be hermitian. 
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The feature of time delay that is vital for our analysis is known as the 

spectral property. Let r(z) = (h-z)-l and ro(z) = (ho-z)-’ be the resolvents of 

h and ho defined for complex energy z . Then the spectral property is the rela- 

tion, 

2 9~ Tr [r(E+iO) - rO(E+iO)] = tr q(E) (I. 12) 

In this equation Tr is the trace on Y& and tr is the trace onY6. This relation 

has a simple physical interpretation. The right hand side is just the trace of the 

time delay operator q(E) and is proportional to the total time delay experienced 

by an incident plane wave of energy E. The left hand side is the change of state 

density produced by the interaction v. In fact we shall require a somewhat more 

general version of Eq. (I. 12)) specifically 

A,,. Tr [r(E+in) -r,(E+in)) = 2 ’ 
i=l IEi+E+iq I 

(I. 13) 

The Ei appearing here are the negative of the eigenvalues of h. This equation is 

given explicitly in Ref. 5. The spectral property is readily obtained from Eq. 

(I. 13) by letting the imaginary parameter 7 go to zero. The advantage inherent 

in this version of the spectral property is that it allows one to estimate how 

rapidly 9~ Tr [r(E+in) -ro(E+iq)] approaches its ~‘0 value. 

Throughout this study we will consistently assume that the potential belongs 

t0 2 n L2. This means that v(z) is such that 

112 

/ dylv(;;L> I = BI<m , dzlv(;) I2 =B2<m. (4 

This class of potentials is broad enough to include most cases of physical interest. 

However both hard core potentials and Coulomb potentials are excluded by (A). 

We note that the L1 restriction of (A) dictates that behavior of v for I%! I very 
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4 -3-8 large must be like -Ix I , where 6 is an arbitrarily small positive number, 

The L2 requirement of (A) implies that most severe local singularities can be 

- lj;l-3/2+s . 

The time delay formalism has been rigorously studied under assumption (A). 

In particular Kate’ has proved that the wave operators Q (4 in Eq. (I. 1) exist 

when (A) holds. Jauch, Sinha and Misra3 prove the existence of the limit given 

in Eq. (I. 8). Equation (I. 13) is found in Ref. 5. This equation, which is central 

to discussion, may also be easily inferred from the results of Jauch, Sinha and 

Misra. 7 Another rigorous analysis of the time delay formalism above has been 

recently given by Martin4 for slightly different assumptions on the potential. 

One may question whether or not it is necessary to treat this -&oblem in a 

rigorous fashion. For example, is not Levinson’s theorem valid so long as the 

potential falls off more rapidly than the Coulomb force ? Two observations indi- 

cate why a careful and detailed analysis is necessary. First, as indicated at the 

beginning of this section a simple sum of known partial wave results does not 

lead to the correct answer for the entire scattering problem. The form of the 

answer is sensitive to the order of integration and limiting processes, thus each 

change of order must be justified. A second observation emphasizes the need to 

specify precisely the behavior of the potential. Suppose one considers the follow- 

ing central potential 

h 

vi(r) = r2 Jo 1 frdr” g(r’)2 + h2 
7’ Al> 0 (I. 14) 

where hl and h2 are real parameters and g(r) is an arbitrary real function. In 

this case one can prove8 that the momentum derivative of all partial wave phase 

shifts is positive for all k, so that 

1 

co 
dk & 6&k) > 0 , 

-0 
all L . (I. 15) 
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By way of contrast the Levinson’s theorem for partial wave phase shifts s&es 

cm 

/ 0 
dk & 6&k) = sQ(“) - t+(O) = -rNQ (I. 16) 

where Na is the number of two-body bound states with angular momentum Q. Thus 

potentials of the form v1 violate the theorem for every partial wave. Sufficient 

conditions for the existence of the partial wave form of Levinson”s theorem are 

that the moments, 
co 

Mi = / dr ri Iv(r) I , i=l, 2 (I* 17) 
0 

be finite. ’ By this criteria we see that potentials like vl fall off too slowly in r 

to lead to a reasonable phase shift behavior. Also in the extended-case, the 

potential vl would be excluded by condition (A). 

The proof we shall give of our extended Levinson’s theorem is based on two 

elements. One is the spectral property Eq. (I. 13). The second is the analytic 

behavior of Tr [r(z) - ro(z)] in the complex z plane. Section II of this paper gives 

a rigorous proof of the various aspects of the analytic behavior we need. Section 

III combines this analytic behavior with Eq. (I. 13) to complete the proof. In 

Section IV we give a general discussion of these results and also describe a 

second approach to the problem that is based on the asymptotic completeness of 

the wave operators. A quick, albeit nonrigorous, understanding of our results 

may be obtained by just reading Section IV. 
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11. ANALYTIC PROPERTIES OF Tr [r(z) -ro(z)J 

This section is devoted to the study of Tr [r(z) - ro(z)]. We always assume 

condition (A) is obeyed by the potential v. One very useful consequence of (A) is 

that it implies that our potential v is in the Rollnik class that Simon 10 has exten- 

sively studied, viz. 

Our analysis will make extensive use of the well-known operators ro(z), 

Vr,(z) and A(z). These operators all act on 96 and depend parametrically on z . 

They are conveniently defined by their kernel representations in coordinate 

space: 

<Ti’ Ire(z) IF> = 6 e 
ik IF-71 

l-zjq ’ 
(II. 2) 

(II. 3) <Y IVro(z) IF> = 6 v(Y) e 
ik I?-71 

11;‘-jq ’ 

c-i;, IA(z) ly> = 2n v L l/Q 
eik I~-~1 

E-3 
Iv@ P2 . tn. 4) 

Where k= G, and v 1’2(zj = Iv(~ y2 sgn v(T), and A(z) = V 1’2ro(z) IV I l/2 . 

The set of points in the z plane a distance 6 or greater from positive real axis 

we will denote by l16. The symbol R. will denote the cut z-plane obtained by 

letting 6-O. For z E I$ or Ilo then k clearly belongs to the upper-half complex 

k plane. 

We shall use three different norms to describe operators on 2% First, the 

usual operator norm will be represented by the symbol II. II. Second, we define 

the Schmidt norm of an operator A on $5’ by 

IIN = (// d-iic dy IA(z,-j;j I2 
l/2 
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where A (T,y) is the kernel generated by A. The class of all operators on 36 

with finite Schmidt norm is called the Schmidt class. This class is denoted by 

%2. Our third norm is the trace norm defined by 

IIAII 1=~ (pi, IAI~i) ) 
i 

CrI. 6) 

t‘ l/2 where A= (A A) . When A has finite II A II 1 it belongs to the trace class of 

operators on 38. The trace class is labeled 3Y1. When A ~33~ then operator 

has a well-defined trace given by the sum, 

TrA = e($i,A+i) . 
i 

(II* 7) 

Of course this sum is independent of the basis set {Gil. Our analysis will fre- 

quently use the following general properties of the trace and the Schmidt operator. 

(i) A E sl if and only if it can be written as the product A=BC 

where B ~$3~ and C ea2. Furthermore II A II 1~ II B II 2 II C II 2. 

(ii) If B E 9$ then Bt E s2. 

(iii) If B ~28~ and C e&Y2 then TrBC=Tr CB. 

(iv) If B E 3Jl and A has finite norm, II A II , then BA e a1 and 

ABeBland IIBAIIl~ IIAII IIBII1. 

(v) lfAe%lthen ITrAIL I(Qi,A$i)I( IIAlll. 

(vi) If B and C are Schmidt alass then Tr BC has the representation 

Tr BC = ,Idz d7 Biy”,?) C(z,y) 

where B(y,z) and C(z,y) are the L2 kernels generated by the 

operators B and C. 

Shattenl’ gives proofs of all of these statements. 
/ 
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For later convenience let us collect here some well known estimates for 

norms of the operators occurring in this problem. We shall show that the oper- 

ators V1’2ro(z), IV I 1’2 To(z), and, r,(z)V are Schmidt class for all z ells. 

Consider the first operator in the list above. If we employ the integral form of 

the Schmidt norm to compute II V l/2 To(z) II 2 we have, 

2 

II v1’2 2 = & Iv@ le 
-2 &5,2 k lz-.y,l 

rob3 11 
s-y12 

ZZ 0.I. 8) 

The same expression holds for the norm II IV I l/2 rot@ 11 2. Similar considera- _ 

tions show that 

llvro(z)i12 = PBS (&,&) (II.% 

Now let us examine the operator A(z) given in Eq. (II. 4). This operator is 

Schmidt class in the entire z-plane lIo, 

(II. 10) 

where Br is the constant entering the Rollnik bound on v. Another useful bound 

pertains to Am. One may show, using the Riemann-Lebesque lemma that 

lim IIA(z)~II 2 = 0 . (II. 11) 
IRe kl-m 

The convergence is uniform in S&L k?O . Equation (II. 11) means that there exists 

a finite k, such that for all IRe k 1 >k, then II Am II 2 cf. The number k, depends 

only on v. We will not write out the proof of Eq. (II. 11) and estimate for 

II Am II 2 . Theorem I. 23 of Simon% book is very nearly result (II. 11). The 
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difference is that Simon requires k to be real. It is a simple modification of 

Simon’s proof to extend it to complex k in the upper half plane and to show the 

convergence is uniform in ~5,~ k. 

Lemma 1. Let the potential v satisfy (A). For all positive integers n, the 

operators ro(z)[Vro(z)ln are trace class for z elIc The function Trro(z)[Vro(z)Jn 

is an analytic function of z in the ll domain. 6 Furthermore the order of the trace 

operation and $ may be freely interchanged in H6. 

Proof: We first establish rOIVroJn is trace class. Consider n=l. This 

operator may be written as the product of r. IV 1 l/2 and V1’2ro, each of which 

in Schmidt class in II 6. Thus employing property (i) of the trace gives, 

II~OVroII1~ llrOIVl 2 . l/2 112 (II. 12) 

Estimate (II. 8) tells us the right hand side is finite. For ml we may write 

n-l Ilropi’o]nll lI IIroVroll 111Vrol12 . (11.13) 

In obtaining (II. 13) we have used trace property (iv) together with the general 

inequality II A II 5 II A II 2. Estimates (II.8) and (II. 9) then imply that the right hand 

side of (II. 13) is infinite. 

Next consider the analyticity of Tr(ro(z)[Vro(z)]n). Set n=l. As noted above 

the operator is the product of two Schmidt operators r. IV 1 l/2 and V1’2 r. in 

domain II6 . Invoking property (vi) of the trace for the operator rOVrO gives us 

Tr (r. V ro) = &fJJ d; do v(?) .2ik !?-??I 
Ijc-~l 2 

(K 14) 

For values of k restricted by the condition $5,~ k > 6’ > 0 the expression - - 

Iv(T) I e 
-26’ I~-21 

i$r;‘l 
2 
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bounds the integrand above uniformly in k. This bound is absolutely integrable 

with respect to (2, 7). Thus the integral in Eq. (II. 14) defines an analytic func- 

tion of k and thus z. This argument may be extended to show Tr rOpro]n is 

analytic for all n and z E II 6’ 
Finally let us examine the differential properties of Tr[Vro(z)ln. The trace 

diverges for n=l, but is well defined for nL2. Consider the case n=2. If we 

examine the integral representation of Tr [Vro(z)12 the Rollnik condition (II. 1) 

guarantees that the integral is uniformly convergent in LIB’ Thus we can differ- 

entiate under the integral to obtain 

One then observes that the Hilbert identity for To(z), 

ro(zl) -rotz2) = (z1-z2) ro(zl)rotz2) 

implies the operator relation, 

~g(z) 
dz = ro(z)2 . 

The kernel form of this last identity is 

&,~E-5;1 =k 
I 

‘d-ge 
ik( IT-XI + I~-~I) 

k 2n fTi=~l ls=j7 

Inserting Eq. (II. 18) into the right hand side to (II. 15) gives 

z d Tr[Vro(zg2 = 2 Tr(roW[Vrg(zj12) 

= Tr(g [Vro(z)12) (rr. 19) 

These arguments extend to the n>2 cases. There Eq. (II. 19) becomes 

$ Tr [Vro(z)ln = n Tr (rO(z)[Vro(z)]n) 

(II. 16) 

(II. 17) 

(II. 18) 

(II. 20) 

This completes the demonstration of lemma 1. 
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Lemma 2. There exist finite k, and ki such that for all lzl > 

the Born series expansion 

/2/~. 

Tr [W4 -ro(z)l = ncl Wn Tr (ro(z)[Vro(z)ln) (II. 2 1) 

is valid. The series is uniformly convergent in z. 

Proof: As usual set z = k2/2p and choose z so that it has values 

&,L k> ki=pB2/2n. For z so restricted operator Born expansion 

r(z) -rob) = 5 (_lP rotz)[Vro(z)ln 
n=l 

(II. 22) 

is valid. It is easy to see that series (II. 22) is convergent in operator norm for 

&,Ak>k i. A given term in this series has norm, 

II rO(z)[VrO(z)]nll L lIro(z)II IIVrO(z)lln~ 3 llVr,(z)Il~ 
i 

(II. 23) 

For the restricted values of k, II Vr,(z) II 2 is less than one. The sum of terms 

(II. 23) with respect to n then converges absolutely. 

Since we know r(z) -To(z) is trace class, we can take the trace of Eq. (II. 22) 

to obtain 

Tr p(z) -ro(z)] = Tr 2 WnroW[~ro(z)ln 
n=l I 

(II. 24) 

of Eq. (II. 24) suggests we consider the for &L k> k i, The series on the right 

related series 

ngl Wn Tr ko(z) pro(z)]n) - (II. 25) 

Introducing the definition of the trace into this expression gives the double sum 

~ ~ (-l)n (pi, 
n i 

rO(Z)[vrO(Zjln @i 1 (11.26) 



- 14 - 

It is easy to demonstrate that this double series is absolutely convergent. 

Employing the general trace identity (v) we have 

- (II. 27) 

As in Eq. (II. 25)) when &&k> ki the sum over n of the terms on the right of 

Eq. (II. 27) converge uniformly in k. This shows that the double series in expres- 

sion (II, 26) is absolutely convergent. Thus the order of summation may be 

changed. And so, Eq. (II. 24) may be written in the form given by Eq. (II. 21). 

Let us consider the validity of (II. 21) in a different region of z. Suppose 

lRekl>k r. The trace norm appearing in Eq. (II. 27) may be estimated by, 

IIrg(Z)r~ro(Zflnll 1 = llro(z) IV11’2A(z)n-1V1’2ro(z) 11 1 

5 Ilro(4 IV 
l/2 2 II 2 II A(zj2 II f-1)‘2 n = odd , (II. 28) 

( llro(z) WI 1’2 II 2” II A(z) II 2 II A(z) 
2 (n-2)/2 ,I 2 n = even . 

Bounds given in Eqs. (II. 9)) (II. 11) and (II. 12) show that the sum over n of 

II rO(z)[VrO(z)]nll 1 converge. Again, the double sum in Eq. (II. 26) is absolutely 

convergent and formula (II. 21) is valid for all IRe k I> k,. In fact the domain 

specified by lz I 2 kf+ki ( 1 /2~ lies in the union of IRe k I > kr and I&h k I > ki. 

So lemma 2 is proved. 

Lemma 3. For all integers n>z, Tr[Vro(z)]n satisfies, 

lim 
IReklem 

Tr[Vro(zfln = 0 (II. 29) 

for all &%u k ) 0. 
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Proof: We note first that for n>2 

Tr[Vro(z)jn = Tr IV1 To(z) WI ro@) (II. 30) 

For z l IIg the operators A(z), V l/2 To(z) are Schmidt class and IV1 l/2 is 

bounded, thus we may use (iii) to obtain 

Tr[Vro(z)ln = Tr A(z)” (II. 31) 

For n>4 we have the bounds, 

ITr[Vro(z)Jn I 5 II A2(z) II ;/” , n = even 

(n-l)/2 5 II A(z) II 2 II A2(z) II 2 , n= odd 

(II. 32) 

Applying result Eq. (II. 11) gives the statement (II. 29) in the lemma. 

There remains only the cases n=2,3 to prove. Consider n=2. Using the 

integral representation of the trace, 

(II. 33) 

Because of the condition (II. 1) the non-oscillatory part of the integrand 

v(;;i v(jq E-7 I -’ e -2&n k ITi*-j?l 

is L1 over (T,y). Thus we can apply the Riemann-Lebesque lemma to conclude 

that Tr[VVrg(z)l 2 vanishes as IRe k l-+03. A similar argument works for 

Tr[Vro(zj13. 

Lemma 4. For all zeilo the value of Tr (To(z) Vro(z)) is given by 

Tr (ro(z) Vr,(z)) = i c$)3’2 $ /dT v(?j 
Z 

(II. 34) 



- 16 - 

Proof: For z EII~, To(z) Vr (z) is the product of two Schmidt operators, so 0 

by trace property (vi) 

Tr (ro(z) V ro(z)) = ($-f//d? dz v(?;i ,iy;W” 
x- 

for all 9&k > 0 the double integral 

1 exists since v e L . Thus, employing the Fubini theorem on interchange of inte- 

gration, we can write (II. 35) in the form of an iterated integral 

Tr (ro(z) Vr,(z)) = (6,” Id;; e2ik I” /dzv(;;) , - 
lii12 

where we have set F=T-y. The integral is trivial and gives Eq. (II. 34). So 

far the equality (II. 34) is established for z ~11~. However, the right hand side 

of (II. 34) has ljo as its natural domain of analyticity. Thus (II. 34) represents 

the analytic extension of Tr (To(z) Vr,(z)) to the domain Il,. 



- 17 - 

III. LEVINSON’S THEOREM 

In this section we combine the analytic properties of Tr[r(z) -ro(z)l 

established in the previous section with known features of time delay outlined 

in the introduction to complete our derivation of Levinson’s theorem. Our 

proof will require one additional technical assumption about time delay. We 

assume the existence of the following integral 

where v” is defined by 

v”= J d&(y) , l?l<B1 . (III. 1) 

Ideally assumption (B) should be verified directly from the potential property (A), 

But it would take us far afield to establish (B) in this manner. There are strong 

physical arguments for believing (B), that will be discussed in the next section. 

To our knowledge (B) is not established anywhere in the literature on time delay. 

Consider the function Q(z) defined by 

Q(z) = Tr p-(z) -rob4 + rob3Vro@)1 @. 2) 

We have established that this function is analytic in H6 . Bound states of the 

Hamiltonian H appear as simple poles of the resolvent r(z), with residues that 

are projection operators onto the bound state eigenfunction space. Physically 

interesting potentials will always have negative bound state energies. So our 

formalism will always imply this situation. Only a small change in the notation 

is required if in fact positive energy eigenfunctions exist. 

Suppose z. is some point in 116 and Co some small circular contour about 

zO’ Then the Cauchy-Coursat theorem tells one that the integral, 

dz Q(z) = 0 . (HI. 3) 
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Our version of Levinson’s theorem is based on this identity. We open up the 

contour Co as indicated in Fig. 1. Now Co may be replaced by the contour seg- 

ments CI,, Cg and C i. The contours Ci which are P in number encircle the P 

distinct eigenvalues of the Hamiltonian h. Path C6 is a symmetric about the 

real axis, always a distance 6 away from the positive real axis and ending 

where the real value of z is equal to I’ . The curve CI, is a circle centered 

about the z-plane origin having radius equal to JP-7. 

Because of the behavior of the exact resolvent r(z) in the neighborhood of 

the eigenfunctions of h, one has 

5 4 dz Q(z) = 27riN , 
i=l C. 

1 

(III. 4) 

where N is the total number of bound states of h counting degeneracy. Thus the 

integral (III. 3) becomes 

/ 
dz Q(z) = -2tiN . 

%+% 

We will now evaluate the double limit 

lim lim J dz Q(z) = -27riN . 
r-+m 6-O cr+c6 

(III. 5) 

tm. 6) 

Consider the Cg integral first. It may be expanded as 

.I 
r 

53 

dz Q(z) = 2i[ dh G& Q(A+i6) + i6 1 
d:! 

d0 eieQ(6eie) . (III. 7) 
0 3~/2 

If the exact resolvent has a normalized bound state of zero energy with degen- 

eracy n, then the exact resolvent has a simple pole at z=O and second integral 

on the right becomes -tin in the a-- 0 limit. On the other hand, when there are 

no zero energy eigenstates, then this integral gives zero in the 6-O limit. 
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Let us study the first integral on the right hand side of (III. 7). We shall prove 

Lemma 5. For potentials such that (A) and (B) are valid then 

lim lim 2 /Fdh.Y(m Q@+is) = lmdE 
r --too 6-O 0 0 

(Ia. 8) 

Proof: Define Dl(F,6) and D2(I’, 6) by the expressions 

Dl(I’,6) = j!j ird$dE “z 
3/2 v” 

P-E) +a2 
-jg . 1 w. 9) 

r co 1 r 
D2(F,b) =co dh dE- J / 6 

0 0 n<E (h-E)2 + 62 - coLo I- &Re ’ 
JFz 

, (III. 10) 

where ~~=t($j3/~?‘. Equations (I. 13)) (II. 34) together with (III. 2) give 

2 1 rdh ~~~Q(h-tiG) = D1(F,6) +D2(F.6) + Sir&J f 26 1 . (III. 11) 
0 i=l IEi+A+iS I2 J 

Since Ei are the magnitudes of the negative energy eigenvalues and thus positive 

it is obvious that the last integral vanishes when the double limit is taken. So 

we need only consider the contribution from D1 and D 2. Consider D1. Set 

g(E) = tr q(E) -I- :(t)3’2 2 (III. 12) 

and D1 is 

Dl(F,6) = /Tdh imdE ’ g(E) 
T (W2 + a2 

C 1 
(III. 13) 

0 0 

Since (B) states that h(E) is L1 and that (A-E)~ + 6 I 
2 -1 1 is L1 over A for all 6>0 

the Fubini theorem allows us to change the order of integrations, 

D1(r,6) = [-,, /rdh 
0 

(III. 14) 
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The integral over dh is elementary and gives us 

Dl(I, 6) = IWdE e 
0 

y + tan-’ g . (III. 15) 

Now the E-dependent integrand is L’ for all 6 ~0 and uniformly bounded by 

Ig(E) I. The Lebesque dominated convergence theorem permits us to pass the 

6 -0 limit through the integral to obtain, 

Dl(r, 0) = ImdE q lim (tan-’ y +tan-’ : . (III. 16) 
0 6-O 

Using 

lim tan -1 E 7 = $ , all E >O 
6-O 

lim tan 
6-O 

: 
all E < I’ 

T -- 
2 all E>l? 

(III. 17) 

we see that tan -1 functions give us a step function that becomes zero when E>I’. 

Thus 

qtr, 0) = fdE g(E) 
0 

(III. 18) 

and 

lim lim Dl(I’,6) = JmdE g(E) . 
re 6-o 0 

(HI. 19) 

A parallel analysis leads one to conclude 

lim lim D2(r ,6 ) = 0 
r -cm 6-O 

(III. 20) 

Thus lemma 5 is proved. 



The one remaining integral in relation (III. 5) that we have not yet studied 

is the Cr term. For this integral we have the result: 
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Lemma 6. For potentials satisfying (A), then 

lim 
/ 

dz Q(z) = 0 (III. 2 1) 

‘r 

Chaos:;: (kt + k$‘2p. Proof: Lemma 2 states that the Born series expan- 

sion of Q(z) is uniformly convergent for z E Cr. Using (II. 21) to expand Q(z) we 

can write our integral as, 

/- dz Q(z) = 1 dz 5 (-l)n T 
cr ‘r n=2 

r (r,tz)[Vr,O]“) 

= 2 (-1)“I do Tr ro(z)[Vro(z)Jn ( . 
n=2 ‘r 

(III. 22) 

Equation (II. 20) allows us to transform the integrand into an exact differential. 

1 dz Q(z) = f $1 dz 2 Tr[Vro(z}]” 
‘r n=2 ‘r 

= f t-;P { 
n=2 

Tr [Vro(I’+iOjJn- Tr [Vro(F-iO)]n] (III. 23) 

Estimates (II. 32) imply that this series is uniformly convergent in F. Thus the 

r --+m limit may be passed through the sum. Lemma 3 shows us each term in 

Eq. (III. 8) vanishes in the F---o0 limit. Thus Eq. (III. 21) is demonstrated. 
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Combining the conclusions for both lemma 5 and lemma 6 together with 

Eq. (III. 6) gives us: 

Theorem. For potentials satisfying condition (A) and the trace of the time 

delay satisfying (B) then the following relation holds, 

= -27rN . (III. 24) 

Normally, N is the total number of negative energy eigenfunctions of Hamiltonian 

h. If there is a zero energy bound state with degeneracy n then N is replaced by 

N-l-in. If there are both positive and negative energy eigenvalues then N is the 

sum of both weighted by the degeneracy of each eigenvalue. 
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IV. ASYMPTOTIC COMPLETENESS AND LEVINSON’S THEOREM 

In this section we are concerned with two aspects of our Levinson’s theorem. 

First, we establish how one may derive the result starting from the completeness 

of the scattering states. Secondly, we give a physical interpretation and explan- 

ation of our result. Our aim in this section is to provide some insight into the 

result obtained above, rather than to supply additional rigorous proofs. Thus, 

we will use nonrigorous arguments which we believe convincing, even though 

these arguments tend to lose sight of the exact conditions on the potential for 

which the analysis is valid. 

The derivation given above of Levinson’s theorem is based on the spectral 

property of time delay combined with the analytic features of Tr [r(z) - ro(z)]. 

However, in the literature there exists another method of derivation. Jauch12 

established that the usual partial wave form of Levinson’s theorem can be 

obtained from asymptotic completeness and certain properties of the wave 

operator, a(*). 

We adopt Jauch*s argument to the case at hand-namely the full amplitude. 

The mathematical statement of asymptotic completeness is: 

gJ(+)t ,(+) = 1 2 w. 1) 

a(+) ,(+)-f = I- p . w. 2) 

Here I is the identity operator in X and P is the projection operator onto the 

subspace spanned by all eigenfunctions of h. We note that Tr P = N. 

The wave operator possesses a well-known representation in terms of the 

t-matrix. Suppose t(z) is the operator satisfying the Lippmann-Schwinger 

equation, 

t(z) = V -Vr,(z) t(z) . (IV. 3) 
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The wave operator may be expanded 
12 about the identity, 

,(+) = 1-K P. 4) 

where K is determined by the generalized function 

<FlK I$> = Git -2p f2/2p + i0) I$> 

p /2~ -g2/2p-i0 
0-v. 5) 

If one forms the commutator Kt, K , then Eqs. (IV. 1) and (IV. 2) imply, [I 1 
[ 1 KP,K =P . (Iv. 6) 

Levinson’s theorem is obtained by taking the trace of (IV. 6). 

One aspect of this approach requires care. The kernel representation of K 

is a generalized function. As a consequence the trace needs to be computed 

through a limiting process. It is convenient to introduce a two parameter family 

of operators on X*, T(E, E’), defined by 

<$17(E, Ef) lGt> = j(E) <EC It(E+iO) IE*$‘> j(E’) , (Iv. 7) 

3 l/4 
where lE& stands for the element Ip$ and p = m. The factor j(E) = (2~ E) . 

One can easily express the reduced -matrix, s(E), in terms of T(E, E), viz. 

s(E)=e-%T(E,E) l (IV. 8) 

Here e is the identity on .X’.,. 

Construct now the trace of Kf , K . [ 1 Combining Eqs. (IV. 7) and (IV. 5) and 

the fact that dF= j2(E) dE d$ , we have 

j(E)<Ec 1 Kt, K lE$> j(E’) = [ 1 
<i;, ~T(E~,E)~~>*<~~~T(E~, E’)Ifb-<&(E,E1)Ifjl><I; IT(E’, El)+* 

Z=- aldr;, (E-El-iO)(El-Et-i0) 
. 
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Carry out the d$ integration of both sides of Eq. (IV. 9) and use the adjoint 

relation 

<r; 17’(E1, E) I;,> = <Ejll~(El, E)lib* . (Iv. 10) 

The result is 

dc j(E)<Ecl Kt,K IE’$ j(E’) = [I 1 
.@ 

dEl 

tr 7’(El, E) 7(E1, E’) - tr T(E, El) T?(E’, El) 
=- 

(E-El-iO)(El-E’-iO) 
(Iv. 11) 

Here, as before, tr denotes the trace on X’*. The diagonal element of Eq. (IV. 11) 

is obtained by letting El-- E. To carry out this limit let us recall a result estab- 

lished by Jauch. 13 Let f(E, E’) and g(E, E’) be complex valued functions which 

are differentiable in their (real) arguments. Then the following formula is valid, 

co 

lim 
J dEl 

ftE> El) g(El, E’) - g(E, El) f(El, E’ ) 

E’-+E 0 (E -El-iO)(E1- E’ -iO) 

= -ir f(E, E) 
c 

&g(E,E) - g(E,E) & f(E,E) 1 (Iv. 12) 

If we apply (IV. 12) to Eq. (IV. 11) and integrate with respect to dE, then the left 

hand side of Eq. (IV. 12) is Tr K’,K . [ 1 Thus employing Eq. (IV. 6) gives, 

N= -ir[dE tr[r’(E,E) -&T(E,E) - T(E,E) +&E,E)] (Iv. 13) 

This is Levinson’s theorem expressed in terms of scattering amplitudes. It may 

be restated in terms of the reduced S-matrices, s(E), by utilizing Eq. (IV. 8). 

Simple algebra leads to 

t (E) -& s(E) - i @ s(EJ + tr[i& (s?(E) 

-2trq(E)+i-& (Iv. 14) 
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What remains is to understand the behavior of the term tr (s?(E) - s(E)). Let 

us define t,(z) by 

t,(z) = t(z) - v . (Iv. 15) 

Replace t(E’+iO) in Eq. (IV. 7) by t2(E’+iO) and denote the resultant two parameter 

operator by T~(E, El) . Using Eq. (IV. 5) and Eq. (N.8) one finds 

i-&tr[s’(E)-s(E{ = -:($)9’2$-- 8?r-&Re tr T~(E,E) . (IV. 16) 

Thus Eq. (IV. 14) now reduces to, 

-2rN = 
E=m 

q(E) + 4 $ 3’2L 0 1 IrE 
+ 4rRe tr T~(E,E) I . (IV. 17) 

E=O 

This is Levinson’s theorem when the last term is zero. The fact-that the zero 

energy on-shell t-matrix is proportional to the scattering length, means that 

tr r2(E,E) behaves like a const. x & for small E. So, we have tr T~(O,O)=O. 

All that is left to consider is the high energy limit of Re tr T~(E, E). Under 

assumption (A) on the potential, it is well known l3 that 

l<F lQ2/2p+iO) IF> - <jWl*> I = 6(p) , (IV. 18) 

and a(p)-0 as p-+w. Furthermore, the symmetry properties of the resolvent 

r(z) under the transform p --p imply that the forward scattering amplitude, 

satisfies 

f(p) = -4~3~~ <clt(p2/2p+iO) I$ , (IV. 19) 

f”(p) = f(-p) . (Iv. 20) 

Of course only the forward scattering amplitude is needed to compute Re tr T~(E, E). 

The symmetry relation (IV. 20) means Re f(p) is an even function of p. Thus, at 

infinity Re f(p) =O(p-2n). Now the estimate (IV. 18) forces n to be a positive 

integer. Thus the slowest behavior possible for Re f(p) at infinity is O(pm2) e 
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This observation combined with the definition (IV. 7) of T(E, E’) and the trace to 

tr implies Re tr T~(E, E) =O(E-1’2 ). Thus the high energy surface term in 

(IV. 17) vanishes. 

The details of this derivation indicate why our theorem must have the term Y 

present. Consider the high energy behavior of tr q(E). For sufficiently high 

energies we expect that the t-matrix will be dominated by the Born term. If we 

replace the t-matrix by v in the expression for the S-matrix then the first order 

contribution to tr q(E) in powers of potential is 

312 - 
tr q(E) - -;(k$ 

g 
(IV. 21) 

For this reason tr q(E) is not integrable at infinity with respect to E. The 

Tr (To(z) Vr,(z)) term in the integrand of the Levinson’s theorem exactly cancels 

this singular behavior of tr q(E). With this singularity subtracted away it is now 

very reasonable to expect that condition (B) on the time delay is valid. 

Since the form of our Levinsonls theorem differs from the usual partial wave 

form it is instructive to see how the customary result can emerge from the anal- 

ysis given. This is most easily understood by starting from Eq. (IV. 14). When 

the potential v is spherically symmetric then the angular momentum operator 

T=;x~? commutes with h and h o, so that the reduced S-matrix and the time delay 

operator may be represented by 

Is(E) I$> = 2 + 
a=0 

s&E) PQ6+‘, 

O” 21*1 h(E) I$> = c - ‘I (E) 
Q=() 47T ’ 

PQtm 

(Iv. 22) 

(IV. 23) 

Here the S-matrix admits the usual phase-shift parametrization, sa(E) = e 
2i6&E) 

. 

The corresponding formula for the time delay is q&E) = 2 &$(E). 
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Let us compute the contribution of a single partial wave amplitude to 

Eq. (IV. 14). Each bound state has a 2!&1 degeneracy, so let N1 denote the 

number of bound states with different energy. Upon substituting Eqs. (IV.22) 

and (IV. 23) into Eq. (IV. 14) we have 

4&$(E)-8n-& sin 26&E)} (IV. 24) 

The customary phase shift normalization is to set 6&m) = 0. Thus Eq. (IV. 24) 

becomes 

rNQ = tiQ(0) - 27r sin 26Q(O) (IV. 25) 

and has the solution 

rNQ = $(O) . (IV. 26) 

This is the partial wave Levinsonls theorem. For a single partial wave the terms 

tr q(E) and & tr (s?(E) - s(E)) are individually integrable. For the full amplitude 

case these terms are separately divergent, but when added together their diver- 

gences cancel. The mechanism for changing the behavior of these terms is the 

infinite sum over partial waves. 

We close this section with some general comments about the results found 

here. One interesting aspect of statement Eq. (III. 24) of Levinson’s theorem, 

is that it relates two observables of the scattering system. Both the time delay 

tr q(E) and the number of bound states N are in principle observable features of 

the scattering system. One nonintuitive result of the theorem concerns the 

behavior of time delay when resonances are present. Consider the case when at 

some energy, Er, there is a very long-lived resonance. Suppose the potential 

is slightly perturbed so that the lifetime of the resonance increases but the num- 

ber of bound states is unaltered. Then Eq. (III. 24) tells us that at energies 
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away from the resonance there must be a corresponding decrease in the time 

delay since the energy integral is invariant. 

A second advantage of this theorem is that it is more general than the usual 

Levinson’s theorem in that it remains valid for scattering from a nonspherically 

symmetric potential. Furthermore, the general approach given here may obtain 

Levinsonls theorems for the few-body scattering problem. We note that the 

spectral property of time delay has already been established for the three-body 

problem. 5 

So far physical applications of this theorem have not been investigated. 

However, one application is straightforward. The theorem may be used to 

predict the high temperature behavior of the second virial coefficient for a 

quantum gas. This will be reported on elsewhere. 
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