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ABSTRACT 

We report the results of the application of the quark-confining string 

model to the zc) spectrum. The model is defined by a relativistic invariant action 

of quarks and color SU(3) gauge fields. In this work, we consider only the charm 

quark, so that there are only two parameters, the charm quark mass m and the 

quark-gluon coupling e . In the Schradinger limit, this string model reduces to 

the charmonium model(with a linear potential) in the absence of string vibrations. 

String vibrations provide additional levels. The first of these come in at about 

4 GeV, and the density of states increases rapidly as a function of energy. Rela- 

tivistic splittings of the low lying states are calculated to be of order 0.1 GeV. 

We predict two levels at around 4.4 GeV in the e+e- channel. 

(Submitted to Phys. Rev. Letters. ) 

*Work supported by the Energy Research and Development Administration. 
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This letter outlines and summarizes the results of calculations of the $ 

spectrum’ in the quark-confining string (QCS) model recently proposed by one 

of us (SHT)2. This model attempts to synthesize two-dimensional quantum 

chromodynamics (QCD) and the string model. It is hoped that this synthesis will 

provide a model of hadron dynamics which maintains the desirable features of 

two-dimensional QCD and of the string, and in which meaningful calculations 

can be performed. 

In two-dimensional &CD, quark confinement follows from the presence of 

the linearly rising Coulomb potential; there are no massless gluons; in the & 

approximation3 at least (for color SU(N)), the theory is asymptotically free, 

exhibits scaling, Okubo-Zweig-Iisuka rule and power-like form factors. The 

world, on the other hand, is four dimensional. Unfortunately, to demonstrate 

quark confinement in four-dimensional &CD and then calculate in a believable 

way its properties is a very formidable challenge. 4 QCS provides a different 

approach to the problem of four-dimensional chromodynamics. 

The geometric formalism of the Nambu-Goto (N-G) string5 describes the 

dynamics of a one space-one time dimensional world sheet of constant energy 

density embedded in higher (e. g. , four) space-time dimensions. We use such a 

geometric formalism to lift two-dimensional QCD to four-dimensional Minkowski 

space. The resulting QCS describes two-dimensional QCD on such a world sheet 

embedded in Minkowski space. Relativistic invariance requires the quarks to be 

four-component Dirac fields. 

Classical QCS is defined by the action:2 



where 6 coordinates u”, u1 parametrize the embedding R&u), p=O, 1,2,3, of the 

string in four dimensions. The local geometry of this embedding is described 

by the tangent vectors < = (8RP/aua) (ia E yP~z), the induced metric gcrP=Ta. TV, 

g = det(go$, and its inverse g “@=(gop)-’ with T:=goprpcL. The quark fields $ 

are color triplets of four-component fermions. They come in different flavors. 

I 
B:(u): ol=O, 1; a=l, 2,. . . 8 

1 
are two-dimensional color SU(3) gauge fields. The 

parameters are the quark masses mj (j is the flavor index) and the quark-gluon 

coupling constant e. 

The action (1) is invariant under reparametrization, Lorentz and gauge trans- 

formations. The string coordinates are unbounded and the embedding is taken to 

be topologically equivalent to two-dimensional Minkowski space. if the embedding 

were in two-dimensional Minkowski space, the action (1) is identical to that of 

two-dimensional QCD in the coordinate system R”=uo, R1=ul (where -g=l). 

Indeed, in the absence of string dynamics (i. e. , no curvature), QCS is equivalent 

to two-dimensional QCD with four component quarks. 

The motions of the string are determined by the energy-momentum distribu- 

tion on its surface. In the case of the N-G string, QN G=/- 2 d ucg(-C), the _ 

constant energy density C is introduced as the fundamental parameter which 

characterizes the spectrum. It is related to the Regge slope, 01’= 1/27-C. In 

QCS, there is no independent string constant. - The field energy-momentum density 

plays a role analogous to the string constant of the N-G string. In a classical 

picture with quarks andantiquarks represented by wave-packets along the string, 

physical color singlet solutions appear as in Fig. 1. In particular, a q-;?. pair 

generates a constant energy density between them due to the color electric flux. 

A key difference between the standard QCD and QCS is that the latter has no 

independent gluonic degrees of freedom; this implies, in particular, that there 
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are no glueballs. Hence, if QCS is to be considered as a phenomenological 

model derivable from &CD, the derivation must be highly nontrivial. For 

practical purposes, we take QCS as a working model where various properties 

can be calculated. 

Electromagnetic and weak interactions can be introduced easily via minimal 

coupling to the quarks. Intuitively, many of the parton model properties are 

expected (e. g. , the jet structure); in particular, the (neutral) string degrees of 

freedom carry a finite fraction of the momentum in the infinite momentum frame. 

The quark-gluon interaction leads to nontrivial quark-quark scatterings within 

a string which may characterize hadron-hadron scattering. Since the action (1) 

is reparametrization invariant, duality in scattering amplitudes might be expected 

in a consistent quantum theory. Regge trajectories are asymptotically straight. 

In this letter we report the results7 of a preliminary investigation of QCS, 

namely its nonrelativistic (i. e. , SchrFdinger) limit applied to the $ spectrum 

recently discovered at SPEAR and elsewhere. 1 Since we shall limit ourselves 

to the study of the ZJ spectrum only, we can neglect all flavors except charm. * 

We refer to the resulting string as the charm string. The nonrelativistic limit 

is that in which the quark mass is large compared to e. We consider the charm 

string in two steps. 

First, we consider the charm string in the absence of string vibrations. In 

this restricted case, the nonrelativistic string is straight and its motions consist 

only of translations and rotations. The resulting SchrFdinger equation for the 

# meson bound state wave function along the string, f(r) (where r is the distance 

between the charm quark-antiquark), is 

1 a2 --- 
m 8r2 

+ 2m + kr -I- 9 f(r) = Ef (r) 
mr I 

(2) 
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where the state has mass E. This is equivalent to the charmonium model’ that 

has been studied extensively in relation to the $ spectroscopy. Q= 0, 1,2, . . . 

1 e 2 N2-1 e2 is the orbital angular momentum and k= - - 2 2 N=T. The simple 0 
Schrijdinger equation (2) arises from the action (1) only after rather tedious 

algebra. The essential elements of the derivation are:7 

(a) Assume that the string is straight in the rest frame of the meson and 

is therefore described only by its position and orientation. 

(b) Transform the Dirac field Z# by a local boost, $(u”$ = S(U~)X(U~). Quali- 

tatively, x is the wave function of the quark in the local rest frame of the string. 

(c) Perform a Foldy-Wouthuysen transformation on x to separate the non- 

relativistic quark and antiquark wave functions. Drop all relativistic correction 

terms and spin effects. Approximate the qi interaction by the instantaneous 

(linear) Coulomb interaction. We choose the gauge A’=O. 1 

(d) Introduce the q?j bound state wave function and quantize the string posi- 

tion and orientation. In the zero momentum frame, the orbital angular momen- 

tum is quantized with integer values I. 

(e) Demonstrate that the one-dimensional relative wave function f(r) is 

related to the usual three-dimensional relative wave function by: 

Next we consider the’vibrational modes. This is more difficult to tackle; 

instead of solving the nonlinear coupled string and Dirac equations, we content 

ourselves with a crude WKB estimate of the vibrational energy as a function of 

qq separation, r, and insert it as an effective potential into the Schradinger 

equation 

1 a2 --- 
m 8r2 

+ 2m + Vn(r) + q f(r) = Ef(r) 
mr 1 

W 
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where n is the vibrational mode quantum number. 

V,(r) = kr/ P 2 - an (3b) 

cY2 = 14 2n7r 
n 2n7r + k[(r -2d) 2 + 4d21 

d is the correction due to the finite quark mass and is given by (1~ oE( 2) 

d(r) = 
kr2a! n 

4 
1 

2m+kran 

w 

V) 

For n=O, (y21 and Vo(r)=kr so that we get back the charmonium equation (2). We 

have two parameters m and k. They are fitted by the masses of G(3.095) and 

zj’(3.684) so that m=l. 154 GeV and k=O. 21 GeV2 (e=0.8 GeV). The levels of the 

charm string equation (3) are shown in Fig. 2. All states are further split by 

spin effects. The n#O, Q#O levels actually have couplings between the vibrational 

and the rotational modes, which have been neglected. 

The vibrational levels (that are absent in charmonium) start coming in at 

around 4 GeV. Comparing the wave functions at the origin, we expect the vibra- 

tional states to have smaller leptonic widths. For higher energy states, the 

Schrbdinger approximation breaks down. The density of states also increases 

rapidly as we go to higher energies. A simple estimate gives the asymptotic 

Regge slope acle & -0.8 GeVw2. In QCS, this is the universal Regge slope. 

(A better estimate of 01’ requires the inclusion of the relativistic corrections in 

fitting $ and $I and the spreading of quark wave function instead of treating it as 

point-like in the string equation. ) 

To check the validity of the Schrijdinger approximation, we have calculated 

some of the relativistic corrections and find they are small. Jn particular, the 

S-L (spin-orbit) splitting of the 1 P state is of the order 

E(Q=l, J=2) - E(Q=l, J=O) - 0.14 GeV . 
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Comparing this with the binding energy (E(Q=l) - 2m - 1.1 GeV), the nonrelati- 

vistic approximation is justified aposteriori. To test the validity of QCS, it is 

important to complete the leading order relativistic correction (e. g. , spin-spin 

splitting) calculation for the charm string and compare with the data. 

To summarize, we note that the charmonium model with a linearly rising 

potential can be obtained from a relativistic invariant field theoretic (albeit 

unconventional) model. Furthermore, relativity requires the introduction of 

string variables (via g 
ap 

) which give additional physical states even in the 

SchrXinger limit. 

Triplet-singlet and spin-orbit splittings are expected to occur in the levels 

shown in Fig. 2 due to relativistic corrections, which are, in principle, deter- 

mined by the action (1). 

Even in the absence of the evaluation of such terms, we see that the spectrum 

of the charm string has some attractive features vis a vis the data. Namely, we 

expect resonance structures around and above 4 GeV due to vibrational excitations 

of the $ and Z/I . 

In this region, one also expects structures due to charm thresholds (and 

possibly S-D mixing). Whether the observed structure can be entirely accounted 

for in this way remains to be seen. We note one prediction at this stage: there 

are two states around 4.4 GeV in the e+e- channel. 
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FIGURE CAPTIONS 

1. The physical picture of the color singlet states, namely, mesons and 

baryons, in a classical picture with the dots representing quark wave 

packets. 

2. Level solutions of Eq. (3), zj(3.1) and e(3.7) are fitted to obtain m=l. 154 

GeV and k=O. 21 GeV2; spin-spin and spin-orbit interactions will split the 

levels. The dotted lines are the vibrational states. The solid lines are 

those also present in the charmonium model. States with energies 

E >4.5 GeV or I> 2 are not shown. 
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