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ABSTRACT 

Two-dimensional U(N) invariant Chromodynamics is 

canonically quantized in both the light cone and the axial gauges. 

A principal value infrared cutoff is adopted. A direct 

Hamiltqnian method leads to two different meson bound state 

equations in the limit of N -+ CO, g2N kept fixed. In the light 

cone gauge, *t Hooft% equation is obtained; in the axial gauge, 

the corresponding equation suffers from covariance problems 

rooted in the severe infrared divergences of the theory. The 

bosonization of the model is also presented,, 
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1. COLOR ON THE LINE 

It is widely believed that a color gauge theory of quarks and gluons, 
. 

Quantum Chromodynamics (QCD), i provides a not manifestly wrong and eco- 

nomical foundation for the dynamics of strong interactions, While much effort, 

both conceptual and computational, 2 has been spent to uncover the true infrared 

structure of &CD, little has yet emerged to warrant confrontation with our ex- 

perimental knowledge of hadrons, However if one is willing to contemplate an 

unphysical world in 1+1 dimensions such as that of E, A, Abbott’s ignorant 

Monarch of Lineland, 3 the theoretical outlook is brighter. QED and &CD 4,5 

manifestly confine since the attractive Coulomb potential between a fermion- 

antifermion pair rises linearly with distance, Of particular interest are the 

works of qt Hooft 697 who studied the large N limit keeping g2N fixed - N refers 

to the local SU(N) group of color and g the associated group charge, For two- 

dimensional &CD, referred to hereafter as TDQCD, he showed it to be solvable 

in this limit and by summing the set of all planar Feynman graphs for a given 

channel he obtained in the light cone gauge a covariant bound state equation for 

the mesons 0 This equation reveals an infinite number of finite mass color 

singlet bound states, equally spaced for large masses. This spectrum concurs 

with one !s potential theoretic intuition in this instance of a shallow well in the 

weak coupling regime. 

More recently, there has been a resurgence of activities concerning 

9 Hooft solution., 8 Restricting themselves to the light cone gauge where the 

model looks particularly simple, Callan et al, and Einhorn aim to test the con- 

sistency of this solution, Thus Bjorken scaling, the Drell-Yan-West, as well 

as the Bloom-Gilman relations, are seen to be satisfied. All heralds well for 

the four-dimensional counterpart of gt Hooft solution to &CD. 9 We note that the 
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identity in the topological structure between the l/N expansion of &CD and the 

perturbative graphs of dual resonance models suggests that a transverse mo- 

mentum cutoff must be operative in the former as it is in dual models., If this 

is indeed so, one may end up with having the Galilean subdynamics of the four- 

dimensional theory reduced to an effective TDQCD in the infinite momentum 

frame or more precisely on the null plane, From the viewpoint of string 

theories TDQCD also represents the common limiting case of the quark con- 

fining string 10 and a theory with quarks constrained at the endpoints of Nambu 

strings 0 
11 In short, ‘t Hooft TDQCD is a rich testing laboratory for bound state 

problems in color gauge theories 0 

In this work, we wish to carry into a different direction this consistency 

study of “t Hooft solution. We report on a Hamiltonian approach to TDQCD as 

an alternative l/N expansion scheme to the usual diagrammatic method. 

Our intentions are twofold. We formulate TDQCD in two different gauges, 

the light cone and the axial gauges. These choices follow respectively from the 

front and the instant forms of dynamics, Postulating in both instances the 

standard canonical free field commutation relations for the independent fields and a 

principal value infrared cutoff, we attempt to derive the corresponding bound 

state equation for quark-antiquark pairs in the N -+ CO limit, g2N fixed,, While 

sharing the same Lorentz invariant action there is however no a priori reason 

for the two forms of dynamics to be the same since they are not simply con- 

netted by a unitary transformation. 12 Moreover the infrared divergences in- 

herent to the model have varying effects depending on the gauges chosen, Our 

interest in the axial gauge version of TDQCD was triggered by the work of H,D.I. 

Abarbanel et al. , who fail to obtain a covariant ‘t Hooftqs equation in ghost- 

free gauges other than the light cone gauge. 
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In our work, the l/N expansion is formulated as an old-fashioned Raleigh- 

Schrodinger perturbative series in g2N = fixed, the perturbing potential being 

the particle number changing piece of our Hamiltonian. In the leading order in 

N, we recover in the light cone gauge ‘t Hooft covariant equation. However a 

similar calculation in the axial gauge leads to spinorial complications and a 

noncovariant equation. We attribute this negative result to the inadequacy of 

the naive principal value cutoff in the handling of the particularly severe infra- 

red divergences in the Coulomb gauge. Possible cures for this problem are 

discussed., 

Finally we present the bosonized equivalent of TDQCD, a form which gen- 

eralizes the bosonization of the massive Schwinger model, This dual form of 

TDQCD will be useful in the strong coupling regime g >> m, the quark mass. 

Our paper is organized as follows: in Section II we define our notation, the 

null plane quantization of TDQCD is performed, a Hamiltonian method to get 

*t Hooft equation is given, In Section III a similar analysis is done in the axial 

gauge. In Section IV we close with writing down the bose form of TDQCD and 

discuss our results. 
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II. TDQCD IN THE LIGHT CONE GAUGE 

For definiteness, we consider the standard locally U(N) invariant 

Lagrangian density 

where 

&? = $(irCID 
P (20 1) 

F =aA 
lJ* I-1* - avAp f g Ap,Av [ 1 

The matrix notation, e, g, , Ati = AFTo9 is used throughouta The To are the 

matrix representatives of the generators of U(N), z/ = 
0 

$4 denotes a 2-Dirac 
$2 

spinor which is a N component vector in the color space, A and F are the 
P J-J” 

color gauge potentials and the covariant Yang-Mills fields respectively. Flavor 

indices have been deleted since only the dynamics of color is of interest here, 

Following 9 Hooft, 7 we choose to work with the group U(N) instead of 

SU(N) , the difference being the singlet Ai which decouples and is a free field. 

To leadind order in l/N, either group leads to identical results. As is appar- 

ent in (2,l) we limit our treatment to the equal quark mass case, the general 

situation being a trivial extension, 

Variation of the fields $ and Ap yields the coupled set of Dirac and Yang- 

Mills equations of motions 

(irpDp -m)tl, = 0 

avFvP = -g$, -ippv,Av]) 

where the color current is J I-L =zJypT o 

We shall also need the conserved energy momentum tensor 

(204) 

(2,5) 

(2.6) 

given by Poincare invariance through Noether% theorem. 
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We recall that TDQCD is superrenormalizable, the group charge g having 

the dimension of a mass. Both mass and coupling renormalizations are finite, 

Due to the two-dimensionality of the system, there is the added bonus in any 

ghost-free gauge no A = 0 that there are no nonlinear interactions among the 

gluons since h ,A* 
1 1 

= 0. 
P 

For this reason, we shall consider two such gauges, 

the light cone and axial gauges respectively, 

It is well known that dynamics at infinite momentum, or the front form of 

dynamics, present definite computational advantages in bound states problems 

in relativistic theories ., The key reason lies in the vanishing of the usually 

troublesome vacuum fluctuation and topologically complex graphs which are 

stumbling blocks in the derivation of useful integral equations for bound states 

in an ordinary Lorentz frame. Therefore we begin by analyzing in some detail 

the null plane dynamics of system (2.1) in the light cone gauge. 

Our metric tensor components are g, = g-- = 0, g+- = g-+ =I with the 

coordinates and the y-matrices defined as 

f 
X =x ~ = (x0 i x1)/& 

y* = (yO f yl)/Ji , y+2 = f2 = 0 (2.7) 

b”J-1 =2 , Y5 =$Y-,Y+l 0 

We use the Weyl representation 

Y0 = I 0 l\ 0 1 

\ ,1 0 ! z c1 , y1 = i -1o- 1 = io 2 
(2.8) 

where the free spinor fields are such that u(0) = l\ 1 
11 

and v(0) = ,-1 . Usually ( 1 
\ 

used for massless fermions, this representation is the most natural choice in 
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the null plane quantization which does not know about masses, 12 We also make 

use of the Hermitian projection operators 

p+ = $7; = $Y+Y- = ( 
0 01 0 I] 

P = ;y+y- = $r-Y+ ( 1 = 4 0 o) 
(2.9) 

fulfilling the properties 

P++P =I, PP=P+, P2 =P - - 
(2,lO) 

P y+ P, = r’ , P+TP = y- _ 

and 

(2.11) 

By way of these ‘y-matrix identities in the light cone gauge A = 0, the Dirac 

equation for $ splits into 

ZiD+zJz = my++: (2.12) 

2ia $a = mr-$t o (2,13) - - 

With a, playing the role of a “time I1 derivative on the null plane dynamics, $F 

is seen as the independent variable of our problem. Eq, (2.13) plays the role 

of a constraint for $a and can be written as 

dzP E (z-zp)y&- ,zl) 

with E(x) = 
I 

1 x>o -i x < o , T = x+,z = xBp Consequently (2,12) becomes 3 

2 
(a, + p a:‘)$: = -igA+$t . 

(2014) 

(2.15) 
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Since there is no physical transverse degree of freedom associated with the 

field in two dimensions, the Yang-Mills equations (2.5) 

a"_ A+(vd = -gj-(vz) (2016) 

yield another constraint leading to a nonlocal Coulomb interaction between the 

quarks D 

Here we recover the remarkable feature of null plane dynamics: the num- 

ber of independent canonical variables is reduced to half the number present in 

equal time dynamics. $z is the only variable from which all the other operators 

of the theory can be built, 

From (2,6), the null plane Hamiltonian is derived 

H = IT; dz = Hf+HI 

where a separation is made of the free part Hf 

Hf = J dz q(m - i-y-a-)$ 

and the interaction part HI 

(2.17) 

(2018) 

HI = 
I 

dz Tr [gJ-A+ - &-A+)2l D (2,19) 

Eliminating J, by means of the constraint (2.14), we get the expected form 

im2 Hf = 4 dz9 $;(z9), E (z-z ‘)$+(z)~ o (2020) 

Similarly, solving for A+ by use of (2.16) we get the Coulomb term 

HI = - {fiz dz9 J (z$z-z’lJ (z$ 

where 

J-F A; = $2 $;(T ,Qa++(T ,Z,b l 

(2,21) 

(2022) 



-9- 

The main steps leading up to (2,21) are as follows. The general solution of 

the boundary value problem (2,16) is given as 

A, = -ga_zj- - Ez - G (2023) 

where 

a12j-(z) = $bz9 lz-z9 lj-(z’) (2.24) 

The constant matrix G can be gauged to zero0 The E correspond to the N con- 

stant color background fields 0 ’ They cannot affect the color singlet sector of 

the theory since the quark-antiquark bound states carry no dipole moments. 8 

Hence the E can be set equal to zero in this singlet sector. By direct insertion 

of (2.23) and (2,24) in (2.19) and by use of the identity lzl-z2 I = 

; dz 1 e(zl -z) E(z-z~)~~~ 21) results. 

Now the null plane classical initial value problem for @ obeying (2,15) re- 

quires the additional assumption $+(zt 00, T ) = 0 with T held fixed, 15 This con- 

dition means that the physical system is local and is anyhow required for the 

existence of such generators as the Hamiltonian H (2,17), the momentum op- 

erator P = 
1 

+CO 
dz T;, and the total matrix charge Q = I j-P, O)dzo Regarding the 

-co 
total charge, carrying out in the light cone gauge an easy calculation analogous 

to that of Zumino, 16 we can obtain 

( 1 
a2+zQ = 0 + iT 

as a consequence of the anomaly in the current apI e/J - g c/q - - 4n Since Q 
1 I.l*’ 

cannot change in “time”, (2.25) implies the constancy of the charge Q, which is 

true only if Q = 0. Similarly, Q is independent of the Lorentz frame only if it 

vanishes. However,as a quantized operator such that [Q, $1 = -e$, Q can only 

vanish weakly, i, e. , the null plane quantization of TDQCD is only covariant in 

the singlet sector of the Hilbert space of states. In this work we shall confine 
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ourselves to this bound state sector of the theory, 

Having eliminated all dependent fields we can proceed to quantize the theory 

canonically. It is natural to work in the Schrodinger picture by postulating as 

is usually done in null plane quantization a free field expansion for $+ at fixed 

time 7 = 0. 

JI+(zJ=O) -lrl ‘a(n ) (2926) 

with 

kW,a+tvOl = W-77*) 
btW,W)l = 0 

(2027) 

being the covariant anticommutation relations. Equivalently in the space co- 

ordinate representation we have 

{$+tT,Z,, $+(T,Z’)) = p+/& ~(Z-Zw) 

The cur?ent J (z , 0) (2: 22) then takes the form 

Letting r~-q~ = m and defining the density operators 

o:(m) =j”dqv : a+(qV), a(n9+m)b : 

(2.28) 

(2.3 29) 

(2.29) 

familiar in dual theories 17 and in solvable models of a one-dimensional electron 
18 gas o Then 

J!& pi (m)eVimz pb(m)e-imz+oL(m) e + imz) (2.30) 

Making the identification through (2.26) of 

a@) = cm) 

a(-7) = d(v)+ 
(2Q31) 

77 =l, 2, OoO 
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where c+ and d+ are the quark and antiquark creation operators, respectively, 

we obtain with a little algebra 

and 

= &-m) 
Substituting these in the interacting Hamiltonian we obtain 

Similarly the free Hamiltonian is given as 

(2032) 

(2.33) 

(2.34) 

(2.35) 

Upon introduction of the fermion vacuum, one constructs the Hilbert space by 

cyclic action of the creation operators on this vacuum,, When sandwiched be- 

tween any vector in this Hilbert space the density operators pi(m) satisfy Bose- 

type commutation relations 

b(m), p+(m)1 = W-n-n) o (2036) 

(2.36) is then to be understood in the weak sense of Dirac. lg 

Having thus set up the above machinery, we now define our eigenvalue 

problem for the quark-antiquark bound states, Let 

P 
IQ&, = I 

0 
dk $ (P,k)c+(k)ad+(P-k)a I 0 > (2037) 

denote the quark-antiquark bound state ket-vector in the infinite momentum 

frame; $(P,k) is the amplitude for finding a quark with momentum k and an 

antiquark with momentum (P-k), there being no spin in two dimensions. P is 
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the total momentum of the hadron. 

The Schrodinger equation for a bound-state of invariant mass p2 is then 

2 
~JIQQ>~ = 2% IQ@, (20 38) 

Before proceeding further, we first normal order the Hamiltonian, making use 

of the trace identity Tr (6 ab ) = N and (2,2 7), In this manner, the mass re - 

normalization contributions are separated from the rest of the interaction; they 

are quadratic in c*c and d’d. We obtain 

tWactWa + d+OaWa] 

+ $. j-$/& [c-+Q’+k)c(k’+k)a + d;(k’+k)d(k’+k)a] (20 39) 

The (> 0) lowest limit of integration means the exclusion of the zero mode to be 

specified by a principal value cutoff., The first term yields a constant and can 

be dropped. The second term gives rise to mass renormalizations. The last 

term constitutes the actual interactions. 

Regrouping again the various terms, the Hamiltonian is written as 

H = Hf+HMR+H’ (2.40) 

where H’ is split into,a particle number conserving piece H PC and the rest R, 
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We have 

H,,=$j-$j-- dk dk ’ f c+~kP),d+Q”+kjOc(k’+k)bdF;‘)a+d+~1’+k)ac+~~)bd~“)bc~Ifk)al 

d+(k’)ac+(k’f+k)bd(kr+k)bc (k’l)a+c+(k”+k)bd+(k’)ac fk”)ad(k’+k)b] 

+ g Idk/(cU,lldk’[c+~~‘)bd+~-k’)ada(k-k”)c (k’),+-c+(k’~)ad+(k-k’f)bd(k-k’)bc (k)“] 
k2 - 

(2.41) 

We observe that the first two terms are Coulomb exchange interactions; the last 

term corresponds to annihilation processes which are suppressed on the light 

cone 12*14 . Thus our bound state equation approach consists then in taking into 

account in the leading order in l/N contribution in H due only to the mass re- 

normalization and Coulomb exchanges. It follows that 

‘cp $tP,k) = I 
cm2 g2N m2 -- g2N-I -I_ 

I Ng2 

t 
IkIT + ,p-$ +tPsk) - - 

J 
~ 9[‘dq 0 (2.42) 

0 Ik-q I2 

The symbol 9 denotes a principal value integral. Alternatively making use of 

the Feynman variable k = xP, and the identity 

= -&x)[;+&] 

and defining $(P, x) = T(x), we have ‘t Hooft equation 

(2.43) 

where pt is dimensionless and a! =(m2 1 @)($)m1o In the above 

Schrodinger equation approach, higher order l/N corrections are in principle 

calculable by way of old-fashioned perturbation theory in the particle number 

changing potential R. It can be verified without calculation that a second order 

perturbation theory in R to the energy eigenvalues in (2,43) is proportional to 
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( g2N)2/N on dimensional grounds, 

We shall not go into any of the details regarding the solutions to Eq, (2,43), 

They have been treated by 9 Hooft and will be the topics of a forthcoming work 

of Hanson et al., 20 who apply a powerful method of numerical analysis to 

several one-dimensional bound state equations of QCD and string theory in dif- 

ferent coupling regimes O 
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III. TDQCD IN THE AXIAL GAUGE 

We now proceed to the quantization of TDQCD in the axial gauge in a manner 

entirely analogous to that done for the light cone gauge. From (2.1) the 

Hamiltonian density is 

H = $(m+i~ld,)$ =t gj A 0 

with Al = 0; the Euler-Lagrangian equations for the gauge fields are 

(3-l) 

,2 alAo = -gj, . (3.2) 

They have the nature of a constraint. The general solution of (3.2) is 

-2 A0 = -gdl. j, - Ex - G . (3.3) 

For the same reasons given in Section II, G=O. The background color fields E 

can be set to equal zero in the color-singlet sector. 

By direct substitution of (3.3) in H, we get 

H = /dx ;i;(m+irlal)$ - $ /[dx dx’ j,(x) 1x-x’ I j,(x) (3.4) 

Just as in Section II, we assume a free-field expansion for the 2-spinor 

u(p) eiPx + B*(p) v(p) emipx 1 
The spinors satisfy 

(CQ + m@u = Epu , (-ap + mp)v = -Epv . 

and 

7 Ep= p +m 

~0, A%)}+ = [W), B+@‘)]+ = 6(p-p’) (3.6) 

(3.5) 

are the postulated equal time canonical commutation relations. 
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For y-matrix representation, we choose 

In terms of the quark (A, A+) and antiquarks (B, B+) creation and annihilation 

operators we can rewrite 

H = Ho + HI 

Ho = jdp Ep [A*(P)~A@)~ + B+(P)~B@)~ 1 (3.8) -. 
In order to reexpress HI in terms of these oscillators, we must replace Jo in 

(3.4) by its normal ordered current21 (omitting the U(n) matrix label) 

: Jo: = & /dp dp’ [ A+(p’) A(p) u+(pt) u(p) e-i(p’-p)x 

+ B+@) BW v+@Y v(p) e it+PP 

+ A’@? B+(P) u+(p’) v(p) e 
-i(p’+p)x 

-I- B(p’) A(p) v+(p() u(p) ei(p’+p)x I (3.9) 

Just as in the light cone case, we set up the eigenvalue equation for the meson 

bound states 

HIQ&p = 1-1 +P IQ@, 7 (3.10) 

Similarly we shall only take into account in H terms which do not change the 

number of particles. After normal ordering and dropping the particle number 

changing terms, we are left with 

H=Ho+HILIR+Hc+Ha 
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where the mass renormalization piece is (9 stand for principal value) 

g2N 
HMR= 47r 11 dp u+(P) u(q) u+(s) u(P) A+‘@) A”@) 

+ v*W vtti v+(q) v(p) B+a(q) Ba(q)} 

g2 -G 1 dp dp’ dq dq’ 9’ 
(P-P’) 2 

6(P-P’ + q-q’) x 

x i u+(p) u@‘) u+(s, u(q’) A+a(p) A+b(q) Ab(p’> Aa 

+ v*(P) v(p’) v+(q) v(q’) B+b(~) B+“(q) Ba(p’) Bb(q’)] (3.12) 

the Coulomb interaction piece 

Hc = -$ Jdp dp’ dq dq’ S’ 
@_P’J2 

6&l-P’ + cl’-a x 

I+ yu (P) u(p’) v+(q) v(q’) A+‘(P) B+“(q’) Ab(p’) Bb(q) 

* v+(p) v@‘) u+(q) u(q’) B+b(~‘) A+b(q) Ba(p) Aa 1 (3.13) 

the annihilation piece 

2 
Ha = s 1 dp dp’ dq dq’ G(P+P’ - q-q’) 9’ 

@+P.‘) 2 
X 

I+ “I” tp)v(P’) v+(q)u(q’) A+“@) B+b(~) Bb(q) Aa 

+ V+(P) u(P’) u*(q) v(q’) A*b(q) B+a(q’) B”(P) AbW] 

w2 -- 
4n dp dqB 

(P+qj2 
v+(P) u(q) u+(q) v(P) x 

x [ B+a(~) Ba(p) + A+a(q) Aa (q)} (3.14) 

By further inspection, we observe that the second group of terms in (3.12) is 

down by a factor of N, compared to the first group, therefore can be neglected. 
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Regrouping our interaction Hamiltonian again, we get 

Ng2 
HMR=q, 11 dp ds 3 {[u*(p) u(q) u+(q) u(P)] A+a(~) Aa 

(P-Q 

+ b+(P) v(q) v+(q) v(p)] B+‘(q) Ba(s)) 

-$ I/-dp dq-=- 
b-w2 

v+w wll u+(q) VW x 

x {AC”(q) A”(q) + B+a@) Ba(p)] (3.15) 

and 

2 
Ha = - & jdp dp’ dq dq9 ~(p+p’ - q-q’) e9 x 

(p+PY2 

x u+(p) v(P’) v+(q) u(q’) A+a@) B+b(~‘) Bb(q) Aa I 

+ v+cP, u(p’) u+(q) v(qY A*b(s) B+“(cr) B”(P) Ab(p’,l I 
(3.16) 

So the truncated Hamiltonian is Ht = Ho + HNLR + Hc + Ha. We then compute 

H I&Q>, = Ep I&Q>, taking as our bound state representation 

00 
IQ%, = / dk @(P,k) A+“(k) B+a(P-k) IO> 

0 

which is consistent with our ansatz of a free spinor expansion; here 4 is chosen 

to be an even function of k. Calculating each term separately, the results are 

Ho I&Q>, = /TI~(E~+E p-k) +(P, k) A*a(k) B+“(P-k) IO> (3.17) 
JO 

2 -00 
HlllRIQQ>p = s/ dk @(P,k) 

0 
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where 

u(P, 9) = u+(P) u(q) u+(q) U(P) 

v(P, 9) = v+(P) v(q) v+(q) HP) (3.19) 

W(PT q) = v+(P) u(q) US(S) HP) 

Notice that in the representation we are working the quark propagator, which 

appears as the middle term above, is 

u(q) u+(s) = + (Eqyo - qyl + ml Y’ 
q 

(3.20) 

= + (Es + w5 + my,) 
q 

Thus the first term in (3.18) is 

&” 
4T _ I- O 

a HP, k) P ,‘mdq u+oi, 
0 

(“q+q2q+myo) u(k)X -& (3.21) 

Using the explicit representation for the free spinors 

u(k) = (3.22) 

this becomes 

(3.21a) 

The sign of the first term in the integrand may be changed freely because its 

contribution to the integral is zero. So the numerator vanishes quadratically 

when p=q, therefore the principal value symbol can be dropped. Thus (3.21a) 

becomes 

??$ /mdkm/mdq$-(m2+kq - EkEq)-l 
0 Ek 0 q (k-q) 2 

(3.21b) 
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Introducing the new variables, q=m sinh x and k=m sinh c, the q-integral is done 

easily, and the result is 

Ng2 -mdk $(P,k) 
-2-ire I Ek 

(3.22) 

Using the same integrations for the other three terms in (3.18) we get zero, for 

W-terms, and a similar result for the second term. So finally 

(p(P, k) x A+a(k)B+a(P-k) IO> (3.23) 

Moving on to the Coulomb term in (3.13)) we have 

w2 * 
00 

Hc IQ&> = 4n o / dp dp’ dq dq’ dk 6 (p’-p’ + q’-q) a&)‘-k) x 

X 6 tp’-k) b(q+k-P) u+(p) u@‘) v+(q) v(q’) Cp(k) A+a(p) B+“(q’) lo> 

03 
-1 dk (~(p-p’ -I- q’-q) 6 (q”-k) 6 (p+k-P) v?p) v(p’) u*(q) u(q”) x 

0 

x $4) B+a(p’) A*a(q)lO> 
I 

(3.24) 

which simplifies to 

Hc IQ%, = #@, k) [u+(p) u(k) v+(P-k) v(P-P)] 

ACa(p) B+;l(P-p) IO> (3.25) 

Noting that the meson representation I&Q>, sets a constraint on the variable 

p, 0 < p < P, we get after a change of variable the form 

Hc IQ&, = K(P, $(P, k) A+“(k) B+“(P-k) IO> (3.26) 

with 

K(P, k, P) = u+(p) u(k) v+(P-k) v(P-P) 
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While the annihilation term is down by a factor of l/N compared to 

we give for the sake of completeness the corresponding equation (3.16). 

dkz 
iP+W2 

u+(p) v(P-p) v+(P-1~) u(k) 

@(P, k) ASa B+“(P-p) IO> 

- ( cdq /,” dk --& v+(P-k) u(k) u+(s, v(P-q) 

A+‘(q) B’“(P-q) $(P, k) IO> (3.27) 

In the event that the group is U( 1) , so that (1) become the massive Schwinger 

model Ha can be neglected on the grounds that it is of order h2. In this case, 

the weak coupling limit has been studied by Coleman 
22 who made use of semi- 

classical approximations while preserving relativistic kinematics. 

Gathering all contributions (3.1’7)) (3.19) and (3.26), we reach the eigenvalue 

equation 

+g@/-*dp 3 5w3 P) 
‘0 - 

where 

Ek= T k +m 

K(P;k, p) = u+(p) u(k) v+(P-k) v(P-p) 

By using the equality 

&+ = Ek -& + @(Ng2)2 
k 

(3.28) 

(3.29) 



- 22 - 

which is good in the weak coupling limit, (3.28) can be cast into the following 

form: 

Ep @(P,k) = [--$) + w$)] $(p,k) 
2 

+$9 j”m dp =%$ +(P,P) 
0 b-k) 

(3.30) 

which exposes the “mass renormalization” explicitly. 

It is obvious that this equation is not covariant, due to the explicit dependence 

on P, the momentum of the bound state. Of all the frames, the most convenient 

one is clearly the center-of-mass frame, where P=O: 

p$(O,k) = 2 w$) $(O,k) 

+$ 9’ /mdp = #(O,p) 
‘0 (P-N2 

where, now 

W;P, k) = u+@) u4) v+(-k) v(-P) i 

1 [ 2Ek(Ek+m) x (Ep+m)(Ek+m) + pk 2 1 

(3.31) 

The spectrum of this particular equation is being numerically studied by Hanson 

et al. 2o 
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IV. BOSONIZATION AND CONCLUDING REMARKS 

What have we learnt from the foregoing exercise? First we have seen a 

key feature of null plane quantization of TDQCD, namely its lack of sensitivity 

to the specific form of the infrared cutoff. It has been known that the massive 

Schwinger model and hence also TDQCD suffer from very severe infrared diver- 

gences induced by the bare quark masses. 23 There appears to be a softening 

of these divergences in the A =0 gauge reflected in the indifference to cutoff, 

possibly due to the peculiarities of the null plane quantization. 12 It does not 

know about masses and its vacuum is the bare vacuum. These features account 

for the simplest spinor kinematics, the intuitive picture of constituents in a 

relativistic bound state. 

In the axial (or Coulomb) gauge, none of the above properties are available. 

Thus the interaction kernel (3.28) is plagued with mass dependent kinematic 

factors. Nonrelativistic approximations need to be made to obtain a more tract- 

able bound state equation. No clear picture of a relativistic bound state is avail- 

able and our assumption of a free field expansion at fixed time is thereby suspect. 

Indeed the Coulomb gauge computation performed here should be taken only 

heuristically. It is known24 that no bona fide quark field operators can be con- 

strutted in this gauge due to the linearly rising potential. Since a simple 

principal value cutoff fails, a more involved technique such as a mass and coupling 

dependent cutoff procedure could be tried. A more illuminating approach, we 

believe, would be that of Lowenstein and Swieca 24 who get to the Coulomb gauge 

via a limiting procedure starting from covariant gauges. This is a difficult 

problem we are presently studying. 

However irrespective of possible covariance problems, our method of attack 

of the bound state problem in the l/N expansion is a straightforward one. The 



- 24 - 

usual apparatus of Schrodinger perturbation theory can be in principle applied 

to computed higher l/N corrections and to handle problem of bound state scat- 

tering and the analysis of form factors etc. 8 In the instance of the massive 

Schwinger model recently studied by Coleman in the axial gauge, our results in 

Section II carry over provided the coupling is weak, g << m. The null plane 

quantization of the massive Schwinger model gives in our opinion a more tract- 

able as well as attractive resolution of the weak coupling structure of the model, 

when contrasted with the spinor complexities of the axial gauge formalism. 

Finally another limit of interest to TDQCD is the strong coupling limit 

believed to be of genuine relevance to the infrared problem. In two dimensions, 

a handle on this strong coupling regime is possible without going to a lattice 

thanks to a correspondence between say the massive Schwinger model and the 

Sine Cordon theory. The strong coupling limit in the first model corresponds 

remarkably to the weak coupling limit in the second and hence mades it computable. 

Recent works on the bosonization of the massive SU(N) Thirring models 25,26 

allow us to write down the bosonic equivalent of (2.1). We shall be very brief. 

For more details, the reader is referred to the quoted literature. 

We work in the interaction representation and in the axial gauge A;= 0 of 

TDQCD. 

It is known25 that the SU(N) invariant free massive Thirring theory 

2 = 5 $i(i$-m)+i 
i=l 

is equivalent to a theory of N Bose fields c$~ 

He=Nm 

(4.1) 

(4.2) 
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Nm denotes normal ordering with respect to the mass m, c is a constant of no 

relevance to our consideration. 

The boson forms of the N-two component spinors are 26 

#!,R (x, t) = -f-Q:e 
3 2i Jr +i .(x, t) 

’ : XL,R 

a= 1 , - - * 3 N (4.3) 

a is the quantization box length, the xt R are nondynamical anticommuting oper- 
> 

ators which Banks et al. 26 need to introduce. Their properties are x, = xz, 

{x,, x&= 2$ and Pxf= x2 where P is the parity operator. Then the color 

current Jo=$Ta is given 
-. 

i= 1 ,...,N2-1 

Since in the charge zero sector, the axial gauge Hamiltonian is 

a 
Fo1=-0, 0 , -l J” 

(4.4) 

(4.5) 

(4.6) 

the bosonization, TDQCD is readily accomplished using (4.2) and (4.4). For 

G= U(l), it reduces to the bosonization of the massive Schwinger model. 22 For 

the non-Abelian case, the Bose form looks rather intricate. Its study connected 

with the strong coupling limit g2 >>m2 of TDQCD will be the object of another 

work. 
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Note: After we completed this work, M. K. Prasad kindly informed us of a paper 

by M. S. Marinov, A. M. Perelomov and M. V. Terent’ev, ZhETF Pis. Red 

20, ‘7 (1974) 494 [JETP Lett. 20, 7 (1974) 2251. These authors proposed the same 

method as ours to obtain the spectrum of ‘t Hooft model in the A =0 gauge (our 

Section II). However, their resulting bound state equation is incorrect since it 

lacks the mass renormalization contributions present in % Hooft equation and in 

ours. 
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