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ABSTRACT 

Using a simple variant of an argument employed by Licht and 

Pagnamenta (L-P) on the effect of Lorentz contraction on the 

elastic form factors of clusters with non-relativistic wave func- 

tions, it is shown how their result can be generalized to inelastic 

form factors so as to produce (i) a symmetrical appearance of 

Lorentz contraction effects in the initial and final states, and 

(ii) asymptotic behavior in accord with dimensional scaling 

theories. A comparison of this result with a closely analogous 

parametric form obtained by Brodsky and Chertok from a prop- 

agator chain model leads, with plausible arguments, to the 

conclusion of an effective mass M for the cluster, with 2 vary- 

ing as the number n of the quark constituents, instead of as - 

n'. A further generalization of the L-P formula obtained for 

an arbitrary duality diagram vertex, again with asymptotic 

behavior in conformity with dimensional scaling. The practical 

usefulness of this approach is emphasized as a complementary 

tool to those of high energy physics for phenomenological fits 

to data up to moderate values of q2. 
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1. Introduction and Summary 

Form factors represent a theoretically powerful and experimentally 

convenient index for judging the degree of compositeness of hadronic and 

multi-hadronic systems. The concept of an extended hadronic structure 

started getting serious attention after Hofstadter's classic experiments 

but most of the investigations on hadronic structure with field-theoretic 

techniques had been centered on the concept of nucleon and meson fields 

as the basic entities in a bootstrap spirit. 1 Form factors for few- 

nucleon systems had also been developed in the language of effective 

fields for their external kinematics and that of orthodox nuclear physics 

for their internal structures through appropriate overlap integrals of 

their (non-relativistic) wave functions. 2 It is only in more recent times 

that the quark constitution of hadrons and their composites has come under 

more serious attention for the determination of their form factors with 

3,4 considerable support from experiment. Powerful techniques of field theory 

have recently been employed to determine the asymptotic behaviour of 

hadronic form factors in terms of quark constituents.' 

While such results are of great value for providing general guidance 

on the functional behaviour to be expected from physical form factors, the 

actual ranges (even down to moderate energies) of experimental interest 

are such as to require enormous details for which (at the present state 

of development of field theory) a good deal of parametrization is probably 

unavoidable in order to obtain numerical fits to the data. For the 

sources of such parametrization one should probably look at both ends - 

the techniques of high energy physics to provide fits mainly at large q2, 

and the traditional tools of nuclear physics for the complementary region. 
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One should also expect a substantial overlap region for moderate q2, 

which should hopefully serve as a proving ground for consistency in 

description from these two complementary points of view, and thus as a 

valuable check on plausible ideas of a smooth transition from low to 

high energy physics. Attempting to interpolate from high q2 to medium 

q2 regions, Brodsky and Chertok5 have just given a phenomenological 

analysis of hadronic and few-nucleonic form factors in terms of quark 

constituents,with a striking degree of success. This still leaves a 

substantial transition region that should presumably be more amenable to 

a complementary description, the philosophy of which represents the 

motivation for this paper. 

For a completely satisfactory description of the data up to moderate 

q' one would probably require a full-fledged relativistic theory of multi- 

particle systems, without the simplifications that accrue from a high 

energy treatment. While there is evidence of serious relativistic treat- 

ments for the deuteron with nucleonic and mesonic constituents 6 , such 

treatments do not appear to be feasible at the quark level, and their fare 

with experiment in the transition region of q2 is as yet less than 

encouraging on the whole, despite some recent results. 7 For a quark level 

description in a feasible manner up to the transition region there is 

probably little viable alternative to a basically three-dimensional ap- 

proach with N.R,wave functions. Nevertheless one must give a relativistic 

meaning, howsoever limited, to such a wave function before it can be used 

for the data. While the external kinematics of the system can still be 

treated in a relativistically invariant manner2, it is on the internal 

wave function that one requires a more tractable scheme of relativization. 
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Of particular interest in this context are certain semi-intuitive 

ideas onLorentzcontraction of clusters in motion, suggested by some 

authors to fit the proton form factors 8,9 . Of these the L-P method is 

somewhat more general and yields a simple recipe for the matrix element 

for an arbitrary cluster undergoing transition in an external field. In 

particular for elastic scattering of a cluster of n particles the relativ- - 

istiv form factor FR(q2) is related to the corresponding N-R. form 

F(z2) by 23 
FRh2) = (l+d 2 F(q2/(l+y)), v = FM-'. (1) 

This formula was applied with a fair amount of success to fit the proton 

form factor up to moderately high q2. However, before indulging in an 

indiscriminate application of the formula to high q' one should pause to 

check its asymptotic behaviour. Unfortunately, this goes like q l-n 
J as 

against the'expected' behaviour as q on deeper theoretical grounds. 4 2-2n 

In view of the basically non-relativistic premises of the formula this 

should hardly cause any surprise and should merely help set limits on its 

applicability. On the other hand, it would be far more interesting for 

phenomenological applications on an extended scale if the considerations 

leading to the formula (1) could be appropriately modified so as to lead 

exactly to the asymptotic behaviour 2-2n (-q ) expected from dimensional 

scaling. Indeed one would almost instinctively feel the practical utility 

of such a 'relativistic' form factor conceived within the three-dimensional 

framework of quantum mechanics, with all the built-in advantages of nuc- 

lear wisdom hopefully incorporated within a judiciously chosen wave 

function. 
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The purpose of this paper is to present a suitably modified version 

of the L-P argument designed to achieve the following results: 

(i) Generalization of the L-P result for the elastic form factor to 

an arbitrary inelastic (A f B) vertex with a symmetrical ap- 

pearance of the Lorentz contraction faetors in more explicit 

correspondence with the individual states. 

(ii) Exhibition of exact asymptotic behaviour 
2-211 (-q ) expected from 

dimensional scaling, as a consequence of (i). 

(iii) Derivation of a corresponding formula for an arbitrary duality 

diagram (A+B + C), again with asymptotic behaviour expected 

from dimensional scaling. 

No attempt is made in this paper to give numerical results which 

will be reported separately. However, the algebraic formulae appear to 

be sufficiently simple and transparent to merit separate recording as a 

complementary tool to high energy techniques, more appropriate to medium 

q2 regions. The original L-P arguments and their modifications to obtain 

results (i) and (ii) are summarized in Sees. 2 and 3 respectively. 

Result (iii) is given in Sec. 4. A comparison of result (i) with a 

similar parametric formula obtained by Brodsky and Chertok (referred to 

as BC) on the basis of a propagator chain model leads to a plausible 

conclusion of an effective mass M for the cluster, varying as fi (where - 

n is the number of quark constituents) instead of as 2. This is - 

discussed in Sec. 5. 

2. The Licht-Pagnamenta Argument - 

Let us first quickly recall the essential assumptions of L-P in 

making a transition from a non-relativistic to a relativistic matrix 
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element, as distinct from a strict 'derivation'. They argue that there 

is a preferred frame (the Breit frame) in which the interaction of the 

individual members of a cluster with an external potential (or radiation 

quantum) may be regarded as instantaneous to a good approximation. In the 

N.R. theory, one considers the emission or absorption of radiation by a 

cluster at rest, with its individual members in small relative motion 

with respect to the center of mass. According to the Licht-Pagnamenta 

argument, such a picture can with a good approximation be taken over to 

the Breit frame for the cluster motion as a whole, involving concomitant 

Lorentz-transformation effects on the cluster coordinates. Now since 

there is only one time-coordinate for the cluster, formal relativistic 

invariance can be maintained only up to its external kinematics (cluster 

motion as a whole), but the frame-dependence would nevertheless show up 

in the structure of the matrix element due to internal motion. 

To see more clearly their proposed modification of the internal 

matrix element, we first write down its non-relativistic form for a 

transition A +B, with suitably normalized internal coordinates zi as 

(q = 2p in the Breit frame): 

FAB(? ') = s ni1 di $,"(zi) e 
i 

Since the states A and B are now in different Lorentz frames, their 

proposal consists in the effective replacements 

3 
xi 3 Zk (in $,); Zi +ZB; (in $,) 

(2) 

(3) 

appropriate to the Lorentz frames the cluster finds itself in, before 

and after the interaction. Taking the common direction of motion as the 

z-direction, the Lorentz transformations (at t = 0) are expressed by 
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ZAjl = z.E /M * zB; 1 A/ AJ = ziEB& (4) 

while the transverse coordinates (xi,yi) are unaffected. Note that after 

the replacements (3) the matrix element is now physically different from 

the original N.R. form (2), and it is precisely at this point that the 

L-P proposal amounts to a departure from the physical premises of N.R. 

theory. This leads to Eq. (1) for the elastic case, noting that the 

contraction factor, which is just (MA/EA)n-l, arises from the z i + z' i 
substitutions in the integration variables. 

3. Modified L-P Argument 

Apart from the difficulty of an inadequate asymptotic behaviour 

(-q l-n ) noted earlier, the L-P prescription does not quite offer a 

symmetrical treatment between the initial and final states, a feature 

which remains effectively hidden for the elastic case considered by them, 

but would nevertheless show up for an inelastic transition (A f B) 

through an apparent lack of decision as to which one of the two sets in 

(4) should be used for the dzi 4 fiz; transformation. However, a 

simple variant of the L-P prescription helps restore both the desired 

asymptotic behaviour as well as an explicit symmetry in the treatment of 

the coordinates in the A and B states as implied by their transformation 

(4). The trick consists in rewriting the N.R. matrix element (2) in the 

alternative form 

FAB(z2) = l “i’ d?M d!$,i 6(Tu-si) 1/I:(T$,,) e 
id Zu+ZBl > + 

$A( “M > (5) 
1 

which still has the same physical content as (2) but helps bring out a 

more symmetrical appearance of the A- and B- coordinates. However, we 

now have the extra option of regarding the &function as a function of 
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the mixed coordinates (zA,"E x ) which is also subject to the L-P transforma- 

tion (4), just like the wave functions. 

If we choose to exercise this option, the L-P transformation 

instead of on (2), yields the following relativistic prescription 

arbitrary (A f B) transition as an alternative to (1): - 

FAB(4P2y;) 

where 

2YP 
= MAEi' + MBEB1; E; B 

J 
=P2+I$B 

J 

on (5), 

for an 

(6) 

(7) 

and p is the Breit frame momentum which equals $q in the equal mass 

case. 

Not only is the result (6) explicitly symmetrical between the 

parameters of the A and B states, and hence more transparent than (l), 
2-2n but it also exhibits a more 'acceptable' asymptotic behaviour - q 

as q2 --irw. Indeed, the result is so simple as to encourage the illusion 

of a kinematical significance, but for the recognition that the &function 

transformation has probably imitated some effective features of a 

"good" field theory, which a more fundamental derivation of the BF type 

brings out more explicitly. Nevertheless the phenomenological usefulness 

of a formula like (6) in the intermediate energy region, with a shape 

determined from essentially N.R. premises, should require little defence 

with the added confidence of a hopefully correct asymptotic behaviour. 

4. Form Factor Under Quark Pair Creation Hypothesis 

It is tempting to look for a similar formula for an arbitrary quark 

diagram. 10 As with the radiation quantum (RQ) hypothesis such as above, 

&PC (quark pair creation) matrix elements with harmonic oscillator wave 
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functions have also been employed in recent literature with a fair 

amount of success at both the N.R. 11,12 and relativistic levels 13 , and 

we assume the physical validity of an N.R. matrix element analogous to 

(2) in the &PC case as well. On the other hand, the question of physical 

validity L-P type modification on the individual wave functions is 

probably more serious in this case. A possible view that can be taken is 

that the &PC analogue of the Breit frame, which ensures good instantaneous 

overlap of the 'pancakes' in the RQ case, is a collinear frame which - 

should roughly achieve a similar objective. (Only there are more vari- 

eties now!) For a specified collinear frame, the Lorentz transformations 

on the internal coordinates of the different clusters in the process 

A +B + C are defined by their respective velocities (or energies) as in 

Eq. (4) and provide the necessary ingredients for the L-P modifications 

on the corresponding wave functions. 

To be more specific, consider an arbitrary quark diagram, Fig. I, 

for a transition A .+ B + C, with the number of quark lines in the dif- 

ferent clusters given by 

"A =n Al+?$' nB=nAl+ "Q 

nC =n A2 + nG , nQ = riG 

We use the following collective notation for the N.R. form of the 

internal matrix element, as the &PC analogue 14 of Eq. (2): 

MA+BC = s&A&Q aE(x~Jx<) $,“(xuJxQ) qAcxA> exp(ix*q) (9) 

where the x's denote the (independent) internal 3-coordinates, and the 

notations 

XA = (x,,x~), xQ = -x~ , etc., (10) 
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indicate the manner of their appearance in the respected wave functions 

in accordance with Fig. I. Now an L-P type modification on (9) would 

correspond to one on (2), with presumably the same symmetry and 

asymptotic problems as before. To give a 'natural' representation to all 

the coordinates of the different clusters, one must rewrite Eq. (9) in a 

form analogous to Eq. (5), viz., 

and subject the coordinates appearing in the &functions and the wave 

functions to the L-P transformations like (4), viz., 

'A,B,C 
EAJB,C 

-+ ';L,B,C = MA B ; 'A,B,C (12) 
Y Y 

where z represents the (common) direction of the Lorentz transformation, 

while the transverse components remain unaffected. The overall contrac- 

tion factor now comes from a counting of the internal z-integration 

variables in each cluster in the form 

FmC = (MAhA) 
nA-1 

@VEB) 

nB-1 
o&) 

nC-1 
(13) 

an expression which is not only symmetric in the different clusters but 

also has the correct asymptotic behaviour predicted by BF from dimen- 

sional scaling arguments. The scalar function multiplying (13), which 

is now the &PC analogue of the N.R. form factor F,(b '1 Of Eq* (6)J 

tends to a finite limit as q2 + 03, so that the aymptotic form is still 

determined by Eq. (13). Its detailed expressions for nA = 2,3 and 

= 1 are given elsewhere. 14 
?I 

Because of its simple and transparent form, Eq. (13) instinctively 

appeals to intuition despite the heuristic (almost naive) nature of the 
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derivation; its "correct" asymptotic form, independently of the details 

of dynamics, seems to be an extra bonus. However, unlike the RQ case of 

Eq. (6), the &PC result suffered from some ambiguity in the choice of the 

"best" (collinear) frame, one which cannot be resolved on theoretical 

grounds alone. In a phenomenological application, considerable caution 

is needed: e.g., in an N* -+Nn decay process, a literal application of 

the contraction factor MC/EC for the pion would cause the rate to be 

suppressed, probably requiring remedies more in conformity with an L-P 

transformation on Eq. (9) than one on Eq. (11). It is also possible in 

principle to consider choices intermediate between (9) and (ll), but no 

clearer guidance than asymptotic behaviour seems to be available from 

general theory which favours Eq. (11). 

Recently, in a different kind of application 14 , viz. the asymptotic 

behaviour of total widths of high mass resonances as a function of the -- 

(mass);l or excitation quantum number N as a possible means of distinguish- - 

ing between the RQ and &PC hypotheses, we had occasion to use the orig- 

inal L-P recipe on RQ and &PC matrix elements. The former predicts an 

exponential increase of I? tot with N, while the latter keeps it below the 

exponential level. The modification ofthe L-P recipe suggested here 

will not of course affect this qualitative result. 

5. Comparison with the Brodsky-Chertok Model 

While a quantitative comparison with data is not the subject of this 

paper J some qualitative features of the formula (6) under the radiation 

quantum hypothesis are of immediate interest. Especially interesting is 

its striking similarity with an effective parametrization given by 

Brodsky and Chertok5 on the basis of their high-energy model of propagator 

chains. Before discussing this similarity and the possible inferences 
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therefrom, we first recall the fits given by Licht and Pagnamenta to 

the nucleon form factor (n=3), with their formula (2), which differs 

from (6) only to the extent of an extra power (1+0)-l. Since the main 

source of agreement of the L-P formula with the data is the propagator 

(l+q2mi2)-l arising from vector meson dominance (VMD) and the power 

o+llrl varies rather slowly with q2, Eq. (6) should give about the 

same qualitative fit to the proton form factor as Eq. (2), noting a 

parametric flexibility in the Gaussian damping constant a in their wave 

function. The more important issue in the L-P fit, on the other hand, 

is the crucial role of the VMD propagator. 

A more interesting possibility arises from a comparison of the 

2 -2 1-n formula (6) with the proposal of BC, viz., (l+q m ) for large q2, 

obtained from entirely different considerations. Indeed, the algebraic 

similarity is so close that one would be tempted to identify the cluster 

mass M2 parametrically with BC's 2 mn, thus providing an interesting form 

of 'Ibridge", howsoever empirical, between the high and low q2 points of 

view. However, such a correspondence would not be literally acceptable 

without heavy qualification. In the BC picture, rn: goes like 2, while 

in the L-P picture it effectively goes like n2. The latter feature - 

causes a rather slow decrease due to this factor alone, thus neces- 

sitating the VMD propator for the proton form factor in the L-P descrip- 

tion. For the deuteron form factor, the damping due to this factor would 

be even slower, and the observed precipitous fall4 would therefore require- 

over and above the VMD effect-a heavy strain on the wave function 

manifesting through strong core effects, as inferred from certain types 

of fits to the e-D data 4 . On the other hand, the simpler fits to the 
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data for large q2 with the BC parametrization would suggest the pos- 

sibility of a gentler wave function for a more quantitative description 

at moderate q2 values. We hasten to add that in the BC description there 

is no place for the VMD propagator. 

We now rephrase the question raised in the preceding paragraph: Is 

it possible to reconcile the L-P and the BC points of view in some 

physical sense so as to retain the parametric advantages of both the low 

and high q" descriptions? An intuitive answer that suggests itself 

requires the concept of an effective mass. Such a concept is not new, 

having been used extensively in the theory of nuclear matter 15 , and pos- 

sibly in other areas of physics as well. At any event, it seems to 

provide a rather simple way out of the present situation, if one insists 

that the cluster mass M of the L-P description should be regarded-from 

the lessons of the BC analysis-+s an effective mass varying as Jn instead 

of as ;, which a naive counting based on N.R. ideas would otherwise seem 

to suggest. 

We would like to offer at least one argument in support of such an 

interpretation, based on the analogy with the hadron mass spectrum in 

a relativistic harmonic oscillator quark model 16 : the variation of 2 

with the total excitation quantum number N (not $) in good agreement 

with the data. Here the number n has a different origin - the total 

number of quark constituents in the system. Nevertheless the lesson is 

quite valuable and at the very least should serve as a caution against a 

hasty conclusion, such as M - n, based on entirely N.R. premises. Let 

us also recall that the L-P result is not entirely kinematical: The 

validity of the approximations and assumptions made depends on the 
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fundamental dynamics of the quark. These are involved in the replace- 

ments (3) of the internal coordinates of the wave function, a prescrip- 

tion carried a step further in this paper through the introduction of 

additional &-functions for purposes of some more replacements. It is 

interesting to ask if such derivation and the more concrete results of 

BC (on the basis of a propagator chain model) have a common dynamical 

origin characteristic of some 'good' field theoretic models. We don't 

know the answer, but the strong algebraic correspondence of the BC and 

L-P results is certainly suggestive. 

On the basis of these considerations we would be strongly inclined 

to suggest a variation of 2 like z, the number of quark constituents in 

the cluster. As to the constant of proportionality, one possibility is 

to identify it with BC's parameter, p2 = 0.24 Gev2, without any further 

role of the VMD parameter. With the inclusion of a VMD propagator (and 

in view of so many successes of VMD, it would be premature to dismiss 

this effect too quickly without close scrutiny), one would presumably 

need a different constant. These alternative possibilities-form factors 

with or without VMD effects-re probably linked with the details of the 

wave function employed for specific calculations. In this respect we 

believe that while the order-of-magnitude consistency of the high q' 

results with the wave function at zero distance, as found by BC, is a 

most useful check, it still leaves a lot of scope for a more dynamical 

role of the wave function at non-zero distances. The philosophy of the 

present approach, on the other hand, is based on the latter alternative 

for the dynamics of the form factor for moderate q2. 
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6. Concluding Remarks 

We have tried to suggest a simple extension of the L-P argument for 

the construction of relativistic, albeit frame-dependent., form factors in 

a form which is not only symmetrical between the initial and final states 

but exhibits the correct asymptotic behaviour expected from theories of 

scale invariance. Having its base in a non-relativistic quantum mechan- 

ical wave function, the approach is closer to the spirit of nuclear 

physics and may be regarded as a complementary form of bridge between 

high and low energy physics to a recent proposal by Brodsky and Chertok 

from the high energy end. However, a closer comparison of the two 

formulae leads to the plausible concept of an effective cluster mass 

varying as ,&, and not as 2, where n is the number of quarks in the 

cluster. For the case of &PC matrix elements, our derivation has been 

limited to more general considerations bearing only on the Lorentz 

contraction factors without purporting to go into the detailed structure 

of the matrix elements. This would prevent us from attempting off-hand 

interpretations of apparent paradoxes such as different asymptotic behav- 

iour of y37n: and ynp matrix elements, inferred from exclusive-inclusive 

connections between structure functions 17 , but we suspect that such results 

are of more dynamical origin. Currently separate efforts are under way 

with the radiation quantum hypothesis, to calculate the predictions of 

formula (6) on the form factors of very light nuclei (D, He3, ET.e4) in a 

multi-quark model with necessary symmetries under all degrees of freedom 

(space, SU(~>, and color) taken into account, to test the validity of 

this alternative approach. 18 
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FIGURE CAPTION 

1. Quark diagram for the process A 3 3 + C. 
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