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ABSTRACT 

We describe a numerical investigation of an analogue quantum spin 

lattice model for Reggeon field theory, when the bare Pomeron inter- 

cept czo is close to its critical value c2 oc. For a& aoc we derive the 

usual scaling laws and calculate approximate values for the critical 

exponents. When ozo> aoc, the Reggeon field 1c, does not gain a nonzero 

vacuum expectation value, and there is no spontaneous symmetry break- 

ing. Instead, there appears a state Il> which is degenerate with the 

ground state IO>. The order parameter, r~, is proportional to the tran- 

sition matrix element <O I$ II>. As ao---+aoc from above, cr vanishes like 

No-aoc 2 B where p is a new exponent. The opacity of hadronic matter 

at infinite energy is roughly proportional to 02. 
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Recently, a quantum spin lattice system, which has the same critical 

behaviour as Reggeon field theory, has been proposed [l, 21. Reggeon field 

theory [3] is a theory of quasiparticles which reside in impact parameter space 

and propagate in rapidity. Its critical behaviour claims to describe diffraction 

scattering at high energies and small momentum transfers, when the leading 

vacuum singularity has an intercept near one. Several methods have been 

employed to investigate this critical behaviour , The pure field theoretic approach 

works well when the number D of dimensions of impact parameter space is near 

four [4,5], or exactly equal to zero [6]. Classical analogue spin systems, which 

discretise both impact parameter space and rapidity, have also been used [7,8]. 

While they lead to some interesting results, they tend to be too involved for 

practical calculations, and, moreover, give little insight into the nature of the 

phase transition. 

The new quantum analogue spin system has the advantage of having one less 

dimension, being a Hamiltonian formulation on a lattice in impact parameter 

space. It is therefore possible to carry out practical renormalisation group 

calculations, even in D=2. More importantly, it gives considerable insight into 

the nature of the ordered phase, when the bare Pomeron intercept o. is greater 

than its critical value aoc. A previous investigation of this question, by 

Abarbanel et al. [9], using field theory and based on an analogy with real $4 

theory, came to the paradoxical conclusion that Lorentz invariance of the scat- 

tering amplitude was spontaneously broken. Recently, in an important paper, 

Amati et al. [l] have come to different, more satisfactory, conclusions using 

the quantum spin model. Their results are based on variational calculations and 

mean field theory, and will be described shortly. 
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Since the quantum spin Hamiltonian appears to be too difficult to solve 

exactly, even in D=l, we investigated it using numerical methods, by con- 

structing an approximate renormalisation group transformation which is an 

explicit realisation of the ideas of Kadanoff [lo] and Wilson [ll]. These same 

methods have recently been applied to an Ising model in a transverse magnetic 

field (which is the quantum spin analogue of real $4 field theory), to obtain 

reasonable values for the critical exponents [ 121. 

Our calculations confirm and amplify most of the results of Amati et al. [ 11. 

While the quantitative results for the exponents are not very good, we believe 

the qualitative features of the calculations to be correct, We have tested this 

by making different approximations. The qualitative features are preserved. 

The main conclusions, which largely reproduce those of Amati et al. [l] 

are as follows: 

1) In both D=l and D=2 the system undergoes a second order phase tran- 

sition, characterised by the onset of long range order. At the critical point the 

Green’s functions satisfy the scaling laws suggested by the e-expansion [4,5]. 

For ~~~~~~ correlations are short-range, and there is an energy gap A (which 

represents the distance of the intercept of the physical Pomeron pole below one). 

A is related to (01 Oc-~o) by an exponent: A CC (a! oc-QoY * 

2) For oo>aoc, in the ordered phase, the system differs considerably 

from q4 theory and a conventional ferromagnet. The ground state remains the 

original ground state 10~ which is annihilated by the bare quanta of the Pomeron 

field $ . In addition, there is (at least in the analogue spin theory) an isolated 

zero-momentum state I l> which remains degenerate with IO> for 01 >a! 0 Oc’ The 

matrix elements ~0 I$ Il> and cl]+ ]I> are nonzero in the ordered phase. In the 

disordered phase (cro<croc), they are zero. 
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In G4 theory, in the same approach [12,13] one also finds degenerate states 

IO> and ]I>, but IO> is not the unperturbed ground state, and ~0 ]$ll>=<l I+ lO>fO, 

<o I# IO> = <l I$ ]I>= 0. As a result, one can, in this case, define new ground 

states IO>*= (l/$2)( IO> & ]I>), which have the property that there are no nonzero 

transition matrix elements between them. One is then free to choose either as 

the physical vacuum. In these states, the field operator + has a nonzero expec- 

tation value, and the original symmetry @ --c -4 is spontaneously broken. This 

expectation value is the analogue of the magnetisation in a ferromagnet, and 

plays the role of an order parameter. 

In Reggeon field theory, because ~1 I$ IO>=<0 I $]O>= 0, one cannot make such 

a construction. Also, because it turns out that 

<o I $ll> = <l I$ IO> (1-l) 

and 

<l I$ II> = <l I$ ]l> (l-2) 

the 21, -$ symmetry is unbroken in the states IO> and ]I>. The relevant order 

parameter, CT cc ~0 lzl) II>, cannot be expressed as a vacuum expectation value. 

Nevertheless, it possesses all the usual features of an order parameter. As 

ao - aoc from above, it obeys a power law 

(1.3) 

where /3 is a new exponent, which turns out to be related to the other three 

principal exponents y, z, K by a scaling relation. As a0 - 00, G - 1 (in appro- 

priate units). The behaviour of U, as calculated numerically, is shown in fig. 1. 

3) Because I l> can occur as an intermediate state in the propagation of 

the Pomeron (since ~0 I$ Il> # 0), it dominates at large rapidities. As a conse- 

quence, we find that the elastic amplitude at large rapidity has the asymptotic 
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behaviour 

A(Y,B) --+isfl /3 ab o2 (l-4) 

where p,,p, are renormalised couplings to the external particles, and depend 

weakly on 01~ near ooc. Thus the opacity of hadronic matter at infinite energy 

vanishes like o2 as a! 0 - @ocy and for Q! -+ 03, 0 hadrons become increasingly black. 

The behaviour of A(Y, B) for Y z,B is outside the scope of our approximations. 

Amati et al. [ 11 suggest that A-L 0 for Y z.B, leading to an expanding grey disc 

picture which satisfies the Froissart bound. 

The results of our approximate calculations of the exponents are shown in 

Table 1. Obviously they are not very good. However, except for the exponent z, 

the results for the two-site cells (which, for reasons that will appear, are more 

trustworthy) are of the expected order of magnitude. The exponent z, which 

measures the anomalous dimension between impact parameter and rapidity, is 

probably estimated badly because the renormalisation group transformation treats 

them in quite different ways. The same thing happens in the Ising model, where 

z should equal two, but turns out’ quite large [ 121 . The results for the D=l Ising 

model in a transverse field (which is equivalent to the D=2 classical Ising model), 

taken from the analogous work of Jafarey and Stoeckly [12], are shown in Table 2, 

and compared with the exact values, 

The layout of this paper is as follows. After a brief description of the deri- 

vation of the quantum spin model in Section 2, we construct an explicit renormali- 

sation group transformation in D=l. This turns out to have nearly all the salient 

features of the more complicated D=2 calculations, which we have relegated to 

an Appendix. Thus all our discussion will be based on the D=l model, and we 

shall merely point out when a particular result is peculiar to that dimension. In 

Section 4 we show how to derive the usual scaling laws for the Green’s functions 
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and discuss the nature of the spectrum for a0 < a! oc. In Section 5 we investigate 

the nature of the ordered phase, and the order parameter, and explicitly con- 

struct the state II>. This turns out to be particularly simple in the limits 

a! 0 --+~orr -0. 0 By considering a typical Green’s function, we show that I l> 

is an isolated state, at least for the quantum spin model, and not connected with 

any k # 0 spectrum. In Section 6 we discuss the implications of this picture for 

the asymptotic s tattering amplitude. Finally, we discuss the limitations of our 

treatment, and the considerable possibilities available for its improvement. 

2. QUANTUM SPIN MODEL 

For the purposes of orientation and establishing notation, we first give a 

brief derivation of the quantum spin model. For further details, the reader is 

referred to refs. [l, 21. The method parallels that of Stoeckly and Scalapino [13] 

for $4 theory. It relies heavily on the detailed analysis of the D=O problem [61. 

The Hamiltonian for a Reggeon field theory with a triple-Regge coupling is 

where the field operators $, ;i; satisfy canonical commutation relations 

[a ij (XT)] = stD)(X-X’) , 

(2-l) 

(2.2) 

On going to a lattice in impact parameter space of spacing b, (2.1) can be replaced 

H = c Hoj I- 3 C 
j b2 <ij> 

t$i - $j) t$i- $j) 

where 

HOj 
1. = AoGjqj + 5 irOb 

and we have resealed the fields 

$(xj) = b-D’2$j , ij(xj) = b-D’2$j 

(2.3) 

(2.4) 

(2.5) 
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so that 

[ 1 

pi) ~j = ‘ij (2.6) 

In (2.3) the second term represents a sum over pairs of nearest neighbors i, j. 

If we first consider the case ~lb=O, we have a system of uncoupled D=O systems. 

For r. small enough, it is known [14,15] that the phase transition occurs at a 

large negative value of Ao=l-aO. In that regime, Bronzan et al. and Jengo [ 6 ] 

have shown that the spectrum of H 
Oj 

is simple. It consists of a ground state, IO>., 
3 

which is the state annihilated by qj, and a low-lying first excited state, I l>., with 
J 

energy 

(2.7) 

All the other states have much higher energy (of 0( I A0 I )) . Therefore, if CY~ is 

small, we expect that only product states of I O>j and 1 l>j will have significant 

matrix elements with the low lying states of the full Hamiltonian H, which are 

relevant to high energy diffraction scattering. We therefore neglect all the high 

lying states of H Oj’ and proceed to write H in a basis consisting of product states of 
II 

10>j and II>.. 
J 

Although this truncation is an approximation, it is in a sense an arbitrarily 

accurate one for calculating the exponents. The reason is that changing CY~ does 

not change the exponents, but only the value of 01 oc. By choosing o!b and r. 

sufficiently small, we can drive the neglected states to arbitrarily high energies. 

In the case of real e4 theory in two dimensions, the analogous procedure [ 131 

gives the one-dimensional Ising model in a transverse magnetic field, which can 

be solved exactly to give the correct exponents [13,16]. 
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In order to write H in the truncated basis, we need the matrix elements of 

qj and qj between 10>j and lb.. From the work of Bronzan et al. 161 one finds 
J 

.<Ol~$~ll>~= j<ll$jlO>j = 21AoIb D/2, 
I 

r. (2.8) 

jdl~jIl>j =j<ll$jIl>j = 2ilAolb D’2/r 
0 (2.9) 

It is interesting to note how the non-Hermiticity of Ho manifests itself in (2.9). 

If we introduce matrices 

c=(: 1) a= (i :> a= (1 0) (5. 10) 

we can write 

H = EC. 
Oj 1 

Qj= blAolb D’2/rJ aj 

qj = 112 IA0 lbD’2/rd aj 

Using the fact that ajaj = 0, H finally has the form 

H = E c c. - p2 x (aiaj I- ajai) 
j ’ <ij> 

where 

P2 = 4abbD-2(Ao/ro)2 

(2.11) 

(2.12) 

(2. 13) 

Equations (2. lo), (2.12) give the form of H in which we shall use it. Obviously 

it can be expressed in terms of the Pauli matrices, which is why it represents an 

interacting system of spin one-half objects. It turns out that (2.12) is more con- 

venient for renormalisation group calculations. 

If H has a phase transition it will occur at a critical value of the ratio 

T= E/~~, since it is only this which determines the nature of the spectrum. This 

will determine, via eqs . (2.7)) (2.13) the critical value A oc. Note that this 
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quantity will not have the logarithmic dependence on b which it is known to have 

[14, 1!5J for small b in D=2. This is because the two-level approximation breaks 

down as the lattice spacing goes to zero, since “b/b2 becomes large. 

There is a subtle point in using the quantum spin Hamiltonian. As can be 

seen explicitly, the states 10>j and ]l>j do not saturate the commutation rela- 

tions (2.6)) so we cannot use the matrix representations (2.10) to derive equa- 

tions of motion for the dynamical variables qj, gj. Rather we must go back to the 

correct equations of motion and take matrix elements between ]O>j and ll>.. 
J 

As another example, we see that the matrix a satisfies 

n .n-1 a =1 a for _ n>l . (2.14) 

However, in Appendix B, we prove that ~0 I+; I l> # in-’ ~0 I$j lb in general. 

3. RENORMALISATION GROUP METHOD 

We now restrict ourselves to the case D=l. Two possible approximations 

in D=2 are considered in AppendixA. We begin by grouping the sites of the one 

dimensional lattice into pairs. Each pair forms a cell. We seek to write a 

Hamiltonian involving only quantities defined for each cell which will have the 

same form as H and exactly the same matrix elements. Obviously this is 

impossible to do exactly, since each site has two states, and each cell has four 

states. By solving the Hamiltonian for an isolated cell exactly, we find that there 

are two states which always lie lowest. We make the approximation of neglecting 

the other two cell states, and demand that our new cell Hamiltonian H’ have the 

same matrix elements between the states we retain as did the initial Hamiltonian 

H. We find that, by making a small generalisation of the form of H, that this is 

possible. This then constitutes a renormalisation group transformation in the 

sense of Wilson [ll], since H’ is equivalent to H, but has different parameters, 

and has all lengths scaled by a factor of two. 
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Obviously the truncation of states described above is on a quite different 

footing from that involved in deriving the quantum spin model in the first place. 

We shall see, however, that it is a very good approximation for the low lying 

states for cyo>>cx oc, and moderately good at the critical point. 

The type of real space renormalisation group transformation we use is 

rather different from those considered by Niemeijer and van Leeuwen [ 171, and 

Kadanoff and Houghton [ 181, for classical spin systems, and applied to Reggeon 

field theory in ref. [ 71. These methods seem difficult to apply to quantum sys- 

tems. Recently Friedman [19] has developed a method which involves projections 

onto the ground state, which works well for the Ising model in a transverse field. 

Unfortunately it fails for Reggeon field theory, since the ground state turns out 

to be a renormalisation group invariant. 

Before constructing the transformation, we generalise the parameter space 

by writing 

H= E&Z.- + 

j ’ 13 
G. +ip2cj (3.1) 

where 

o+=(; 0’) u-=(01 1) c=c 0) (3.2) 

This reduces to (2.12) for p1=p2=p. We note that there is no underlying symmetry 

which requires p I=p2. However our initial Hamiltonian should always have this 

form. 

The Hamiltonian for a single isolated cell with sites j, j+l is 

Hcell = E (Cj + Cj+J - [(Pl~~+P2cj)(~l~j+l+P2cj+l) + (+ -cL -iI 

(3.3) 
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With respect to the basis 
I 
IO>. 

J 
IO> j+l, lO>j Il’j*l, I”j lO’j+l’ ll’j Il>j+l] it has 

the representation 

cell H = 

0 0 0 \ 

E -P; -iP 1P 2 

-P? E -iP 1P 2 

-iP 1P 2 -iP 1P2 2ct2p; 
I 

Hcell . is a complex symmetric matrix. This is true for an arbitrar 

since a* is the transpose of o-, and c is symmetric. 

The eigenvalues are 

(3.4) 

.ly large cell, 

E + pa 
A= 1 

The lowest state is just 10>j IO>. y-1’ The first excited state has energy 

(3.5) 

+2cp;+ (2p;-p;)2]1’2) (3.6) 

For E << p1,p2 2 2 and p1=p2, this state is nearly degenerate with the ground state 
2 2 

and has energy E’= O(e2). For E >> p1,p2 it is nearly degenerate with the state 

with energy c+ p:. In the intermediate region, it lies somewhere between. We 

denote this state by I l>cell. It has the form 

II> cell= AIO>j Il>j+l + AlI>j IO>j+I+iBII>j Il’j+I (3.7) 

where 

(3.8) 
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pll-6-E B=kp;p:2( - p;+ELE 2 l/2 )I 
(3.9) 

A subtle point arises here, due to the non-Hermiticity of H cell . If we want 

cell<l 1 to be a left eigenstate of H cell , we must define it to be 

cell<ll =A j<O1. 
3+1 

<II +A j<ll. 
3+1 

<Ol -I-iB j”ll. 
I+1 

<lI (3.10) 

although A, B are real. The correct normalisation of (3.7) is then 

2A2-B2 = 1 (3.11) 

which is satisfied by (3.8), (3.9). We must therefore expect to meet some states 

with negative or zero norm. 

We now want to write a new Hamiltonian H* which will have the same form 

as (3.1) where i, j now represent cells, and has the same matrix elements as H 

between all product states formed from 10>cell and Il>cell. To do this, we note 

that 

cell<’ Iof I “cell =A 

cell<l I”; lCbcell = A 

cell<l lUt I “cell 
=m (3.12) 

cell<l l”j: I llcell = iAB 

cell<l Icj Il’cell 
= A2 

- 
B2 

with all other matrix elements zero. 

Therefore, with respect to the cell basis b C? + p2cj ) has the same matrix 
13 

elements as b 1 a* + 1 1 jt p2 JQ c.), where o-F, and cj, are cell variables, as long as 

p’ =Ap 1 1 
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’ = (A 2 
p2 -B2)pz + ABPl (3.13) 

If we express H’ in terms of the new cell variables and the new parameters E*, 

pi, pi, we are then assured that it has the same matrix elements as H between 

all product cell states. Equations (3.6)) (3.13)) with A, B defined as in (3.8)) 

(3.9)) define our approximate renormalisation group (RG) transformation. We 

remark that if pl=p2 it is not necessary that pi=p~. This justifies our initial 

enlargement of the parameter space. 

Fixed points and numerical results 

Since only the ratios c/p:, pi/p: are relevant in determining the spectrum, 

it is convenient to map the three-dimensional parameter space onto a triangle, 

shown in fig. 2, such that the distances from the labelled sides are respectively 

proportional to E, pf and pi. Our initial Hamiltonian corresponds to a point on 

the line py=pi, and the variable T = c/p: denotes its position on that line. There 

are two stable fixed points of the transformation which can be found analytically: 

sl: e - constant, p 
2 

--L 0, pl/p2 --) 0 . 

s2: prp2 - constant, E - 0 . 

In addition, there is a fixed point U, located approximately at 

= 1.26 , (3.14) 

This point is unstable in e/p: and stable in pi/p;. U lies on a critical line such 

that any point on this line is driven to U. As this happens, E, pt, pi all tend to 

zero, in a fixed ratio when near U. The critical line intersects the initial line at 

T = Tc= 1.14733. (Note that numerically one can determine Tc very accurately, 

but the fixed point values (3.14) are harder to pin down, since the trajectory 

starting at any given initial T always diverges before it quite gets to the fixed point. ) 
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The point T=Tc corresponds to a critical Pomeron, ao=aoc. Any trajectory 

starting at T > Tc (a0 < aoc) ultimately ends up at SI, while a trajectory starting 

at T < Tc (a0 > aoc) ends up at S2. 

We remark parenthetically that there are other fixed points around, including 

a stable one at p2=0, e/p: -) constant. When p2=0 (3.1) is equivalent to a free 

fermion theory in D=l, and is exactly solvable. Unfortunately, this possibility 

of exactly calculating the D=l exponents is quashed by the numerical fact that this 

fixed point is unattainable from the initial line. 

Several trajectories are shown schematically in fig. 2. The picture we have 

described is a classic example of the general structure of the parameter space 

which corresponds to a second order phase transition, as discussed by Wilson 

m.l . 

4. SCALING LAWS AND EXPONENTS 

The object of interest is the two-point function 

G(x,Y,H) = <O lzJie -HY qj IO> (4.1) 

where x= Ii-j I, and IO> is the ground state of H. By iterating the RG transforma- 

tion until the cell is as large as the whole system, we see that IO>= II IO>. . So 
iI J 

the ground state of H is that state annihilated by the bare quanta $.. For a05 ooc, 

this is due to the nonrelativistic nature of the theory, and the absence of vacuum 

processes. It persists for ace > ooc. This behaviour is different from that 

exhibited in q4 theory. 

In terms of the matrices (3.2)) G(x, Y, H) is, apart from a constant, 

E(x, EY, E/P:, pi/p:) = ~0 IQ: emHyuy IO> (4.2) 

where we have used the fact that, on the right hand side, Y appears only in the 

combination HY, Let us now insert a complete set of cell states to the right of 
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q and to the left of c;. We denote the cell containing i by i’, and the cell con- 

taining j by j ’ . Also we use l?>i, to denote the state of the whole system in which 

the cell i’ is in the state I l>i,, and all the other cells are in their ground states. 

Equation (4.2) is then equal to 

<o Ic: IT> i’ it<? le -HY IT> j, j’<Y I”; IO> (4.3) 

zz A2 i,ici le -H’Y lT>j’ (4.4) 

since H’ has the same matrix elements as H between cell states. Equation (4.4) 

can now be written as 

A2 ~0 1~: l%i, i,<?le-H’Y IT> 
j’ j’ 

<YlK, IO> (4.5) 

= A2 ~0 IQ: e 
-H’Y 6’ IO> (4-G) 

which has the same form as (4.2) with H replaced by H’ , and the distance Ii-j I 

scaled by a factor of 2. Therefore 

G(x, EY, ./pi, p$‘p;) = A2+/2, E’Y, dp’12, p$‘pf) (4.7) 

Now suppose we start off at T=Tc. After a large but finite number of iterations 

we will be in the vicinity of the fixed point U. Suppose, at the fixed point, 
-z 

A2=A*252 3 (4.8) 

and 
-z 

E’/E = 2 
2 

(4.9) 

The expression on the right hand side of (4.7) is related to G(x, Y, H’), where H’ 
-z 

differs from H by a factor 2 2 only, since the ratios c/p:, pi/p: are unchanged 

at the fixed point. Therefore, at the fixed point 

-z -z 
2Y,H (4.10) 
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and so 
-2 -z 

G(x,Y,H) = 2 2Y,H (4.11) 

Repeating the RG transformation an arbitrary number of times 

-z 
G(x,Y,H) = h 3 Gx/h,h ( 

-z 
2Y,H (4.12) 

from which we obtain the familiar scaling law for the two-point function [4,5] 

(in D= 1) 

G(x, Y, H) = Y -y-z’2 f (x2/P) (4. 13) 

where 

y+i z=z /z 3 2 

z = 2/z2 (4. 14) 

Actually, because of our approximation, z3=z2. This can be seen by noting 

that E and ~21 scale in a fixed ratio near the fixed point, and that ~\~/pf=A*~, by 

eq. (3.13). This happens because only one site in a given cell participates in the 

interaction with another cell. If we go to D=2, or if we include next-nearest 

neighbour interactions, it is no longer true. An example of this can be seen in 

the Appendix. 

We can also derive a scaling law when e/oi# (e/p21)*, which corresponds to 

ao+aOc’ Writing K= e/p: then 

K’-K” = 2 z1 (K-K*) (4.15) 

where z1 > 0, since the fixed point is unstable in K. Going through the same argu- 

ment as before, 

z /z 
G(x,Y,K) = 6 

“31Z1 
( f x6 

l/z 1 
,Yd2 l ) (4.16) 

where 6 = [K-K* I, Unfortunately, since the fixed point U is outside the space of 

allowed parameters, 6 is not simply proportional to ~~~~~~~ 1 or IT-To I. 
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Determining 6 as a function of IT-Tc I numerically is impractical since we can- 

not determine K* with sufficient accuracy. Therefore we cannot relate z2/zl to 

the exponent K of ref. [ 91. Instead, we use another relation to determine K . 

2()si()~- 

If we start with T> Tc, after a large but finite number of steps we arrive in 

the vicinity of SI. If we iterate an infinite number of times, so the cell is the 

whole system, we obtain a Hamiltonian with pl=02=0, and E = A, say. In doing 

this we wash out all states of the initial Hamiltonian with nonzero momentum, 

since the cell size ultimately becomes larger than their wavelength. We are left 

with a single excited state of zero momentum and energy A. This must be the 

energy gap of the initial Hamiltonian, since, by construction, H initial and Hfinal 

have the same matrix elements between the states we retain. 

If we plot A as a function of (T-Tc) on doubly logarithmic scales, we find a 

curve indistinguishable from a straight line for 

1o-4 T-Tc -1 
5 7 5 10 

C 

(The deviations at the lower end are due to the fact that we know Tc to only 

5 decimal places. ) This indicates the existence of an exponent v where 

A cc (T-Tc)V cc (~J~~-cY~)~ 

(4.17) 

(4.18) 

The exponent is related to the K of ref. [ 91 by 

V = 1/(1-K) (4.19) 

If we stop the iterations after a finite number of steps n we retain the states 

with momentum lk I < k. where 

kob 2 2-n (4.20) 
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In this regime, pI and p2 are small, and E N A, so we can do perturbation 

theory in the intercell couplings to obtain a dispersion relation of the form 

E= A+o?k2 (4.21) 

which corresponds to a renormalised Pomeron pole below one, with a linear 

trajectory. 

As we increase o. towards cwoc, the trajectory will spend an increasing 

length of time in the vicinity of the unstable fixed point U before diverging 

towards SI. In that case the scaling law (4.16) is applicable. Thus we get a 

smooth transition to the critical Pomeron as Q! 0 - aoc’ 

5. THE ORDERED PHASE 

If we start with T < Tc (a0 > cuoc), the trajectory goes quite rapidly to S2. 

This is because E’= O(e2) for E small. Since e= 0 for a very large cell, the 

system has no energy gap, and there is a state degenerate with the ground state 

IO>. This is of course just the state II>, which is defined as the limit of the 

states IT> cell as the cells become larger. By its construction, it is transla- 

tionally invariant and has zero momentum. 

In the case T=O, the state 1 l> can be constructed explicitly. For then the 

trajectory begins at S2, and remains there. Equation (3.7) becomes 

Defining 

I$>j = 10>j + i Ibj 

and I O>cell analogously, (5.1) can be written 

I$> cell = l”>j IqDj+l 

Therefore the state I + = IO> + i I l> is simply a product state 

(5-l) 

(5 * 2) 

(5 * 3) 

(5.4) 
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It is easy to check that a-j I$> = 0, so I$> is an exact eigenstate when E = 0. 

Knowing 1 r#~>, we can then determine 1 l>. Note that I+> has zero norm, but 

ll> does not. 

I$> is only an exact product state at T=O (a0 + +a). At finite T, it is 

approximately a product state over large cells (since A, B - 1 at that ievel), but 

it is much more complicated at the single site level. 

The question arises as to whether 1 l> is an isolated zero momentum state, 

or merely the zero momentum component of a continuous spectrum with zero 

gap. We shall argue that the former is true, at least at the level of the quantum 

spin Hamiltonian, by considering the Green’s function G(x, Y, H) . Near the fixed 

point S2 we can derive a scaling law in the same way as at U. In this case, since 

A=1 and E’/E=O at S2, it is simply 

G(x, Y, H) = G(x/h, 0, H) (5.5) 

Therefore G(x, Y, H), for large x and Y, is simply a constant. This is due to the 

presence of ll> as an intermediate state in the propagator. If there were any 

low energy, nonzero momentum states, they would modify the behaviour of 

G(x, Y, H) at large x, Y. 

Further insight into the nature of the phase transition can be obtained by 

considering the quantity. 

u= <OlajIl>=<Olo-~ll~ (5.6) 

which is related to the matrix element of the original field operator ZJ by 

<OI$Il>= (21Aol/ro)~ (5.7) 

The quantity (r can be determined by our RG method. We have, by (3.12) 

<Ol~?ll>~~~~ = A (0) 
cell (5.3) 
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where A(‘) is the function A evaluated at the starting point of the iterations. 

Continuing the iterations indefinitely 

<0 1~; I l> = fi A@) 
n=O 

(5.9) 

One can check, analytically, that the infinite product exists. When 01~ < aoc, 

A@) -. 0, and so <O 1~: ll>=O. When ~~~~~~~ A @)- 1, and <O lg: 11~ is a 

constant which can be evaluated numerically as a function of Tc-T. Plotting o 

against Tc-T shows a power law behaviour which defines a new exponent which 

we call /?, by analogy with statistical mechanics. 

(T~(T -T) P cc (a! o-“OJ 
P 

C 
(a! >a! o- 02 (5.10) 

In the particular D=l approximation we are using, Q is just equal to the final 
initial value of pl, if p I = 1, since they scale by an amount A @) each time. This 

is not true in general, as we show in Appendix A. In general pI,p2 -w at S2, 

but c still tends to a constant. However it is still true that p I/p2 - 1 at S2. Also 

the ratio cell’l laj ~l~cell’cell~o laj ll’cell stays equal to io2/oI as the cells get 

larger. We then find that 

dlaj lb = ia (5.11) 

final = final 
is true in general, not just in D=l, where it is trivially equal to ip2 Pl l 

The other matrix elements can be worked out to give 

<OI~ll>=<ll~lO>= (21Aol/ro)~ (5. 12) 

<ll~Il> = <ll$ll>= i(21Aol/ro)a (5. 13) 

As T---O, A@) -lforalln, andsoo- 1. The numerical calculations of (T versus 

T are plotted in fig. 1. 

We see then that u plays the role of an order parameter, vanishing identically 

for T2Tc, and tending to a constant as T- O and the system is completely ordered. 
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As explained in the introduction, u cannot be written as a ground state expectation 

value, unlike $4 theory. 

6. SCATTERING AMPLITUDE FOR a0 > ooc 

The elastic amplitude A(Y, B) is, at least for oo( aoc 

A(Y, B) = -is 5 infmg~)g~m)<O l+(B)n e -HY $(o)m IO> 
n, m=l 

(6.1) 

where gp) is the real coupling of n Pomerons to the external particle a. Since 

IO> remains a (degenerate) ground state for no > aoc, it natural to assume (6.1) 

as the definition of A(Y, B) for o. > ooc. (Note that derivations of (6.1) hold only 

for aO<l; above this value we must use it as a definition. One already does this 

for the critical Pomeron, when Q!~=(w~~> 1.) 

Let us first consider the case n=m=l. As Y-cm only the intermediate state 

1 l> contributes, and we obtain 

Ah ') (2 lAol/ro)2~2 (6.2) 

For the higher Pomeron couplings, the answer depends on whether the 

sources are localised at a single lattice point, or spread out over many. In the 

first case we have to calculate matrix elements of the form 

<oIql> = j<olzpl>j j<Tll> = j<olql>j @ (6.3) 

We show how to evaluate the single site matrix element on the right hand side in 

Appendix B. It cannot be evaluated in closed form. However, it depends rela- 

tively weakly on the input parameters near 01~ = croc (which is the only region 

where the simplified model has any meaning). We notice then that each term in 

(6.1) is proportional to a2, and vanishes like ~~~~~~~~~~ as a0 +czoc. From 
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the Appendix, an -I’ $n as n-Loo, ( 1 
so that if g:), gf) have the eikonal forms 

,@) = gn/n! , a a gf) = gE/n! 63.4) 

the sum in (6.1) certainly converges. However, in this limit of highly localised 

sources, the sum (6.1) does not have the eikonal form, even though the bare 

couplings g?) , gr) do have. 

Now consider the opposite extreme, when the sources are very extended in 

impact parameter. The appropriate matrix elements will then be of the form 

<o I$. $. . . . $j I l> where the sites j 1, . . . , jn all lie within the source. This 
Jl J2 n 

matrix element cannot be calculated for arbitrary n except in the limit ao--- +w 

(or r o -0). In that case we can write 

-4 Izc1, . ..$J. lb= -i<Ol$; . ..Q. 1$0--i <Olq6iI$>n 1 1 
J1 

which is true because I $> is then a product of single site states, and we can 

neglect configurations i n which two of the jr are equal. Then 

Jn J1 Jn L J J 

= in-’ [<0 lGj Il;i” (6.5) 

Ah m, N is (-l)n+m gtn)gtm) a b (2 IA0 l/ro)n+m (6.6) 

as obtained in ref. [ 11. For eikonal couplings, we can perform the sum over n, m 

to obtain 

A(Y, W 
-28, -2gb I A0 Iho 

- is (6. 7) 

So, in this limit, the scatterer appears black. Note that to derive this we assume 

both r. small, and completely uncorrelated emission of the Pomerons. This 

approximation is, no doubt, more suited to nuclei than hadrons. As a! -) a! 0 Oc’ 

eikonalisation breaks down, even though the bare multi-Pomeron couplings have 

eikonal form. This is because the site spins are then highly correlated in the 

state lb. 



To illustrate how one can still calculate the higher order terms in (6.1) in 

this regime, we consider the matrix element ~0 lQj$j+l I l>, a contribution to the 

(2) terms in (6.1) proportional to ga . If j’ is the cell containing j and j+l, and 

defining l?&j, as in Section 4, 

<O I+j+j+l 
IT> = <o I$jJij+l lLj’ j,<Tll> (6.8) 

Using (3.7)) this is 

iBinitial j<O lej I l>j j+l<O I$j+,I I l>. 
3+1 

~0 laj, lb (6.9) 

But 

<OlajIl>=n=A initial ~0 laj,ll> (6. 10) 

so 

<o I+jz/bj*l II> = 
i 
2 lAolb 

D/2,ro)” i. (B,A)initial (6. 11) 

At aO=aoc we find numerically r that (B/A)initial M 0.5. As a0 + -t-m it increases 

towards one (as does v), and we recover our previous result. 

It is clear from this example that we can calculate any matrix element 

<Ol$. . . , zJj 
jl n 

ll> by iterating enough times so that j,, . . . , jn are contained in the 

same cell. If the hadron sources are of finite extent in impact parameter, this 

will happen after a finite number of iterations. The result will then be some 

numerical factor, finite at a0 = a! oc, multiplied by (T. 

We conclude that in general, for a0 2 aoc, as Y 400 at fixed B 

A(Y, B) -L is p a&o2 (6. 12) 

where pa, 43 describe composite couplings to the external hadrons, and depend 

only weakly on a! o. The factorisation occurs of course because only one inter- 

mediate state dominates. 

- 23 - 
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If (6.12) holds also for large impact parameters B>>Y, the truncated model 

will not satisfy the Froissart bound. In that case three possibilities can arise in 

the full theory: 

a) It has a spectrum like that of the truncated theory, with a degenerate 

state 1 l> and a gap. Amati et al. [l] suggest that the excitations above the gap 

enter in such a way as to cancel the unwanted behaviour for B>>Y. For this it 

is necessary to have eikonal-type multi-Pomeron couplings. This seems an 

unfortunate restriction on the theory, and it is difficult to see how it will then 

satisfy t-channel unitarity. 

b) The full theory has a degenerate state ll> but there is no gap. The 

Green’s functions of the theory will then make sense, no assumptions on multi- 

Pomeron couplings need be made, and the theory will manifestly satisfy t-channel 

unitarity. 

c) The full theory does not make sense for ao>ozoc. 

As oo-~oc the scaling law (4.16) should hold. From our work on a0 < aoc 

we know that it can be written in terms of lo o -0~ oc I rather than 6: 

A(Y,B) - IaO-“Oc P f (y Iao-aoc IV) (6.13) 

where we have neglected the B dependence. From (6.11) we see that p’=Zp. 

Since, to obtain a finite result as two -01~~, f(x) must behave as x -p”v as x -0 , 

we obtain, at “G=~=Q~~, 

A(Y, B) - Y -2ph 

We have thus derived the scaling relation for the exponents 

(6. 14) 

p = $ (y-i- Dz/2) (6.15) 

In our approximate calculations this is seen to be very well satisfied for D=l, and 

approximately so for D=2, at least with the %site cell. It is also satisfied by the 



mean field theory 

exponent as found 

7. DISCUSSION 

- 25 - 

values at D=4, as expected. Equation (6.15) is just the same 

in ref. [ 91, although the order parameter is quite different. 

Our numerical investigations have been directed towards two aims: to see 

whether practical calculations of the exponents can be made in the quantum spin 

lattice model, and to elucidate the properties of Reggeon field theory for ao>aoc. 

We have seen that the first aim is achieved, although our approximation 

methods need considerable refinement if reliable values for the exponents are 

to be obtained. Since we have argued that the truncation necessary to derive the 

quantum spin model does not affect the exponents, the only approximation we 

have made is in the truncation of the cell states at each iteration.- Clearly we 

need some way of mixing in these neglected states, possibly by using perturba- 

tion theory to take into account second order transitions between the lowest states. 

Unfortunately, any such scheme will be numerically more complicated. The 

numerical calculations described in this paper were performed on a simple 

on-line system. More sophisticated versions will probably require numerical 

diagonalisation of the Hamiltonian at each step. 

Perhaps more interesting is the insight we have gained into the properties 

of the theory for a! > a! 0 oc. In this case, the Reggeon field does not gain a vacuum 

expectation value, as assumed at the outset by Abarbanel et al. [ 91. Instead, the 

relevant order parameter (r is a transition matrix element <O I $1 l> to a state 

]I> degenerate with the ground state. This was first pointed out by Amati et al. 

[l]. Since the Pomeron can propagate in the zero energy state II>, amplitudes 

at fixed impact parameter tend to constants at high energies, proportional to a2. 

0-O as a0 -+croc, and there is a smooth transition to the critical Pomeron. 



- 26 - 

This behaviour, if it persists to impact parameters >> Y, is of course a 

disaster, for the theory will not satisfy the Froissart bound. Amati et al. [l] 

have suggested that the higher excitations (neglected in the truncation to obtain 

the quantum spin Hamiltonian) will provide a sufficient cutoff: and support this 

with calculations for a! 0 >>a! oc where one can use classical methods. Until this 

question is definitely settled it is not clear that Reggeon field theory makes sense 

for czo > ooc. Even if it does, the question of satisfaction of t-channel unitarity 

remains open, and until this is demonstrated, the theory for czo > croc will merely 

be one among many which satisfy the simpler constraints of s-channel unitarity. 

Acknowledgements 

This work could not have been carried out without the help of numerous 

discussions with S. Jafarey, D. J. Scalapino, B. Stoeckly andR. L. Sugar. 

The author would also like to thank S. Jafarey for assistance with the computing, 

and D. Amati and R. Brower for the early communication of their results. 

*The CERN group have now discussed this question in the context of the quantum 
spin model. See ref. ]20] . 



- 27 - 

APPENDIX A: TWO TRANSVERSE DIMENSIONS 

We have used two different approximation schemes for studying this problem. 

They are the same in principle as that described in the text for D=l, and differ 

only in the choice of basic cell. 

1) 3-site cell. For this case we take a triangular lattice, and divide it 

into cells, as shown in fig. 3. The Hamiltonian for a single cell is represented 

by an 8x8 matrix in the single site basis. As well as the ground state lOOO> 

there is a first excited state Il>celI with energy E’ which happens to be given 

by the same formula (3.6) as in D=l. This state has the form 

II> cell = A (llOO> + 1010, + lOOl>) 

+ iB (loll> + 1101> + loll>) + C )lll> (A. 1) 

in an obvious notation. Here A, B, C are real and normalised in accordance with 

our convention by 

3A2 - 3B2 + C2 = 1 64.2) 

The analogues of (3.12) are 

cell<O If lb cell = cell <1 Ia; IO> cell =A (A. 3) 

cell’l If I l>cell = celI<l lo; I l>ceII = 2i AB + i B C 

cell <l ICj I l>cell = A2-2B2+C2 

(A. 4) 

(A. 5) 

In choosing pi, pi so that the inter cell interactions in Ht have the same matrix 

elements as those in H, we must take into account that between each pair of cells 

there are two intersite interactions. This is clear from the figure. We therefore 

take 

(A. 6) 

p; = 42 (A2-2B2+C2)p2 + & (2AB-tBC)pl 
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Iterating the RG transformation, we find fixed points U, Sl, S2 as before. Tc 

is approximately 4.65, but this must be multiplied by a factor 2/3 for compari- 

son with a square lattice, which has 4 nearest neighbours per site compared 

with 6 for a triangular lattice. Scaling laws near Tc can be derived as before, 

remembering that lengths are scaled by a factor ,./3 at each step. 

At S2 we find that A=B=-C=l. Thus p1 and p2 do not tend to constants there, 

but the order parameter defined as in the text does not have the factor a, and 

is finite. 

2) a-site cell. The above approximation gives bad values for the expo- 

nents. This may well be because, at each step, we discard six out of the eight 

states in each cell. It is therefore preferable to choose a 2-site-cell, shown in 

fig. 4, where we only discard half the states. Unfortunately, with this shape 

of cell, the cell lattice has a different shape from the site lattice. One can take 

this into account by enlarging the parameter space to include unequal couplings 

in the two directions. It is easier, however, to align the cells in different 

directions at each successive iteration, in order to get back to the same lattice, 

scaled by a length factor of 2, after two iterations. Since we are interested only 

in the fixed points we just consider a single iteration, in which lengths are 

scaled by &X each time, and there are ,/?Z intersite interactions between each 

pair of cells. In this way we avoid enlarging the parameter space. Thus, the 

only difference from the D=l calculation is that a factor 2 l/4 appears on the 

right hand side of eqs. (3.13)) and lengths are scaled by & rather than 2. 

The fixed points appear as before, and scaling laws and exponents are 

derived as in the text. 
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APPENDIX B 

We evaluate the single site matrix element .<O I$ I l>. , where the single 
J J 

site Hamiltonian is (dropping the suffix j) 

where 

We have 

ig 
Ho=Ao$$++ G2$ + $G2) 

II 1 ~,Hg ig 
= nAoP + -$ 3;Gn + n(n-1) $n-l n+l 

+n+ 1 
Taking matrix elements between ~0 I and Il>, and writing an = <O I+rr I l>, 

1 ea =nA a +I* 
n o n 2 igon(n-1) an 1 + - ig n a 2 0 n+l 

(B. 1) 

03.2) 

(B. 3) 

Even when I A0 I/go - 00, E -0, we cannot find a closed form for an. We note 

that, as n -co, an -I’(n/2). For n << IA0 I/go, an- (2iAo/go)n, which is the 

eikonal result. 
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Table 1 

Calculated Values for Exponents 

D Type of cell -y z v K P T., 

1 2-site 0,27 205 1.3 0,22 0064 1.15 

2 Triangular 2,O 8,O 0.27 -2.7 lo0 3.10* 

2 1.4 408 1,06 0006 1.06 2,87 

Mean field theory 0 1 1 0 1 2D 

*adjusted for comparison with square lattice 

Table 2 
Calculated Values for Ising Exponents, 

taken from ref. 1121 

P lJ z 

Estimated (2-site cell) 0.37 009 306 

Exact l/8 1 2 
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Figure Captions 

1. Calculated values for order parameter (T versus T = e/p2 in D = 1, 

2. Map of the parameter space, 

3. Construction of cells for a triangular lattice, 

4. Construction of 2-site cells for a square lattice, 
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