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ABSTRACT 

It has been suggested that helical wigglers be installed 

in electron storage rings to increase the brightness of the 

synchrotron radiation. The results of Kincaid' are used to 

show how the radiation is critically affected by the wiggler 

parameters: current, bore radius, and period. Comparison is 

made to transverse wigglers and ordinary bending magnets. It 

is shown that a helical wiggler at SPEAR could produce photons 

of 3 % and perhaps 2 g with a 1 arge improvement in brightness. 



I. Introduction 

Synchrotron radiation is produced from electron storage rings because 

the electrons are forced to travel in a curved trajectory by bending mag- 

nets. The intensity and collimation of synchrotron radiation at high energy 

rings such as SPEAR have permitted scientists to perform many experiments 

which are impossible with conventional sources of electromagnetic radiation. 

There are a number of ways to increase the number of photons even fur- 

ther. Obvious methods include the increase of electron current in an exist- 

ing storage ring or the construction of a new ring capable of higher ener- 

gies (such as PEP) or the construction of a new ring at the same energy with 

a smaller bending radius. Considerable attention has also been focused on 

the possibility of installing magnetic field devices in existing rings. 

Such devices, known as Itwigglers", would produce extra photons by subjecting 

the electrons to additional violent accelerations along -a section of their 

trajectory in the ring. The wigglers are designed such that the electrons 

would suffer little or no net deflection from the unperturbed trajectory 

after exiting from the wiggler region. 

Transverse wigglers apply strong magnetic fields in an alternating 

periodic arrangement along the electron trajectory. The synchrotron radia- 

tion is characteristic of a circular trajectory, and is not fundamentally 

different from the radiation from a storage ring, except that the energy 

and intensity of the photons may be increased by using powerful magnets 

and by including a large number of periodic wiggles. 

Helical wigglers consist of a double helix of wires carrying currents 

in opposite directions. The resultant magnetic field is transverse to the 

axis of the helix and rotates around the axis with the period of the helix. 
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The electron trajectory is also a helix with the same period. 

Icustrations of the electron trajectories in a transverse wiggler 

and in a helical wiggler are shown in Figs. l(a) and l(b), respectively. 

The radiation from‘s helical trajectory'has radically different spec- 

tral characteristics from the radiation from a circular trajectory, thus 

offering exciting possibilities for research. 
1 

Furthermore, there is 

reason to believe that helical wigglers may be installed in a storage ring 

without destroying the circulating electron beam. In this paper we review 

the properties of the radiation from helical wigglers and discuss the prac- 

tical aspects of designing them for installation at an electron storage ring. 

We illustrate how the synchrotron radiation is affected in dramatic ways by 

the parameters of the wiggler: the radius, period, and current of the helix. 

We compare the synchrotron radiation spectra from helical wigglers, 

transverse wigglers and normal storage ring bending magnets. Finally, we 

estimate the effect of the angular divergence of-the electron beam at SPEAR 

on the brightness of radiation from the helical wiggler. 
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II. Properties of the Radiation from a Helical Wiggler 

The radiation from a moving charge has a calculable distribution. 
-c, 

For a single electron moving through space, the energy radiated per 

unit solid angle per unit frequency interval is given by 3 

dI (0)) "U2 co 2 
-=- 

/ 
2 x (& x $) eiu(t-[^n"(t)/cl) dt 

dR 47r2c -m 

where s(t) and c p(t) are the position and velocity of the electron 

in some fixed coordinate system, and "n is the unit vector from the 

origin of the coordinate system to the observer. 

From this expression, Kincaid has computed the radiation from 

an electron traveling in a helical trajectory. 1 We shall surmnarize 

his results, following his notation. 

For an electron traveling through a helical wiggler of period X0 

and producing a transverse magnetic field B on axis, with the assump- 

tions that the electron energy is much larger than its mass 

E 
y E -+- >> 1 

met 

and that the number of periods in the wiggler is large 

N >> 1 

Kincaid finds that the energy radiated per unit solid angle per unit 

frequency interval is1 

dI(w) e2 K2 m2 m 
-= 

da 
2 2 2 

-rrCY u. 
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where the angle 8 is with respect to the axis of the helix, 

0 2Y2Uo 
ml f= - 

1 -t- K2 + y2Q2 
(2) 

cos 8 

and J and J' are the n 
th order Bessel function and its derivative. 

n n 

Here 

arc ’ 21 
(JJ =- 

0 

X0 

/3 l-; 
m 

is the circular frequency of the electron's helical orbit. The dimen- 

sionless magnetic field parameter K is defined by 

K = 
eXoB 

heC2 
(3) 

Note that the intensity of radiation depends on the product of the helical 

period X, and the magnetic field B . This is of critical importance in L 

considering the design of the wiggler, as we shall see later. 

At a given angle 8 , the spectrum consists of a series of harmonics 

of the fundamental frequency ml . For f3=0 , only the fundamental fre- 

quency contributes, and all the radiation occurs in a narrow-peak at 
- 

u) = w1 2: - 
l+K2 l 

(4) 
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The corresponding wavelength is 

x0 
x ” - 

a2 
(1 I- K2) 

The on axis intensity is easily computed from Eq. (1). 

d1k.d 
dR 

2N2e2y2K2 
= 

2 

u)=U! c(l+K2) 
1 

8=0 

This expression is sharply peaked at K = 1 , with the value 

d1 b) 

d.Q 

N2e2 y2 
= 

2c 
(o=(u 1 
6=0 
K=l 

(5) 

(6) 

(7) 

The angular distribution of the radiated power may be computed by 

integrating Eq. (1) over all frequencies: 

Do 

/ 

dW 
-ddu, = 

8Ne2io y4 

s (8) 
0 

dR c(l+K2+y2 0') 

2Knye 

where x - = ' . n 1 I- K2 f- y2e2 

This expression is valid in the limit of large N with 8 + 0 . Kincaid 

has plotted the angular distribution of the radiated power from Eq. (8), and 
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his results are reproduced in Fig. 2.l For KLl , the power maximum 

does not occur on axis but slightly off axis at an angle 0 2: K/y . - 

Although the power on axis decreases as K grows larger than unity, the 

power at 0 z K/y increases dramatically. One may be tempted to consider 

using the radiation on the surface of the cone at 8 z K/y . 

However, from Eq. (l), it is clear that higher harmonics contribute 

off-axis. The angular distribution of the radiation at the fundamental 

frequency co = al is computed from Eq. (l), 

a(4 4e2y2K2N2 
= 

da 
u)=cU c(l+ z+ y2e2) 

1 

2KytI 
where x = 

1 -I- K2 -I- y2e2 
. 

(9) 

The angular distribution for the radiated power at the fundamental frequency 

is shown in Fig. 3 for different values of the magnetic field parameter K . 

By comparing Figs. 2 and 3, we see that although the total power 

radiated may be greatest at 0 z K/y (for KZa 1) , the power radiated at 

the fundamental frequency is always greatest on axis. The radiation off 

axis contains the higher frequency harmonics and at 8 2: K/y , radiated 

frequencies are spread over a broad range. 
- 

c 
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III. Considerations for the Design of a Helical Wiggler 

BGause of the strong dependence of the intensity of radiation on 

the parameter K in Eq. (6), there are strong restrictions on the practical 

design of a helical wiggler. For-an ideal wiggler wound as a double helix 

of wires carrying current in opposite directions, the transverse field on 

axis is, 4 

B = Eo[F K. cj+ 5 [ej] (10) 

The wiggler dimensions are determined by the radius of the helix a , and 

its wavelength x0 , both measured in centimeters. The current I is in 

amps and B is in Gauss. The functions Ko and Kl are modified Bessel 

functions. 

The radiation depends not on the magnetic field B alone, but on the 

magnetic field parameter K . Combining Eqs. (3) and (IO), 

where I 'is expressed in amps, and where K depends only on the ratio of 

bore radius and wavelength of the helix, the dimensionless helix parameter, 

&a 
5 =- (12) 

x 
0 
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Again, I is measured in amps. The modified Bessel functions K. and Kl 

both faJJ sharply as 6 increases. In fact for small 5 , 

and for large E both K. and Kl fall faster than exponents.5 

The wiggler must be designed so that the parameter K = 1 , by Eq. (6). 

In the practical installation of a wiggler in a storage ring, there is a 

lower limit on the bore radius a . (At SPEAR the limits are 5 cm in 

the 3 meter straight sections and about 1.5 cm in the 2 meter interaction 

regions.) Thus, if a given wavelength 1, for the helix is desired, the 

wiggler current I must be adjusted accordingly. However, there is a very 

strong lower limit to X0 because of the strong dependence of the modified 

Bessel functions on the helix parameter E; . In particular, as e increases 

(for decreasing x0 ), I increases faster than exp (!$) . The limits of 

superconducting technology are quickly reached. 

A series of curves showing the radiation intensity as a function of the 

helix parameter 4, for different values of the current is shown in Fig. 4. 

Once the wiggler has been built and the helix dimensions are fixed, a very 

narrow range of currents will provide optimal intensities. Conversely, the 

practical upper limit on currents achievable with present day technology sets 

a stringent upper limit on the helix parameter F; . A graph of the optimal 
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current as a function of the helix parameter 5 is shown in Fig. 5. We 
, 

- -have roughly indicated the technological threshold.b 

The parameters of the wiggler are the wiggler current I , the helix 

wavelength 1, , and the bore radius a , Once they have been adjusted 

such that the magnetic field parameter K = 1 in Eq. (ll), the brightness 

will be maximized at a fixed value depending only on the number of periods 

N and the beam energy Ee . As an example, Fig. 5 indicates that the 

brightness from a one million amp wiggler will be identical to the bright- 

ness from a ten amp wiggler, as long as the parameter K is fixed at unity, 

In fact, by Eq. (l), the radiation spectra from the two wigglers will be 

identical. 

Once the wavelength X, of the wiggler is determined, and the current 

is adjusted to optimize performance, the wavelength of the emitted radia- 

tion may be computed from Eq. (5), 

x = x,/r* Us) 

The shortest wavelength of the X-rays is fixed by the highest energy for 

the electrons in the storage ring. 

For K= 1 and for a given bore radius a , the helix wavelength 

X0 
is determined by the current in the wiggler in Eqs, (11) and (12). 

IO = “lia/!,= l(I) 
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The helix wavelength as a function of wiggler current is plotted in Fig. 6 

for different values of the bore radius. The wavelength of the produced 

radiation corresponding to electron beam energy Ee = 4 GeV is shown on 

the left hand axis. 

The nature of the curves permits some dramatic conclusions. For 
0 

example, if the bore radius a = 3 cm , photons of wavelength 2 A may 

be produced only by using a superconducting wiggler carrying a large current 

of 300,000 amps. On the other hand, photons of 4 2 are produced using a 

conventional current of only 200 amps! 

IV. Comparison of Spectra 

The synchrotron radiation spectrum from a helical wiggler may be com- 

pared to the spectra from a storage ring and from a transverse wiggler. 

Here, we shall compute the photon flux from the helical wiggler on axis 

(e = 0) and compare it to the fluxes from the storage ring and transverse 

wiggler in the plane of the electron trajectory. Other comparisons are 

given in Kincaid's paper.' 

For a normal bending magnet, the brightness function is3 

dI (4 
2 

= 

dR e=o 

G y2r2G13(r/2) 
47T c 

where r = "b, and 

3c 
CD = 

C 2 Y3/P ’ 

(14) 

(15) 
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The cyclotron radius p of the electron beam is, 

2 
mc rB e 

P z-e . 
e B 

The spectrum from a storage ring of fixed radius p = 12.7 m (e.g. SPEAR) 

is shown in Fig. 7 for various electron beam energies. 

In a transverse wiggler, the magnetic field B may be adjusted in 

such a way that the function r2$i3W2) remains fixed at its maximum 

value. Of course, as the photon energy increases, there will be a point at 

which the magnetic field will reach its maximum value, and then the spectrum 

will fall off with a shape characteristic of a normal bending magnet. The 

spectrum from a transverse wiggler with 6 poles (3 periods) and with a maxi- 

mum magnetic field of 50 kG is also shown in Fig. 7 for various beam 

energies. 

The brightness from a helical wiggler with 100 turns and a total length 

of 2 meters is also shown. Of course, at a given beam energy, only a single 

photon energy is radiated at f3 = 0 . At any fixed beam energy, there is 

a potential improvement in brightness of almost 10 5 over the storage ring 

and of 104 over the transverse wiggler. 

Notice that if photon energy is of prime importance,.the-helical wiggler 

. 

suffers in comparison to the conventional devices as the electron beam energy 

increases* For a bending magnet or transverse wiggler, the critical photon 

energy increases with the third power of the beam energy, by Eq. (15). 
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On the other hand, for a helical wiggler, the photon energy only increases 

with the square of the beam energy, by Eq. (4). 

V. Brightness Attenuation from Beam Divergences 

The angular divergence of the electron beam can seriously affect the 

performance of the helical wiggler. If the beam divergence is described 

by a Gaussian, 

1 
P(0) = - e - $ ( e/c)2 

271.02 

then Kincaid' finds the brightness of the fundamental frequency at 0 = 0 

is reduced by the factor 2Ny2c2 . 

At SPEAR, the beam divergence depends strongly on position around the 
. - 

ring. The beam divergences ox, and u , in the horizontal and vertical 
Y 

directions at a beam energy of 3 GeV are given in Table I. The numbers 

are expressed'in milliradians, and it is assumed that the beam energy is 

3 GeV . The normal configuration corresponds to the normal operation of SPEAR 
i 

in which electrons but not posii$rons.are stored in the ring. The high brightness 

configuration corresponds to operation in.'which the production of synchrotron 

light is optimized, The values of CJ 
X’ 

and c 
Y' 

in the normal configura- 

tion are actual b,eam parameters at SPEAR; the values in the high brightness 

configuration are est&nates based on a feasibility study. 

In the transverse wiggler and fixed radius bending magnet the bright- 

ness attenuation due to beam divergence is ya 
Y' l 

Using the values in 

- 12 - 



Table I, we see that ycy, s 1 at SPEAR. Therefore there is little 

attenuation in the transverse wiggler or bending magnet. 

In the helical wiggler, Blewett and Chasman' find that for zero 

initial beam divergence,, the helical wiggler introduces oscillations which 

correspond to a beam divergence roughly equal to the pitch angle in the 

beam orbit, 

0 pitch 2: K/Y l 

If an axial field is introduced, the oscillations can be made to disappear. 

Thus we assume that the introduction of the helical wiggler into the 

beam will not change the existing beam divergences, and we calculate the 

corresponding reduction in brightness on axis. The angular distribution 

is the product of two Gaussians, 

- 3b%A2 -8(Y’byJ2 
P(x; y’) N e 

x e (16) 

Transformation to polar coordinates gives, 

p(e,q) N exp - ; 
[ ( 

cos2~/c~, + sin2r.p/oF, 
) 

X’ ” ’ 6coscp , Y’ 2: 8sincp 

Integration over azimuthal angle gives, 
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=?77. 2 

- J -$ e2/ 2, 

s 

e -( se2)t 
p(e) = %J w, d - 2e 

0 o dt ~~ 

where 'S = q$, - -g)> 0 (17) 

and we have made the change of variables, 

t = 2 si**y . 

The definite integral is known8 
.2 

to have the value 7re -se Io(se2) , and 

we finally obtain, 

where 

P(O) N 27r emre2 Io(sQ2) 

r = t($ + i) (19) 

‘ 

and I 
0 

is the modified Bessel function, which increases monotonically 

somewhat slower than an exponential as its argument increases. We estimate 

the effective beam divergence by defining ueff by the relation 

2 -ru eff e IO SCZff = 2 . 
t ) 

r (20) 
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The results are shown in Table I. Since o 
Y' << Dx# , we expect to find 

cl- eff - be slightly larger than (r 
Y' 

and much smaller than o 
x’ l 

If the helical wiggler is built with 100 periods, the corresponding 

reductions in brightness at 3 GeV are shown. in Table I. The differences 

are quite large and strongly suggest the use of the helical wiggler in the 

straight section under the high brightness configuration, Unfortunately, 

the allowable bore radius in the straight section is more than three times 

larger than in the interaction region. Perhaps the best solution would be 

the use of focusing inserts in the interaction region to achieve a smaller 

angular divergence in the beam. 

In the interaction region, the attenuation is a factor of 364 in the 

normal configuration. A practical helical wiggler in this region would 

have a bore radius of about 3 cm ,6 a period of about 2 cm , and a total 

length of 2 m . By consulting Fig. 7, we see that the helical wiggler 

would offer a factor of 150 gain in brightness at SPEAR while producing 

3a radiation. 

In the straight section, the attenuation can become negligible in the 

high brightness configuration. A practical wiggler would have a bore 

radius of about 6 cm , 6 a period of 3 cm , and a total length of 3 m . 

The wiggler could increase the brightness by a factor of 55,000, while 

producing 5 i radiation. 

VI. Conclusion 

We conclude by emphasizing that the special properties of the helical 

wiggler demand careful attention to its design for installation in a storage 
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ring. The most important curves in this paper are displayed on log-log 

axes, and oftentimes small gains in performance may be achieved only by 
c, 

huge increases in technology. However, we have found that wavelengths 

of 3: and perhaps 2 i may be produced from a helical wiggler at SPEAR 

with large increases in brightness over the unmodified storage ring. 

The installation of a helical wiggler at a higher energy machine could 

result in the production of synchrotron radiation with much shorter wave- 

lengths. A1 PEP', the maximum beam energy will be 4 times larger than at 

SPEAR and the corresponding photon wavelengths could be 16 times shorter. 

Of course, further study is required on the practical aspects of 

actually installing such a device in a storage ring. Guarding against beam 

instabilities, minimizing the beam divergence, and many other items are all 

important engineering problems that must be addressed and solved. 
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TABLE I 
-h 

Beam Divergences and Brightness Attenuation 

(Ee 
= 3 GeV , N = 100) 

Normal Configuration 

Interaction Point 

3 m Straight Section .18 .044 0055 

High Brightness Configuration 

Interaction Point 

3 m Straight Section .080 .OlO .013 

o- , cr I 
(mraxd) (mra%) 

065 

035 

-19 

.065 

a 
eff Attenuation 

(mrad) Factor 

l 23 

.084 

364 

21 

49 

1.2 

L 
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APPENDIX 

Units for Radiation Intensity 

3 In Jackson's notation, the expression dI(cu)/dR represents the energy 

radiated per unit'solid,angle per unit frequency interval per electron. To 

convert to units which are of interest in calculating synchrotron radiation 

spectra we write: 

Number of photons 

set x 1% bandwidth X ma of electron current x (mrad)L 

dIb4 energy 
ZZ 

dR 
( 

radian2 x frequency interval x electron 

' 1oD6(r~~:e) ' t (energylphoton) 

x 10-2cu 
1 

1% bandwidth/frequency interval 

" t (eleI:y) ' & ((_,.,t X amps) 

dI(w) 1 e2 1 -11 = [ 1 -- x-x-x lo 
dQ e2/c YlC e 

* 

[ dI(cu) 1 1 1 

= 

-- 
e2/c 1 X -X x lo-= 

da 137 1.6~10 -19 

dI(Lu) 1 
= -- [ 

dR e2/c 
1 x 4.56 x lo5 
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Thus, when converting from (energy/solid angle/frequency interval/electron) 

to the gre practical units of (photons/set/l% bandwidth/ma/mrad2) simply 

replace the constant e2/c by the number 4.56 x lo5 in the expression 

for dI(ti)/dR . 
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FIGURE CAPTIONS 

Figure 1 -- Trajectories from (a) a transverse wiggler and (b) a 

helical wiggler. 

Figure 2 -- Angular distribution of the radiated power (from Ref. 1). 

Figure 3 -- Angular distribution of the radiation at the fundamental 

frequency (a = wl) . 

Figure 4 -- Intensity of the radiation on axis (e = 0) vs the helix 

parameter E; for different values of the wiggler current. 

Figure 5 -- Optical wiggler current vs helix parameter. 

Figure 6 -- Helix wavelength and photon wavelength vs wiggler current 

for different values of the bore radius. 

Figure 7 -- Comparison of the idealized spectral distributions for the 

helical wiggler, transverse wiggler and fixed radius bending 

magnet (SPEAR). 
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