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ABSTRACT 

We discuss the kinematical ambiguities occurring in the definition of the two- 

body amplitudes in particle-deuteron scattering. We show how the ,value of the 

energy parameter is uniquely determined through the proper reduction from the 

three-body to the two-body matrix elements. This ,value is compared to pre- 

viously used prescriptions, and shown to give superior fitting when compared 

with experimental data on elastic pion deuteron scattering at low and medium 

energies. 
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The multiple scattering calculations are affected by technical details which - 
- - -may kave strong influence on the results obtained. Here we include the off-shell 

behavior of the amplitudes, and the specification of the kinematics for the two- 

body interactions. In the present work we are mainly concerned with these 

points. For definiteness we refer from now on to the 7rd system. 

Let the three particles be called 1,2,3. Channel 1 is defined forming a pair 

(2,3) and treating particle 1 separately. Define the momentum variables “,x1 , 

‘;;I where g is the total momentum of the system, ‘;; is the internal momentum in 

the (2,3) pair, and41 is the momentum of particle 1 in the center of mass frame. 

In the center of mass system @=O) the kinetic energy can be written 

where 
. - and 

Ho = k12/ 25 + q12 2M1 
I (1) 

I-l1 = “2”3 ,‘ (“2 + m3 ) (2) 

Ml = ml (m2 + m 3 ) / (ml+ “2 + “3 ) * (3) 

Channels 2 and 3 are similarly defined. The channel hamiltonian ho contains 

Ho plus the interaction between the two particles forming the pair in channel 

Q. The channel resolvent is g,(z) = (z-h,)-1 . The matrix elements of channel 

operators between three particle states can be expressed in terms of matrix 

elements of reduced two-body operators. Calling go the two body hamiltonian 

for the particles forming the pair in channel cy, and zo = (z-%o)-l the two body 

resolvent, we can write 

The shift in the value of the argument must be noted. A similar shift appears 

when re relate the matrix element of the collision operator t,(z) to the matrix 

element of the two body operator To(z). 
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A multiple scattering series for the amplitude T(z) representing particle- 

deuteron scattering can be obtained by iteration of the coupled Faddeev equations. 

For threlastic scattering of particle 1 by the (2,3) bound pair we have 

T(z) = t,(z) + t,(z) + t2Wg0(z)t$z) + t,(z)g,(z)t,(z) + . . . - (5) -. 

where all operators are in the three particle Hilbert space. The quantity 

g,(z) = (z-Ho) 
-1 (6) 

is the resolvent for three free particles. To evaluate the terms of the series, we 
introduce the shift corresponding to the energy of the particle which, in each term, 

does not participate in the collision. To show explicitly how this reduction 

affects the calculation, let E be the value of the total kinetic energy for the 

particle-deuteron scattering in the center of mass system. Let F (F) be the 

nucleon, called particle 3, initial (final) momentum in the deuteron rest frame, 

andF (3) be the initial (final) meson, called particle 1, momentum in the labora- 

tory system, in which the deuteron is initially at rest. Then, for the term in 

which the other nucleon (particle 2) is a spectator, we obtain 

Here z (3) is the total initial (final) momentum of the three particles, T2 (@) 

is the initial (final) momentum of the spectator with respect to the center of mass 

of the whole system, zl (pi ) is the initial (final) momentum of the meson with 

respect to the center ‘of mass of the interacting meson-nucleon system, and t2 

is the usual two-body collision operator. The reduced mass is in this case 

M2 = mN(mN +mK)/(2mN+mT)’ (8) 

In terms of the quantities defined in the laboratory system, the argument of the 
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two-body collision operator in Eq. ( 7 ) is given by 

- (2mN+mT)i?+mNT I - (9) 
Similarly evaluated shifts must be introduced in the evaluation of double 

scattering terms in the series. 
- 

We must remark that pions are relativistic e’ven at rather low energies, 

while the formalism de,veloped above is completely non-relativistic. Howe,ver, 

the approximation involved in the use of Eq. (7 ) is expected to be very 

reasonable, as the spectator particle, whose energy is subtracted from the 

total energy available, is always a non-relativistic nucleon. 

The prescription thus established by Eq. ( 7 ) for the determination of the 

value of the energy parameter has safe theoretical foundation in non-relativistic 

particle-deuteron scattering, and it is interesting to compare its predictions 

with calculations made with other usual approaches. 

The most commonly used prescription for the treatment of the two-body 

collision amplitudes appearing in the multiple scattering series consists in 

considering that the incident particle collides with an on-shell physical nucleon. 

The relative energy for the collision is evaluated through a Lorentz trans- 

formation applied to the system of two moving physical particles. In this 

evaluation no account is made for the energy carried by the spectator nucleon. 

A third prescription which has been used to solve the kinematical ambiguity 

is suggested by the experiments in which there is a breakup of the deuteron, and 

where an identification can be made between the spectator and the struck nucleons. 

These experiments show that the spectator nucleon recoils with a momentum 

distribution which is approximately the same as determined by the deuteron 
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wavefunction. The consequent assumption is then that the spectator nucleon 

behaves like an on-shell particle. Energy conservation is imposed stating that 

the stack nucleon carries an energy amount given by the deuteron mass minus 

the energy mN + I+ 2mN carried by the spectator nucleon. 

In our calculation the off-shell.behavior of the partial wave amplitude is 

fixed Writ&g faJck, k’, E) in the form l/&k’)’ sindl J exp(iap J(E)), where k, k’ 

are respectively the initial and final relative momenta evaluated with physical 

masses for the two colliding particles. 

Results of Calculations and Experimental Data in rd Elastic Scattering 

We now compare the results obtained from these three kinematical 

prescriptions with experimental results obtained in 7rd elastic scattering. Our 

calculations account for fermi motion dependence of the amplitudes in the single 

scattering terms. We evaluate both single and double scattering contributions, 

. - allowing for nucleon recoil, and including both the delta functio’n and the prin- 

cipal value parts originated from the pole in the propagator. As the contri- 

butions from double scattering terms to the differential cross section are here 

ne’ver larger than 10 percent, the fermi motion dependence can be safely ne- 

glected in these terms. We use the Moravcsik deuteron wavefunction with about 

7 percent d wave component. Except for Eq. (7 ) all our treatment is rela- 

tivistic. 

The nd elastic differential cross section falls rapidly as a function of the 

scattering angle. Theiproduct z/ (p”$ (T+ A/2), where ‘-d is the nucleon fermi 

momentum, a” is the pion momentum transfer, and # is the deuteron wave- 

function in momentum space, appears in the integrand of the expression for the 

differential cross section. Due to the short range of the momentum distribution, 
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the value of the differential cross section for large values of 1 xl is very sensi- 

tive to the F dependence of other terms occurring in the integrand. As a con- 
4\ 

_ 

- 

sequence, different kinematical prescriptions give very different results in 

large angle scattering. In Fig. 1 we plot the experimental data for da/dA at 

160’ laboratory scattering angle l-12 together with the results of our-calculations. 

We see from the figure that the prescription using the multiple scattering series 

based on Faddeev’s equation gives a good description of the data in the region 

from 140 to 250,MeV. The other two prescriptions fail in this energy region, 

and seem to be more reasonable at the lower energies (see the experimental 

points at 47.5 and 61 MeV). We think that this good fitting at these lowest 

energies is purely accidental, as a multiple scattering calculation, without a 

considerable extra care for binding corrections, is not expected to give good 

results at such low energies. 

Above 250 MeV all calculations made give ,values for the backward cross 

section which are too low if compared to the experimental data. It is not dif- 

ficult to mention possible reasons for this disagreement, as the calculated 

values are highly sensitive to details of the deuteron structure, to changes in 

the kinematics due to relativistic corrections, and to dynamical effects, such as 

can be introduced assuming a different off-the-energy shell behavior of the two- 

body amplitudes. 

In Fig. 2 we plot the angular distributions at 142 and 182 MeV, together 

with the experimental data at these energies. 6,7 We see from these figures 

that the kinematic prescription derived from a proper treatment of the three- 

body system gives clearly better results than the other two prescriptions. Due 

to the strong ,variation in the value of the differential cross sections as we go 

from forward to backward angles, we have used two separate scales for the 
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vertical axis. We have thus avoided the use of a logarithmic scale, trying to 

exhibit more clearly the existing discrepancies. It seems reasonable to us to 
-h 

conclude that the theoretical calculations in the framework of the multiple 

scattering series are able to give a good fitting to the experimental data at 

these medium energies. 

FIGURE CAPTIONS 

Fig. 1 Energy dependence of backward differential cross section for elastic 

rd scattering. The experimental points are from References l-12. 

The solid cur’ve represents results obtained from the kinematical pre- 

scription derived from the proper reduction from three-body to two- 

body matrix elements. For the dotted curve the struck nucleon is 

treated as an on-shell physical nucleon. The dashed curve shows the 

results obtained with on-shell spectators. 

Fig. 2 Curves for the differential cross section for rd elastic scattering at 

142 and 182 MeV, obtained in a multiple scattering calculation involving 

single and double scattering terms, and accounting for fermi motion 

and nucleon recoil effects. The solid curves are calculated using the 

value of the energy parameter obtained from a proper treatment of the 

threebody kinematics, as described in the text. The dotted curve is 

obtained with the prescription which puts the struck nucleon on the mass 

shell, while for the dashed curve the spectator nucleon is on shell. The 

experimental results are from references 6 and 7. 



-8 - 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

D?Axen, G. Duesdieker, L. Felawka, Q. Ingram, R. Johnson, G. Jones, 

D. Lepatourel, M. Salomon, W. Westlund, L. Robertson, Nucl. Phys. 

A256, 387 (1976). 

University of Virginia and Los Alamos Scientific Laboratory Collaboration- 

Preliminary Data, Los Alamos Report LA-6156-R, and private communi- 

cation by J. McCarthy. 

A. M. Sachs, H. Winick, and B. A. Wooten, Phys. Rev. 109, 1733 (1958). 

K. C. Rogers and L. M. Lederman, Phys. Rev. 105, 247 (1957). 

E. Arase, G. Goldhaber, and S. Goldhaber, Phys. Rev. 90, 160 (1953). - 

E. G. Pewitt, T. H. Fields, G. B. Yodh, J. G. Fetkovich, and 

M. Derrick, Phys. Rev. 131, 1826 (1963). 

J. H. Norem, Nucl. Phys. Bg, 512 (1971). 

J. L. Acioli, Ph.D. thesis, University of Chicago, 1968 (unpublished). 

K. Gabathuler, G. R. Cox, J. J. Domingo, J. Rohlin, N. W. Tanner, 

C. Wilkin, Nucl. Phys. B55, 397 (1973). - 

10. L. S. Dul’kova, I. B. Sokolova, and M. G. Shafrano,va, Sov. Phys.- JETP 

35, 217 (1959). - 

11. G. Brunhart, G. S. Faughn, V. P. Kenney, Nuovo Cimento 24, 1162 (1963). - 

12. I;. S. Schroeder, D. G. Crabb, R. Keller, J. R. O*Fallon, T. J. Richards, 

R. J. Ott, J. Trischuk, and J. Va’vra, Phys. Rev. Letters 27, 1813 (1971). 



2.0 - 

1.5 - 

1.0 - 

0.5 - 

: 
: 
: 
: . 
: 
: 
: 
: 
: 
: . 
: 
r 

: 
: 
: 
i 1 
: 
: -- I 
: 

: 

I! 

. . 
; I 
l I 

I 

: 

I 

/ 

i i 1 
I : ' 
I : I I . 

: 
: 1 
: I 

I 
l 

i I 

i I 

. 

. 

; I 

. 

. 
\ 

. 

. 
I 

. 

. 

. I 
. 

. 

. I 

0 100 200 300 400 
INCIDENT PION KINETIC ENERGY (MeV) 

0 2931Cl 



50 

;; 
-2 
6 40 

6 i= 
t: (I) 30 

2 
& 
-J 20 
a 
i= 

. 

I42 MeV 

\ 
(a) 

L . . . . .B . . . . . . . . . . . . . . : . . . . 

0 30 60 90 120 150 I80 

” ” ” ” ” ” ” ’ r I82 MeV 

0 30 60 90 I20 I50 I80 2 
E LAB SCATTERING ANGLE (degrees) c ,., 


