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ABSTRACT 

We show that the free massive quantum string in two space- 

time dimensions is Poincare covariant. This is true for both 

lightlike and timelike gauge choices, When the massless limit 

is taken, the massless string is also seen to be Poincare co- 

variant, The set of classical string variables which is chosen to 

define the quantum theory drastically affects the proof of Poincare 

covariance and also the mass spectrum. We therefore suggest 

that other dynamical systems may exhibit similar phenomena, 
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The quantum Poincar6 covariance of the two spacetime dimensional string 

systeq;ls treated in Refs. 1 and 2 was discussed only very briefly, Here we 

present an extended footnote giving the detailed arguments for such systems 

without string-s tsing interactions o 

Lightlike Gauge. We choose the metric 

-+ ++ g+-=g z-1, g =g-Lo, (1) 

and the gauge 

x+@,(T) = -x-(7,(T) = &(x0 +x1) = 7 D (2) 

The N masses at the endpoints and folds joined by the string are then described 

by the variables p,‘, xi, n=l , O ., D , N, which obey the commutation relations 

[p+,, XL] = i6nm O (3) 

Note that p: =mn[-(3xn/aT)2]B’. 1s classically positive definite. Here we treat 

the quantum mechanical operator pz as a Hermitian operator acting on a space 

of states with only positive eigenvalues of p:. Following the usual arguments, 192 

we find the Poincare/ group generators 

N m2 N-l 
H E p- = c ++r c Ix;+1 -x,r 

n=l 2p n=l n 

P+ = f p; 
n=l 

R/r+- 
N 

=, TP- -; c - (x p 
n=l 

+ + p+,, nn 

@a) 

W) 

PC 1 

where the operators are ordered in M+-. 

The commutation rules of the boost operator M+- with the individual vari- 

ables xi, p z follow from Eq. (3) and are complicated because,for arbitrary T , 

M+- generates a gauge transformation on the variables in addition to a naive 
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boost. However, the gauge-invariant variables M+-, P* have the following 

simplescommutation rules : 

[Pl-l,PV] = 0 

[M+- , p*] = *iP* . 

The quantum Poincare algebra is therefore satisfied; all ordering ambiguities 

are resolved by the choice made in Eq. (4). 

We find it useful to make the canonical transformation 

% 
= x--x- 

(n n+l. )‘+ 

$+K n - Kn-l = pi/P+ 

n=l ,000 ,N-1 

n-2 ,oeo ,N-1 (6) 

&+K1 = p+‘+ , & - K N-l = p+N/ p+ , 

so the invariant mass-squared is 
. 

2 m2 2 N-l 
M2 E zp+p- = ml N-l n “N 

++K 

+c 
L+, +1 + WC IPJ l (7) 

n=2 -- 
1 N nSKn-1 N KN-l n=l 

Note that P+ commutes with xi - x;+~, so no ordering problem occurs. The 

new variables obey the commutation rules [K n, pm] = iSnmO 

We deduce from Eq, (7) that if we use the lightlike gauge variables of Eq. 

(6) we cannot take the massless limit until the spectrum is calculated. As 

shown in the semiclassical and quantum treatments of Refs. l-4, the theory 

possesses a nontrivial spectrum in the zero mass limit. We may.use the treat- 

ment of ‘t Hooft’ to argue that the solutions of the integral equation defined by 

Eq. (7) are regular in the massless limit, where all the (renormalized) masses 

m-- n 0. In this limit, Eq. (5) continues to hold and the theory remains Lorentz 

covariant. 
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Timelike Gauge D The timelike gauge case turns out to be somewhat more com- 

.plicated. We choose the metric 

and the gauge 

00 
g z-1 , gll =1 , go1 =glO=o 03) 

- 

xO(T,a) = 7 0 (9) 

Let us first examine the classical theory, The N masses at endpoints and 

. 

folds joined by the string are described by the canonical variables p,, xn, n=l, 

0 0 0 , N obeying the Poisson brackets 

jPn,xm\ = -*nm 0 (10) 

The classical Poincare’ group generators in the timelike gauge (9) are 192 

N 
H = c [pf + rnzlt 

N-l 

n=l 
+ .Y c Ixn- xn+Q 

n=l 

P = fp 
n=l n 

Wa) 

(lib) 

MO1 = TP-B WC ) 

where 

B = $ x [p2 + rni]* + &y 
n=l n n 

Y(x + Xn+@Xn - Xn+l I . 
n=l n 

(12) 

One can verify that the classical Poincare algebra is satisfied. However the 

ordering of the terms in B is ambiguous if we try to quantize the x n, P, vari- 

ables 0 In particular ,i the quantum Poincare algebra is not satisfied if one sim- 

ply replaces xn(pi + rnt)& by & Lx,@: + rng )’ + (pt + mE)‘xn] 0 There may, of 

course, exist some ordering prescription which works, but its physical inter- 

pretation would not be as straightforward as the method we shall present now. 
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It is well known that the success of canonical quantization may depend cru- 

cially upon the particular choice of classical canonical variables used to de- 

scribe the system, Therefore we search for variables which separate the dy- 

namics of the system in a convenient way. The best choice for the overall - 

center-of-mass coordinate is clearly the two-dimensional Newton-Wigner co- 

ordinate6 

Q = B/H , (13) 

where 

\Q,H~ = P/H (14) 

and P/H is the velocity of the center of mass. Since 

/P,Qi = -1 , (15) 

Q is canonically conjugate to the translation generator P. 

The well-known example of two free particles illustrates the utility of this 
. 

transformation; we have classically 

p = Pl +P2 

Q = B/H = (x,[p2,i-m;]’ +x2ip~+m~]‘)/H 

(16) 

The canonical transformation from (x1plx2p2) to the new variables (QPkr) is 

generated by 

Pwl-kW 
Wy2; Pk) i = x1 w +w +x2 

Pw2+kW 
w +w , 

1 2 1 2 
(17) 

where w2 n =k’+mi, and 

w2 = P2 + (w1+w2)2 D (18) 
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As usual, we have pl = W/8x1, p2 = W/8x2, Q = BF/BP, r = aF/ak. These 

variables were chosen so that pl and p2 are obtained by boosting the variable k 

to a new Lorentz frame, 

P1 =. (-k+~wl),~.-/32]1’2 

P2 = (k+Po,)/ 1-P 
2 l/2 c 1 

where /3 = P/W is the velocity of the center of mass. Substituting pl and p 2 
into the form of H given in Eq, (16) shows that in terms of the new variables 

H(P,k,Q,r) = W , (19) 

with W defined by Eq, (18), The invariant mass is therefore given by 

3 
M(k,r) = [Hz-P21 =w +w 1 2” (20) 

All dependence of the invariant mass on the center-of-mass coordinates (P,Q) 

has disappeared., For other choices of canonical variables this might not have 

been true. 7 

The quantum Lorentz invariance of two free particles is now proven by 

canonically quantizing the new variables (P,Q, k, r): 

UP,&] =1 , i[k,r] = 1 , (21) 

and expressing the Poincare group generators as 

H = (P2 + [w + w 1’)’ 1 2 GW 

P =P ww 

MO1 = rP-+(QH+HQ). (22c 1 

One easily finds that the quantum Poincare’ group algebra holds with no ordering 

problems : 
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i[P,H] = 0 

i[M ol,Pl =H 

i[M 01 ,H] = P, 

(23) 

For particles interacting via the string, it is much harder to find the ana- - 

log of the canonical transformation (17), and we shall not carry out an explicit 

analysis here, We can, however, give a convincing general argument that the 

crucial features of the timelike free particle case continue to be valid. We be- 

gin by using Eqs. (12) - (14) to define the properties of the classical interacting 

center-of-mass coordinate Q = B/H conjugate to P. For some set of variables 

kn, rn, n=l,OOO, N-l, there must exist a canonical transformation from the 

variables 

tPn’Xn) n=l ,000, N 

to the new variables 

In principle the variables kn,rn can be related to the pn,xn variables by a boost, 

just as we found in the case of two free particles. However, the form of the 

finite boost generated by Eq. (11) - (12) is more complex because of the gauge 

transformation accompanying the naive Lorentz transformation. Without dem- 

onstrating the explicit transformation, we may replace the original Poisson 

brackets (10) by the canonically transformed brackets 

Then Eq, (14) becomes a differential equation for H(PQknrn) , 

1. > Q,H = g = $ (25) 

(24) 
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along with 

H,p) = E = 0 
a& a (26) 

The solution of Eqs. (25) and (26) is simply 

.2 
H (P,Q;kn,rn) = P2 + M2(knrn) 

where M2&nrn) has no P,Q dependence. 8 We conclude that even in the inter- 

acting case the qualitative features of Eq. (20) are preserved if we choose the 

right canonical variables 0 9 

We now canonically quantize the new variables 

iP,Ql = 1, Ukn,rml = 6nm , 

and rewrite the boost generator Eq, (11~) as 

(28 ) 

MO1 = 7P - &(QH + HQ) (29) 

where H is given by Eq. (27). The quantum Poincare algebra Eq, (23) con- 

tinues to hold and the timelike system is Poincare covariant. Taking the mass - 

less limit presents no further problems, so the massless D=-2 string treated in 

Ref., 1 also possesses a Poincare covariant quantum mechanics. 

The Spectrum, Although we have been able to argue that both the timelike and 

lightlike gauges give Poincare covariant quantum systems, the determination of 

the mass spectrum presents a puzzling problem, We showed in Refs, 1 and 2 

that the invariant masses of the no-fold string in the lightlike and timelike 

gauges,8 

2 

M2 m1 2 =-jy-+ 
2-K 

+ 274pl (lightlike ) 

M = [k’+mF]’ + [k2+mElf + ylr I (timelike) 
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gave the same semiclassical mass spectra. This means that for large quantum 

numbers, the two systems are identical to order hi. The quantum spectra of 

these systems, however, 192 are defined by Schr’ddinger-like integral equations; 

it is by no means obvious that the quantum spectra of these two equations are 

identical. Yet if they are not identical, what physical criterion exists for 

choosing between them? We have seen that quantum Poincare covariance does 

not single out any particular set of relative variables such as (k,, rn), (K n, p,), 

etc., to be used in defining the quantum theory. 

In particular one could transform to classical action-angle variables, L&8,9 

(Jn, en), and make a further canonical transformation to harmonic oscillator 

variables, 

a 
-ien 

n = [J,]$e 

a’ 
1 ifI 

n = [Jn]% e n . 

One could then quantize the system by taking an and ai to be operators with 

lX+arnl “r =6 
nm 

and making the replacement 

Jn = i(anai + a;la,) 

in the Hamiltonian. The spectrum of the system relative to the vacuum defined 

by the an, ai would then be exactly known. The quantum spectrum -determined 

by Eq. (7), for example, would be completely different, but apparently equally 

legitimate 0 

For the massless D=2 string described in Sec. 5 of Ref. 1, this procedure 

gives the mass operator 
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-h 
M2/r = 2 ’ o 

n=l 
nanan + a! , 

where an infinite vacuum mass has been absorbed in the definition of a! 0” This 

spectrum resembles that expected from a dual model, but, as we have noted, is 

not unique and is not dictated by Poincare covariance, We further note that the 

vacuum defined relative to one set of canonically quantized variables may be 

quite different from that defined relative to another set. This may have impli- 

cations for the energy of the ground state, 

Comments. Our demonstration that the free N-fold D=2 string can be formulated 

so that its quantum mechanics is Poincare-covariant is to be compared with the 

GGRT result” for the free D+?6 string. However, we have not dealt with inter- 

acting D 4 strings, and thus have shed no light on the D =2 analog of Mandel- 

s tam Is treatment 11 of interacting-string Poincare-covariance in D=26. It may 

be necessary to include arbitrary numbers of folds simultaneously in order to 

demonstrate interacting Poincare/ covariance for the general D=2 string. 12 

We conclude that a careful choice of canonical variables is necessary to 

demonstrate that the string systems described in Refs, 1 and 2 possess a 

Poincare-covariant quantum mechanics. The quantum spectrum, however, may 

not be unique; the classical variables which one chooses to quantize canonically 

determine the spectral properties of the quantum system. Our observations sug- 

gest that similar phenomena may occur in the Hamiltonian formulation of any 

dynamical theory in any dimension. 

Acknowledgement. One of us (I, B. ) thanks the theory group at UC-Berkeley, 

where this work was completed, for its hospitality. 
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