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ABSTRACT 

Ths large qz behavior of the elastic form factor of a hadron or nucleus is 

related by dimensional counting to the number of its elementary constituents, 

Using the framework of a scale-invariant quark model, dimensional scaling pre- 
- 

dictions are derived for the B(q’)/A(q’) ratio in the Rosenbluth formula, mul- 

tiple photon exchange corrections, and the mass parameters which control the 

onset of the asymptotic power law in the meson, nucleon, and deuteron form 

factors. A simple “democratic chain” model predicts that for large q2, 

F(q2) cc (1-q2/mi)1-n where rnz is proportional to the number of constituents n. 

In the case of nuclear targets (or systems with several scales of composite- 
A 

ness), we also define the “reduced” form factor fA(q2) = FA(q2)/ fl Fi (q:) in 
i=l 

order to remove the minimal falloff of FA due to the nucleon form factors at 

Dimensional counting predicts (q 2 ) A-1 fA(S2) - const. 

A systematic comparison of the data for 71, p, n, and deuteron form factors 

with the dimensional scaling quark model predictions are given. Predictions 

are made for the large -q 23 He and o-particle form factors,, We also relate 

the deuteron form factor to (off-shell) fixed angle n-p scattering, and show that 

the experimental results for t5FD(t) are consistent with the magnitude of the s- 

wave wave function ~~(0) obtained from soft-core potentials. The relation of the 

dynamics of an underlying six-quark state of the deuteron to the nucleon poten- 

tial and meson exchange current contributions is discussed, The scaling of 

q2fD(q2) implies that the nuclear potential (after removing the effects of nucleon 

structure) displays the scale-invariant behavior of a theory without a funda- 

mental length scale, Predictions are also given for the structure functions, 

fragmentation, and large angle scattering of a nucleus. 
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I. INTRODUCTION 
- 

Measurements of the elastic form factors of the hadrons and nuclei have - 

historically played an essential role in determining the static properties and 

spatial structure of hadronic matter., In the relativistic domain where 
- 

lq2 I 2 O(M2), the classical relationship of the form factor to the Fourier trans- 

form of a charge distribution and intuitive concepts such as the use of “body” 

form factors in the impulse approximation begin to break down, and strictly co- 

variant treatments are required. However, even in the relativistic domain, we 

can identify the form factor F(q2) as the probability amplitude for the target to 

remain intact after absorbing momentum q’” from a local current. Thus, phys- 

ically, it is clear that the rate of falloff of F(q2) will depend on the degree of 

compositeness of the target as well as the dynamics of the restoring forces. 

This paper is devoted to an analysis of these relationships, and the implication 

of present data - particularly the new measurements of the deuteron form factor 

at large q 21 - to the underlying structure of the hadrons and the nuclear force. 

. 

The connection between the asymptotic behavior of the form factor of a 

bound system and the number n of its constituents is already familiar in many- 

body Schrodinger theory. 2 In order to transfer momentum to each constituent, 

the potential must act n-l times. It is straightforward to show this leads to the 
--2 large q result, 

n-l 

where r - kr is the average momentum transfer to each constituent and 

(1) 

(2) 
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The derivation assumes that the wave function at relative separation 5 = 0 is 

finite 0- Eq. (1) is valid for m2 >> q -2 >> n2<F2> where <r2> is the mean square 

momentum of a constituent in the bound state. Taking V(r2) N e2/r2 then 

gives 
- 

2n-2 
(3) 

for nonrelativistic Coulomb or Yukawa interactions. 

The extension of this result to the relativistic domain of the Bethe-Salpeter 

equation is surprisingly straightforward (see Ref. 3 and Section II). The es- 

sential change is in the high energy behavior of V. In the case of quantum elec- 

trodynamic s , and in fact any renormalizable theory, we have effectively (mod- 

ulo powers of log q2 from finite orders in perturbation theory) 

2 r 
V(q2) - E- 

q2 ’ 
1 + 0 a 
I ( il m’ 

(4) 

i.e., V(q2) becomes constant in the relativistic domain and 

Fn(q2) N f 0 
n-l 

(5) 
q 

where n is the number of elementary fields (e, /J, y, q, etc. ) which compose the 

(g=O) bound state. This is the prediction of “dimensional counting” which is 

based on the case of an underlying scale-invariant theory. 394 

The predictions based on quark constituents of the hadrons (I M> = Iq@, 

IB> = Iqqq>), i 

q2Fn(q2) -+ const 

(6) 

appear to be consistent for spacelike q2 larger than the square of the mass of 
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the respective hadrons (see Figs. 1 and 13). The measurements of F,(q2) for 

timelike t from e+e- -+ 7r+n- also agree with the predicted behavior as in Ref. 3 4 

and Fig. 6. Further, and perhaps most remarkably, the dependence of elastic 

deuteron form factor measured in Ref. 1 is consistent with the approach of 
_ 

t5FD(t) -. constpredicted for a six-quark state (see Fig. 9). This was the im- 

petus for the present investigation. 

If the target has spin, then the scaling law, Eq, (5), is the prediction for 

the leading form factor A l/2 2 (q ) in the Rosenbluth formula 

g = (g)Mott [AN2) + Ws2) tan2 f$] (7) 

and, further, B(t)/A(t) - -t/2M2 if the elementary charged constituents have 

spin l/2. For the nucleon, this implies dominance of the Dirac form factor 

t F2(t)/F2,(t) d 0 
4M2 2 

(8) 

We also show (see Section IIa) that multiple photon exchange can give a correc- 

tion of order Za! to the asymptotic large t cross section. 

At first sight, it may seem surprising that the dynamics of any system as 

complex as the deuteron can be related to the dynamics of a six-quark state, 

However, to the accuracy of present knowledge, the electromagnetic interac- 

tions of hadrons (eQ g, , Bjorken scaling of deep inelastic lepton scattering, cur- 

rent algebra, e+e- annihilation) are described by quark currents, and the spec- 

troscopy of hadrons and the quantum flow of the strong interactions can be iden- 

tified with the underlying skeletal substructure of the quark diagrams. Models 

of the hadronic interactions, including quark-gluon gauge theories, .thus imply a 

microscopic description of the nuclear force and lead to constraints on its short 

distance behavior. Of course, since asymptotic quark states have not been 
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found, there must be an equivalent or “dual” description in terms of normal 

hadron& states. In fact, it is this complementarily or mathematical equiva- 

lence which, as we shall see, leads to important constraints on the meson ex- 

change contributions to the nuclear force at short. distances and exchange cur- 

rent contributions to the deuteron form factor. 

The physical picture which underlies the dimensional counting prediction, 

Eq. (5), is that, at large q2, binding corrections are negligible and can be set to 

zero. The scaling of the form factor then has the same short distance scaling 

behavior as that of the amplitude for an electron scattering on n on-shell con- 

stituents , each with a finite share of the initial and final momentum (see Sec- 

tion IIa). In the case of renormalizable theories with dimensionless coupling 

constants and no intrinsic length scale at short distances, Eq, (5) is then ob- 

tained - modulo logarithmic corrections of the same order expected to Bjorken 

scaling of deep inelastic scattering. 3 Empirically, these corrections seem to 

be very small and will be neglected for the range of qZ discussed here. 

The deuteron form factor will be discussed from several points of view 

within an equipartition picture in this paper. In Section IId we use the simplest 

quark diagrams (the cascade model, as in Fig. 2a) as an illustration of how the 

mass parameters which control the onset of asymptotic scaling in the meson, 

nucleon, and deuteron form factors can be related. A phenomenological dis- 

cussion of the new large q2 data on the deuteron, considered together with com- 

parable data for the pions and nucleons, is then presented. 

In the case of quark models such as quantum chromodynamics, the simple 

cascade diagram is first-order forbidden, and an interchange of quarks between 

the nucleons is required. It is an interesting question whether this effect can be 

distinguished phenomenologically in the large t form factor. The relationship of 
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quark interchange diagrams to the exchange current contributions is discussed 

in Section IId 

The structure of the deuteron form factor in a relativistic theory can also 

be understood in some detail from Fig, 2b, If we neglect the. nuclear binding, - 

then the calculation of the form factor requires each nucleon to absorb momen- 

1 v tum transfer N zq D Thus it is natural to define the “reduced” form factor of 

the deuteron, 

“,(q2) Z 
F,,t?) 

F;Q2/‘4) 
(9) 

where the two powers of the nucleon form factor remove in a minimal way the 

effects of nucleon structure. fD(q2) is displayed from existing data in Fig, 3. 

In a sense, the reduced form factor contains the essential dynamics of the nu- 

. clear interaction, and it can be directly related to the exchange current con- 

tribution of standard analyses 0 Using dimensional counting, Eq. (5), we pre- 

dict for large q2 (Ref. 5) 

fD(S2) + ions,” 
q -m. 

(10) 

A comparison of the prediction (l-q2/m~)Fl,(q2)/F~(q2/4) -+ const. with the 

data of Ref, 1 is shown in Fig. 9. (The value rnt = 0.28 GeV2 is predicted 

from the parametrization of the pion form factor, ) The (roughly) constant be- 

havior of (q2 - mt)fl,(q2) in Fig. 9 for lq2 I 2 0.7 GeV2 appears to. be a striking 

success for the quark counting approach. This premature onset of scaling ap- 

pears to be a general feature of electromagnetic interactions of hadrons. As 

we discuss in Section IIc, the scaling of q2f,(q2) implies that the nuclear po- 

tential (after removing the effects of nucleon structure) at momentum transfers 

beyond N 0,7 GeV displays the scale-invariant behavior of a renormalizable 
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interaction, i.e, , V =const. as in Eq, (4). The constraints on the exchange 

curreticontribution and the generalizations to other nuclei, in particular with 

predictions for 3He and 4He, are also discussed in Sections II and IV. 

The deuteron form factor can also be predicted from the behavior of off- - 

shell nucleon-nucleon scattering near ecrn = 7r/2, The deuteron wave function 

at the origin, q,(O), is then evaluated using both sets of experimental data. 

This is discussed in Section DC. We also discuss other nuclear tests sensitive 

to short distance interactions in Section VI. 

This paper is organized as follows. The scaling laws are developed in 

Section II, relating (a) fixed-angle scaling to elastic form factors, (b) reduced 

form factors for general composite systems to dimensional scaling laws, 

(c) the deuteron form factor to n-p elastic scattering at fixed angle, and (d) 

binding corrections in a dimensional scaling quark picture to elastic form fac- 
. - 

tors 0 The data set of elastic form factors for 7r, p, n, and D is presented in 

Section III, The systematic comparison of these data with the dimensional 

scaling quark model predictions developed in Section II is made in Section IV. 

The results of this investigation are summarized in Section V, followed by the 

conclusions in Section VI which generalize on the continuity between nuclear and 

particle physics D The partition method for bound state calculations is reviewed 

in Appendix A, Appendix B contains a discussion of the proton elastic form fac- 

tor data and phenomenology , and Appendix C contains predictions for the neutron 

form fat tors o 
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II. SCALING LAWS 

a. F&e&Angle Scaling Laws and Form Factors 

If the binding interactions of a composite system are sufficiently well be- 

haved, then at large momentum transfers binding corrections can be ignored and 

effectively the bound state scattering amplitude is proportional to the on-shell 

multiparticle amplitude .,z%& obtained by partitioning the momentum of each 

hadron among its constituents 0 As discussed in Appendix A and Ref. 3, the re- 

quired condition for this to be valid is that the wave function is finite at relative 

distance x 
P 

= 0, In the case of constituent spin, the spinor factors, u, v, etc. , 

are included in./ G0 We note the amplitude has dimensions [L] N-4 0 

In the scale invariant theory where, asymptotically, only the invariants t 

and s = E2 set the mass scale, we have&Z N t l/2 (4-N) 
cm N f(t/s) and thus 

+$A+B+C+D) --lf (t/s) tN-2 

where N is the total number of elementary fields in A, B, C , D. The applica- 

(11) 

tions of Eq. (11) to fixed c.m. angle hadron-hadron scattering are discussed in 

Ref. 3. Electron-hadron scattering is a special case of Eq. (11): 

g(eH --. eH’) =- 4scr2 F; (t)f(t/s) 
t2 

nH-1 
. where FH(t) - const/t ., In fact the fixed-angle scaling law holds to any fi- 

nite order in 01. Thus the two (or higher) photon exchange contributions also 

scale and simply give ia correction of order a! to f(t/s), in agreement with the 

explicit calculations of Gunion and Stodolsky. 6 Comparing Eq. (12) with the 

Rosenbluth formula we have,in order (Y, the predictions 

const tm------ 
tnH-l 

(13) 
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and 

BLt) 

--& 4) 
-+ const (or zero) (14) 

(B z 0 for a spinless target. ) More specifically,- the angular dependence of 

do/dt will reflect the angular distribution of the elementary scattering of the 

electron on the charged constituents., For spin l/2 constituents, we thus have 

the further prediction 

BP) - *A(t) o 
2M2 

(15) 

Alternately, we can use exclusive-inclusive connection which assures continuity 

between the elastic and inelastic electron-scattering cross sections. The con- 

dition (15) is equivalent to the Callan-Gross relation R = cL/crT - 0 at 

-cl2 x =- - 1. 
2PO q 

More generally, continuity at x = 1 requires 

l+R 
x=1 x=1 2M2 

(16) 

where M is the target mass. The measured value of R for the proton at large x 

is -O,lO% 0.05 for Itl 22 GeV2,7 

b. The Reduced Form Factor 

The partition model also leads to simple predictions for nuclear targets or 

general systems with a series of scales of compositeness. Thus, consider a 

composite of A constituents each with an on-shell form factor Fi(tJ In the limit 

where binding can be neglected, each constituent absorbs momentum (mi/MA)qO 

Thus, it is natural to define the “reduced” form factor 

fA(t) = 
FA(t) 

(17) 
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which removes the minimal falloff of the form factor due to constituent struc- 

ture. Jt is clear physically that fA(t) should be a decreasing function of t since 

one still has to pay a penalty for keeping A intact., Using dimensional counting, 

i.e., an underlying scale-invariant, theory, we have from Eqs. (5) and (17) 

const 
f,(t, -- tA-l ’ (18) 

Thus the reduced form factor is predicted to have the same falloff as a cor- 

responding bound state of elementary constituents! In particular, f,(t) and 

f3 G) are predicted to have the same monopole and dipole falloff as the mesons 
He 

and baryons, respectively, These and other predictions are summarized in 

TableL Note that in each case F refers to the fi form factor in the Rosenbluth 

formula. We emphasize that the usual definition of a “body” form factor 

fiody(t) = FA(t)/Fp(t) has no natural significance in a relativistic theory. 

CO The Deuteron Form Factor and Fixed Angle n-p Scattering 

If the deuteron nuclear wave function qD(x) is finite at xc1 = 0, then the cal- 

culation of the large q2 limit of the deuteron form factor is equivalent to the 

calculation of the amplitude for the process 

yv(q2) + p + n - P’ + nv 

where the initial nucleons each have 4-momentum p/2 and the final nucleons 
3 

have 4-momentum @tq)/2, i.e. , B. E. - 0. Thus, as seen in Fig. 4, FD(qu) 

has the structure 

FD(q2) N zr(s2)A(s2/2)T(q2)~~t0) (19) 

where the coupling of the nucleon to an off-shell state with mass squared 

2 = q2/2 is given by the vertex function I(q2), the off-shell nucleon propa- 

gator is A 2 >, and 
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T(q2) = T(t =q2/4, u =q2/4,dg2=q2/2) 

is -the connected n-p scattering amplitude for 90’ scattering with one-nucleon leg 

off-shell, 

In fact, we can argue - from the observations.of Bjorken scaling in deep in- 

elastic scattering or e+e- -+ N + X - that I’(q2) x A(q2/2) is scale-invariant, 

Le. , at large q 28 

r(q2)4i2/2) - L s2/2 (20) 

7 the same scaling as in free field theory. This result is of course also evident in 

the quark model, Thus 

F(s2) - 2 .--&- T(s2)&O) s2/2 (21) 

and the asymptotic behavior of F(q2) is controlled directly by the large t =u be- 

havior of the off-shell n-p scattering amplitude. 

In the case of on-shell proton-proton and neutron-proton scattering, the 

fixed ecrn cross section fits the form’ 

da- 1 f(O ) 
dt -- 16as2 

ITI = ,“” 
S 

(22) 

withn=9.7*0.5forpp-pp, Itl, lul 22GeV2, (The dimensional counting 

prediction is n = 10, 3, Thus,at 909 T cc s -3.85 f 0.25 0 Further, it is easy to 

see from field theory calculations in perturbation theory that the extrapolation of 

T from on-shell to the off-shell spacelike mass A2 = q2/2 < 0, can only 

decrease the amplitude. Thus we obtain an upper bound to the asymptotic be- 

havior of FD: 

F,(s2) ( 
C 

tq2t085 * oo25 
(23) 
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We can, in fact, go one step further. For general sets of field theory 

graphs” ’ -it is straightforward to show that the scaling behavior T(q2) a (q2)-n 

for t = u = q2/4 is unchanged by the extra$olation from on-shell to spacelike 

A2 =q2/2. Thus we can predict directly from the Bjorken scaling behavior of 

deep inelastic scattering and the observed fixed angle scaling behavior of fixed 

angle nucleon-nucleon scattering the large q2 result 

FD(q2) = (24) 

in agreement with the interpretation of the measurements of Ref. 1 as, e. g. , in 

Fig. 9, 

It is of interest to see whether we can understand the order of magnitude of 

the constants entering the form factor calculation. The large t on-shell 90’ n-p 

scattering amplitude fits the approximate form T - 5 X lo3 GeV8/t40 For the 

. - off-shell continuation we shall assume the form 

T(q2) - 5 x 103Gev8 N 1.5 x 105Gf?v8 

t2 (t +,lt2)2 (s2,4 
(25) 

which is suggested by extrapolations of off-shell form factors. 
11 Using Eq, 

(21) , -we then have 

2 2 
#NRtO) s 2Mp$~(0) = 

n/rps2FD(q2) It! (s2)5FD(q2) 

2T(q2) - 3 x 105Gev7 

Taking (q2)5FD(q2) - 1 GeVI’ from Fig. 9 gives 

(26) 

u’(O) = &qJNR(0) N 0,l in;/” 

which is of the order of magnitude of the s-wave wave function (normalized to 

*2 {u (r)dr = 1) obtained for the soft-core potentials. l2 
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t 

Notice also that consistency between the asymptotic scaling laws for T(q2) 

and F(q2T requires u9(r) to be nonzero at r -+ 0. Thus there is no “hard core” 

in the effective nucleon-nucleon potential - at least for the range r >, I/Qmax - 

0.06/m, (0,08F) probed thus far in the deuteron form factor measurements. 
- 

It should also be noted that Veff(q2) E 2MpT(q2) is the effective nucleon- 

nucleon potential in the two-body Schrodinger theory, As we have seen, the 

asymptotic falloff of T(q2) is consistent with the (q2)-4 behavior of Fi(q2/4)0 

Thus the entire falloff of the effective potential can be understood to be due to 

just the dynamical structure of the nucleons themselves, with no additional fall- 

off from the exchange force. The scaling behavior for the “reducedfr amplitude 

W2) = -ICd-L- - const 
F;(s2/4) 

(28) 

is in fact (modulo logarithmic) exactly what is expected in underlying theories 

which are scale-invariant at short distances, including quantum electro- 

dynamics (in perturbation theory) and gauge theories with asymptotic freedom, 

d, Quark Description of Form Factors 

Within the accuracy of our present knowledge, the electromagnetic inter- 

actions of hadrons can be described by quark currents., The empirical evidence 

has been mentioned in the Introduction, The recent observation of jets with the 

angular distribution appropriate to e+e- annihilation to pointlike fermions is 

particularly striking, These results, taken together with hadron spectroscopy, 

imply that hadrons have a finite composite structure with the degrees of free- 

dom of the quark model, The form factor calculations thus require the re- 

arrangement of a finite number of elementary constituents and yield power-law 

falloff, tNF(t) -+ const. f 0, In contrast, bootstrap or continuum models with a 

uniform current distribution imply an infinite -composite hadronic structure and 
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exponentially damped form fat tors . 2,13 

Mare specifically, if the hadronic wave function is finite at zero relative 

separation, binding corrections can be neglected at large momentum transfer 

(see Appendix A and Section IIa) and the calculation of the asymptotic form fac- 

tor is equivalent to the calculation of the amplitude dn for rearranging the n- 

constituent quarks parallel to pc” to the final pc” + qP direction. This result 

holds for nuclei at large q2 as well as for the usual hadrons. If the quarks are 

structureless and the interactions scale-free then this leads to the dimensional 

counting prediction t n-1F (t) - const. We note that if deviations of Bjorken 

scaling are found at large q2 - as might be due to quark substructure 14 - then 

the dimensional counting prediction applies to the reduced form factor 

fdA (q2) = FA(q2) I i-1 Fq@a, (29) 

(qi =xiig2 5 xi = 1) obtained after removing the quark form factor dependence. 
i=l 

It is an important and interesting question whether the mass parameter in 

the various hadronic form factors can be related., The mass scales which de- 

termine the preasymptotic form of F(t) clearly will depend in detail on the 

binding parameters and internal masses of the constituents. In the case of non- 

strange hadrons , the quark masses are usually assumed to be small compared 

to their average transverse momentum in the bound-state wave function. In the 

models described below we shall assume that the essential mass scale which 

enters the scattering amplitude and propagators is the mean transverse mo- 

mentum <k2>9 
1 ’ 

which we take as a hadron-independent constant, We recall that 

this mean transverse momentum, which is a general observable in high energy 

collisions where <EL > N 300 to 400 MeV, determines the large q2, qop kine- 

matic boundary where Bjorken scaling sets in. The convergence of the integrals 
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at large transverse momentum is guaranteed by the condition on the Bethe- 

Salpeter wave function G(O) < 03. 

Even if we assume a specific quark gluon field theory, the complete calcu- 

lation of the hadronic form factors is a formidable task. All.diagrams con- - 

tribute to the quark scattering amplitude an in the resonance regions (t N m2, 
P 

etc. ) and to the leading asymptotic power behavior - modulo logarithms. How- 

ever, in asymptotic-freedom gauge theories such as quantum chromodynamics , 

the coupling constant oS is not very large (as - 0.3) for q2 2 <rL2>, and de- 

creases slowly with q20 Thus we can hope to calculate at least the rough struc- 

ture of the nonresonant contributions from the lowest perturbation theory con- 

tributions. We can then assume that the diagrams in lowest-order.perturbation 

theory for Jll’ give the leading asymptotic behavior. Since we are interested 

only in identifying the leading power dependence here, we can ignore the slow 

logarithmic corrections from higher order loop diagrams and the dependence of 

os(q 2 ), As discussed in Ref. 3 the logarithms in an asymptotic freedom theory 

arising from the ultraviolet region do not accumulate to change the effective 

power behavior. Further, the infrared singularities cancel for neutral (color 

singlet) composite systems, 

The computation of the complete gauge-invariant set of Born diagrams for 

An can be readily carried out in any renormalizable theory. It is easy to show 

that for large q2 the gluon propagator is always compensated by its couplings to 

the quark currents, leaving only a net falloff (q2)-l for each quark propagator. 

The asymptotic falloff of An then gives the dimensional counting result 

tf42)n-1 F(q,2)-Lconst. It is, however, of interest to study the structure of the 

Born approximation diagrams further in order to see how the sharing of the mo- 

mentum transfer controls the mass scale for the onset of the asymptotic predic- 

tions (I 
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We shall assume that, on the average, the momentum of the hadrons is par- 

titioned equally among its constituents, pi = xip + K~, where xi = mi/M = l/n 

and I 8 - i I - p2 is the mean square of the quark momentum in the rest frame of 

the hadron, As an illustration of the way in which the mass parameters enter 

the form factor calculations, we compute the amplitude for any of the simple 

“democratic” chain diagrams in which no quark interacts more than twice. For 

such graphs (see Fig. 2a), after spin traces and rationalizing denominators, the 

quark propagators give 

(30) 

(Note that the q* ~~ term, averaged over angle, has the same effect as the K; term) 

For simplicity we suppose that all finite mass corrections are incorporated into 

the constant p20 

In the case of spin l/2 quarks, the effective gluon interaction is (qj = kLq) n 

'j(q2) N ' 
q; - h2+i+ [ 

qy + O(ma) + O(,K~) 1 (31) 

which leaves the asymptotic form of Fn(q2) unchanged. 

Although Eq. (30) is approximate, it is representative of the structure of the 

contributions to the form factors at large q2, and gives a clue to how the mass 

parameters of the various form factors are interrelated, For the mesons and 

nucleons, the off-shell quark propagators give (for large q2) 

FM(s2) - cM 

l- + q2/p2 
(32) 

F,(q2) - LN 

(1 - 2/3 q2/P2 )(I - 2/g q2/P2) 
(33) 

where we have assumed that the average momentum of the quarks within hadrons 

(and the average transverse momentum cl?:> - 2/3 p2) is universal. Eqs. (32) 

and (33) should be indicative of the leading mass corrections to the asymptotic 
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behavior 0 We also note that for the leading correction (to order p2/q2) Eq, (30) 

iis- equiv”alent to 

Fn(q2) = C, 
n-l 

where 

2 

(34) 

(35) 

which shows how the mass scale increases as q2 is distributed among an in- 

creasing number of constituents. 

Numerically, the best fit to F,(s2) for spacelike q2 is F,(q2) = 

[1-q2/,471(% OlO)CeV2] -1,15 implying p2=0.235 GeV2 and <kf>+ - 400 MeV. 

Using Eq. (34), this gives for the large q2 nucleon form factor 

F,(s2) - 
cN 

[l - q2/o, 71 Cev2]2 

Thus we can obtain a rather simple understanding of the relationship of the 

meson form factor to the “canonical” empirical dipole fit to the nucleon form 

factor and the origin of the constant 3p2 = O-71 GeV2, We will not attempt to 

calculate the value of CM and C N, which depend on a much more detailed pa- 

rametrization of the binding and interaction strength, A phenomenological 

examination of the proton is given in Appendix B. Predictions for the neutron 

form factor, which depend sensitively on the symmetry of the nucleon wave 

function, are presented in Appendix C. 

We can also apply these ideas to the many quark bound system, n = 3A, 

A =2,3,.o., which are the atomic nuclei. Two simple models for calculating 

the form factor of the six-quark deuteron are compared in Fig. 2. The simple 

democratic chain model is shown in Fig. 2a, again giving the form factor 
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results, Eqs. (30) and (34) with n = 6, Note that in the case of color SU(3) 

where t& gluon is a color octet, single gluon exchange between the color 

singlet nucleons is forbidden. However, if there is also an interchange of 

quarks between the nucleons then the color selection rules are satisfied. Thus 

the effective nucleon-nucleon potential is maintained as a color singlet. 16 

A somewhat more natural approach to the deuteron form factor is to recog- 

nize the two-nucleon nature of the deuteron, as in Fig. 2b. In the limit of zero 

nucleon binding, each nucleon must move from p/2 to (ptq)/2 but stay intact; 

thus FD(q2) should be proportional to F$q2/4). A representative diagram 

which explicitly displays this scaling is shown in Fig, 2b. The momentum 

transfer q/2 to the second nucleon occurs immediately on the struck quark line; 

a subsequent quark interchange satisfies the color rules. The struck quark re- 

coils with momentum p/6 + q, and its propagator gives the contribution of 

(1 - Eq2/p2)-I to the form factor. The deuteron form factor calculated in this 

way is 

The most critical prediction is that the reduced form factor fD(q2) z FD(q2)/ 

Fi(q2/4) falls as l/q2. 5 It is also interesting to note that the mass parameter 

6/5 p2 = 0.28 GeV2 can be predicted from the pion form factor parametrization. 

A comparison of theory and experiment using both approaches is given in Sec- 

(37) 

tion IV. 

From a more general point of view the structure of the deuteron form factor 

at the quark level consists of three dynamical factors: 
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1, the generalized Compton amplitude on one nucleon 

=MPVcy,(q) + N(p/2) - g(q/2) + NO@/2 + q/2)] 

20 a gluon propagator A(q/2), and 

3. the form factor to absorb the gluon on the second nucleon, If the ihoton 

and gluon interact on the same gluon line then it is obvious that&” con- 

tains the factor FN(q2/4) and FL. (37) follows. In fact, one does expect 

that the graphs with the gluon and photon on the same quark line will play a 

dominant role in&@ since this contribution gives interactions using im- 

mediately the leading Regge behavior (j = 0 fixed pole) at large t. However, 

it should be emphasized that all of the Born terms contribute to the (q2)-5 

asymptotic behavior, 

It should be noted that the diagram in Fig. 2b can be regarded as the pro- 
n 

totype for meson exchange currents, At lower q’, where coherent exchanges of 

gluon interactions can bind the quark lines to form virtual meson states, the 

quark approach merges with conventional calculations of the meson exchange 

currents 0 17 Previous calculations using the meson degrees of freedom, how- 

ever, have predicted a deuteron form factor at large q2 far in excess of ex- 

periment, 18 Other approaches, using vector dominance and subsequent mul- 

tiple scattering, also fail in the comparison, 19 In common with Fig, 2b, these 

calculations explore mechanisms which share the transferred momentum q 

equally to the deuteronvs two nucleons, The meson current calculations have 

not, however, included the required off-shell vertex form factors at the meson- 

nucleon vertices. These must fall at least as fast as FN(q2/4), as is immediately 

evident in the quark calculations, 20 Thus the short distance behavior of nucleon 

interactions dictated by the quark model supplies the missing constraints of the 
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previous hadronic level calculations. An explicit synthesis of these approaches 

is clear@ needed. 

The second approach contained in Fig., 2b and Eq. (37) can be generalized 

for heavier nuclei by counting nuclei.connected by-the gluon interaction- and one 

or more quark interchanges. For example, the model applied to Helium is dis- 

played in Fig, 5, The diffractive behavior observed in the charge form factors 

of the He nuclei for q2 = 0.8 GeV2 should yield and eventually fall at large q2 as 

F3He 
(38) 

and for the a-particles as 

F4He 

At very large q2, Eqs, (38) and (39) reduce to Fn N (q 2 l-n ) in agreement with 

the dimens ional counting rules ,, Further, the results are consistent with the 

counting rule fA N (q 
2 I-A 

) for the reduced form factor of the composite nuclear 

system as discussed in Section IIb and summarized inTable I. 
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III., DATA SET 

Foj?’ the 7r, p , n, and D particles of spin 0, l/2, l/2, and 1, respectively, 

consistent form factors will be extracted from the scattering cross sections in 

order to compare the functions (q2)nHm1FH for n = 2, 3, and 6, In accord with 

Eq, (13), we use FH =A:, where AH is the elastic electromagnetic structure 

function of the hadron’s bound state. 

a. Pion 

The pion form factor is taken from the electroproduction work of the Har- 

vard and Cornell collaboration for the reaction e- + p -+ e- + x+ + n in the in- 

terval 0 5 -q2 5 4 GeV2, I5 This group measured the s-/n+ ratio from deuteron 

electroproduction in order to remove the small isoscalar component of the pri- 

mary isovector pion form factor. Their resulting fit to the data is 

Fn = l2 
1 -q /.47 

(40) 

The pion data set has sixteen values. In the timelike region Fn has been mea- 

sured by the reaction e+e- - ~r+n- for q2 5 9 GeV2Q21 

b. Proton 

The proton form factors have been extensively studied since 1957 and span 

the interval 0 ( -q2 ( 33 GeV2, The spin l/2 proton has two electromagnetic 

form factors, G 
EP 

and G 
MP” 

The form factor G 
EP 

dominates only near q2 N 0 

and is negligible for -q2 2 3 GeV2. This form factor has not been separated be- 

yond this point. We will use the proton structure function Ap(q2) from the mea- 

sured cross sections 

$ =(g)Mott [ApQ2) + Bp(s2) tan2 2] (41) 

where Bp(q2) = 27G2 Mp(q2), ?- = -q2/4$ and ee is the laboratory angle. For 
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-q2>3Gev2, the empirical relation G 
Ep 

= G%,/pp is used to determine 

Ap(q2phere pp is the proton% magnetic moment. In terms of G 
m 

and G 
MP’ 

the structure function is 

G2 + rG&; _ 
EP 

Ap(s2) = i+r 2 

and in the large q2 limit 

A 2 
P a GMp ’ 

(42) 

(43) 

The normalization is Ap(0) = 1. The proton% form factor is 

Fp(s2) = 5 (44) 

Five overlapping sets of data are chosen from the literature with 43 measured 

values of the eP elastic scattering cross sections in order to determine Fp(q2) 

in the O-33 GeV2 interval. 22 Further data on GEp measurements or limits 

have been added to study the A-B connection of Eqs. (14), (15), and (16).23 The 

empirical dipole fit, 

P 
Gm = 

describes the data to within N 5% accuracy in the interval O-7 GeV2 and to 

within 2070 accuracy out to -q2 =33 Gev2, 

(45) 

Timelike data for the proton form factors from e’e- +. pp exist only for 
q2 = 4.4 GeV2 with limits set at 5.1 and 6.8 GeV 2 24 0 

c. Neutron 

The neutron’s charge form factor has been measured in the interval 

0 5 -q2 5 2,7 GeV2 using two techniques, elastic and quasielastic eD scattering. 

The former reaction determines (G EP+~E~ )2 and the latter G2 
En 

and G2 
Mn’ 
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We note that at large q’, where relativistic and model effects become important, 

the validity of using the elastic form factor of the deuteron to obtain the neutron 

form factor becomes suspect, The form factor Gm dominates the neutron 

structure function, 2 25 A,(q .)O Since the relation - - 

GM? 
GMn = p, T (46) 

P 

is observed to describe the existing neutron data, the q2 dependency of Fn(q2) 

will be the same as Fp(q2) of Eq. (44) out to -q2 =2.7 Gev2, 

d. Deuteron 

The deuteron data are from the recent measurement of eD elastic scatter- 

ing in the range 0.8 ( -q2 r_ 6 GeV2, ’ This work extended information on the 

deuteron from the previous boundary at q2 =1.3 Gev2. Thirteen data from 

lower q2 measurements are added to complete this data set. 
26. The invariant 

structure function AD(q2) as in Eq, (41) for the proton determines the deuteron 

form factor, FD(q2) = CD where AD(O) = 1. The deuteron structure function 

for this spin -1 particle is the sum of the squares of three invariant form factors 

which in the low q2 limit represent the distributions of charge, quadrupole 

moment, and magnetic moment, respectively, However, as shown in Section 

IIa, it is FD(q2) which contains the full dynamics of the deuteron for a large q2 

collision. 

Having described the data sets for the 7r, p, n, and D and the choice of con- 

sistent electromagnetic form factors for these spin 0, l/2, and 1 particles, we 

now examine the scaling behavior of this set. 
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IV. SYSTEMATICS OF FORM FACTORS - 

In+order to compare experiment and theory, we first examine the elastic 

form factor data in the dimensional scaling quark model (DSQM) whose domain 

of validity is the large q2 limit, i. e. , q2 >> M2/ Next the data are compared - 

with the refinements to this model developed in Section IId to include binding 

corrections and therefore connect the DSQM to lower q20 Then the quark inter- 

change refinements are applied to the nuclei, 2H, 3 He, and 4He, Finally the 

connection between the elastic electromagnetic structure functions A(q2) and 

B(q2) are compared with our predictions of Section IIa. 

a. DSQM 

The dimensional scaling quark model predictions for elastic form factors 

are applied to the pion, proton, neutron, and deuteron data and presented in 

Fig. 1. We use Eq, (5) to test scaling by plotting the data as the quantity 

(s2 )n-lFn (47) 

where n is the number of quarks. 

The principal observations in Fig. 1 are the known scaling (q2 independence) 

for the pion, the approximate q2 independence for the proton, and the approach 

to scaling observed for the neutron and the deuteron, Thus the quantity in Eq. 

(47) is an asymptote. The proton data have previously been displayed out to 

A2 = 25 GeV2 (see Appendix B) and the pion data for timelike q2 out to 9 GeV 2 3 0 

The more recent pion data for q2 > 0 are displayed in Fig. 6 and observed to 

scale, Timelike data for the proton are too scant to examine. 

In Fig. 7 these same data of Fig, 1 are superimposed on a linear scale. 

Scaling of the pion and proton form factors are observed beyond -q2 = 2 and 

6 GeV2 respectively. The observation of a universal behavior for hadrons is 

suggested here since the deuteron form factor displays the same shape in the 
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approach to scaling as do the pion and proton, It had been predicted that the 

deutero% would scale at higher q2 ( > 8 CeV2) than the limits of the data, 3 The 

deuteron curve in Fig. 7 for n = 6 will fit approximately on top of the proton 

curve for q2 (deuteron) ) 2 GeV2 if it is displaced toward lower q2 by 1 ,” 5 GeV2. 

This displacement would extrapolate to deuteron scaling at -q2 = 6 + 1,5 = 

7,5 Gev2, The value of n in Eq. (47)can be varied to see whether the resulting 

deuteron curve fits the proton shape, The value n = 5 is unlikely since the 

deuteron curve would flatten (scale) already at 3 CieV2, which is much earlier 

than the observed proton scaling. The deuteron data approximately fit the pro- 

ton shape for n Y 6 f 0.6. We shall await the final analysis of the large q2 

deuteron data in order to make a more quantitative statement. 

These observations in Figs, 1 and 7 using the DSQM prediction in Eq. (5) 

suggest that the neutron and deuteron are approaching scaling, The neutron 

data will not be analyzed further because of their restricted q2 range, Neutron 

scaling predictions for large q2 are presented in Appendix C. 

b, Binding Corrections to DSQM 

We next examine the present refinements to the DSQM in Section IId to see 

whether scaling occurs at lower q2 as in deep inelastic scattering, The asymp- 

totes using Eq, (30) are computed for the data set and presented in Fig. 8, 

Scaling is observed to appear for the r and proton form factors at lower q2 than 

in Figs. 1 and 7. This is similar to the behavior of the inelastic structure 

functions, vW2 and Wl, when studied versus the variable wp or ws rather than 

CA7 Scale independence sets in immediately (versus 2 GeV2 in Fig,, 7) for the 

pion as is obvious comparing Eqs. (32) and (40) and at -q2 = 4 GeV2 (versus 

6 GeV2 in Fig. 7) for the proton. Moreover, the proton appears to be asymp- 

totic out to the experimental boundary, -q2 = 33 GeV2 (see Appendix B and 
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Figs, 12 and 13) and thus represents a benchmark for the scaling behavior of 

elasticform factors. The upper dashed curve for the deuteron data in Fig. 8c 

is consistent with Eq, (37) while the lower dashed curve goes through the error 

bars at -q2 = 3 and 4 GeV2, Larger q2 data are- needed to confirm what is only 

a suggested flattening out of this deuteron curve in Fig, 8. 

We remark that the approximate asymptote from Eq. (34), Le. , 

2 n-l [ 1 1-AL m2 Fn, mi = np2 
n 

(48) 

reproduces the main features of Fig. 8, The mass parameter for n = 6 is 

m2 = 1,41 Cev2, n For the deuteron data set a change in slope occurs at 

-q2 et 0.7 GeV2 after falling with q2 up to this area of inflection which probably 

indicates that the asymptotic region begins here. 

C. Quark Interchange in DSQM 

Next the deuteron data are examined by the constituent interchange model of 

Fig. 2b. The deuteron’s asymptote for the quark interchange prediction con- 

tained in Eq. (37) is presented in Fig. 9. In Eq. (37) the effective mass is taken 

from the pion form factor so that f p2 = 0 282 GeV2; the nucleon form factors 

are evaluated at q2/4 using the dipole in Eq. (36) (and (45)). Evaluating F 
P 

using Eq. (33) does not change the features in Fig. 9 and using a larger effec- 

tive mass, ;P2 M Mi, has only a minor effect on the resulting asymptote. ’ 

The flattening of the curve in Fig. 9 at -q2 N 0.7 GeV2 is striking and is 

evidence for the validity of the underlying (q 2 -5 ) behavior of the deuteron form 

factor as predicted by the DSQM in Eq. (5), Four powers of q2 come from the 

two nucleons and the fifth power from the extra quark propagator, assuming a 

scale-invariant interaction. This observation lends support to viewing the deu- 

teron at short distances by means of Fig, 2b. Comparison of Figs, 3 and 9 
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supports our view of the determination of compositeness, since the reduced 

deuterBn form factor from Eq. (18) with A = 2 is fD N -$ N F 
q 7r 

0 

Further, the magnitude of the asymptote in Fig. 9 can be estimated or used 

to determine e,(O) together with large transverse-momentum np elastic scatter- 

ing data as in Eq. (26). 

d. Helium Form Factors 

We can apply these ideas to the elastic form factors of 3He and 4He, using 

the predictions of Eqs. (38) and (39) from constituent interchange, as in Figs. 

2b and 5. However, the presently measured elastic electron scattering data on 

both nuclei extend only to -q2 = 0.8 GeV’ with diffraction minima observed at 

- 0,4 GeV2, followed by large secondary maxima. 27 If these diffractive fea- 

tures of the nucleon-nucleon repulsion yield to the quarklike short distance be- 

havior by a - q2 - 2 GeV2, then we should be able to predict the asymptotic 

cross sections from the systematics developed in this paper, 

The upper curves in Fig. 10 for -q2 > 1 GeV2 are our predictions for 3 He 

and 4He, We can predict the q2-dependence of these form factors but the mag- 

nitudes can only be estimated. That is, the curves in Fig, 10 assume that 

scale-invariant behavior begins at -q2 M 1 GeV2. Should this momentum de- 

pendence begin, for example, at -q2 ti 1.2 GeV2, then our curves are a factor 

N 2.5 too high, The crucial predictions are the underlying (q2)-8 and (q2)-11 

behavior as embodied in Eqs, (38) and (39) or, equivalently, that the reduced 

1 Helium form factors from Eq. (18) for A = 3 and 4 diminish as - 
(cl2 I2 

and & ’ 

respectively, Large momentum transfer data on 3He and 4He would be welcome 

to test these ideas. 
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In relating fixed angle scaling laws to electromagnetic form factors in Sec- 

tion IIa, a connection between the structure functions A(q2) and B(q2) was de- 

rived and summarized by ,Eqs. (14) ,, (15)) and (16). 
2A 

The quantity L2 g is pre- 

dicted to approach 1 for spin l/2 constituents or (l+R)/(l-4M 2 22M - /q ) for con- 

s tituents with spin l/2 and 1. The available data for the proton, where G 
EP 

and 

G have been separated, is presented in Fig. 11, 23 
MP 

A phenomenological fit to 

the proton, which is discussed in Appendix B, is used to extrapolate to large q20 

The proton data are suggestive, but of too small q2 to test these predictions. 

Accordingly, measurements or limits at large q2 of B/A would be useful, B/A 

data exist for the deuteron and helium -3, but only for -q2 5 1 GeV 2 28 O 
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V. SUMMARY OF RESULTS 

- Elastic form factors of hadrons have been systematically examined from the 

viewpoint of the Dimensional Scaling Quark Model. This theory ascribes the 

power law behavior in q2 observed for the pion and the proton.to the number of - 

internal degrees of freedom. The large q2 behavior of the quantity (q2)n-1 Fn 

appears to be asymptotic or approaching this condition for the r, p, n, and D 

data sets as summarized in Fig. 1. 

Three new results for elastic form factors are derived in Section II for the 

large q2 limit. Comparing fixed angle scaling laws with the Rosenbluth equation 

for elastic electron scattering, we find for the measured structure functions of 
8 

A j. B tan 2 + that 

and 

B(t) - -t A(t) 
2M2 

where the factor l/2 in the last equation arises for spin l/2 constituents. An 

equipartition model for general systems with a series of scales of composite- 

ness of A constituents leads us to define a reduced form factor f,(t) by removing 

the structure of the constituents as in Eq. (17), then 

fA(t) 5 const/tA-I 

As shown in Sections III and IV and in Fig. 13, the definition of the large q2 

hadronic form factor FH(t) is consistent with the full dynamics of a bound state 

recoiling at large q20 The A-B connection above would appear to be suggestive 

with the proton form factors, as in Fig. 11. G 
Ep 

and G 
MP 

separations at 

-q2 > 3 GeV2 are very difficult but possible by high precision angular 
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distributions at fixed q2 and polarized beam - polarized target methods. Even 

limits un B/A at large q2 would be useful. Preliminary results for B/A for the 

deuteron are interesting. 28 

The general working principle for composite -systems is summarized by 

predictions for the reduced form factor fA(t) in the Table. It has been verified 

for elementary bound states up to the lightest atomic nucleus, the deuteron in 

Figs. 3 and 9, The reduced form factors of 3He and 4He are predicted to di- 

minish as t -2 and t -3 , respectively. Dimensional scaling predictions are made 

in Eq, (29) for the quark, if it too is eventually determined to have substruc- 

ture . 

. - 

Simple models have been explored which extend the Dimensional Scaling 

Quark Model to lower q2 by retaining binding energy corrections to the leading 

fermion propagator, The mass scale of these corrections is set by the constant 

in the measured pion form factor with 2fi2 = 0,47 as in Eqs. (32) and (40), It is 

encouraging that this mass scale gives the well-known empirical value for the 

nucleon form factors, i.e. , 3p 2 = 0.705 GeV 2 0 Thus the empirical dipole fit to 

the proton and neutron form factors, which has been a long-standing curiosity, 

is observed to arise from two off-shell fermion lines using a mass scale set by 

the pion form factor o The mass, <p 2 > ’ = o 485 GeV, may be related to a univer- 

sal mean transverse momentum, This value is in accord with other high-energy 

phenomenology. 

Furthermore, with these refinements to the DSQM, scaling for the pion and 

proton is observed to occur at lower q2, as in Fig., 8, compared for example 

with Fig, 7. This effect of early scaling is reminiscent of the situation in deep 

inelastic scattering and is therefore suggestive of a further link between exclu- 

sive and inclusive scattering. 
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The approach of the deuteron form factor to the scaling limit (q2)-5 was the 

impetu+for the present work., The intimate connection to n-p elastic scattering 

at fixed angle led to three especially interesting results in Section IIc. 

1, The large q2 falloff of the deuteron form factor predicted from np scatter- 

ing is determined to be (q2)-4” 85 * ’ 250 This is consistent with dimen- 

sional scaling and a G-quark deuteron. 

2, The deuteron form factor, together with the measured np cross section, 

3/2 fixes the deuteron wave function at the origin, leading to ~~(0) N 0,l rnr 0 

The effective nucleon-nucleon potential diminishes as (q 2 -4 3. ) so that its en- 

tire behavior is due to the dynamical structure of the nucleons with no ad- 

ditional q2 structure from the exchange force. 

The large q2 deuteron form factor has been examined from two simple 

models displayed in Fig, 2, the democratic chain model (Fig. 2a), and the 

quark interchange model (Fig. 2b), Fig, 8 displays the rapid approach of FD to 

scaling given the validity of this chain or cascade model. In support of the in- 

terchange model, it is observed in Fig. 3 that the reduced deuteron form factor 

fD indeed approaches (q2)-10 We believe that the simplicity of this result is 

remarkable 0 Binding corrections are calculated which modify the result to 

fD N (1 - q2&C1, and the ratio of experiment to theory in Fig. 9 appears to 

be independent of q2 beyond 0.7 GeV’, Further consistency with the np data 

(item 2 above) gives an estimate of the magnitude of the observed asymptote, It 

is emphasized that the’quark interchange model provides a viable mechanism to 

transfer momentum q/N to each of N nucleons which has been the goal of meson 

exchange current calculations for the last decade. As such the prediction in 

Eq. (37), which may be written as 

FD N F;(s2/4) F,t5s2/3) 
, (49) 
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may be a useful guide. Stating this point more strongly, it is our belief that the 

interacbons displayed in Figs. 2b and 5 are prototypes for equipartition of mo- 

mentum among nucleons at large q20 

The possibility of distinguishing between the two models of Fig, 2 is dis- - 

played by dashed line extrapolations beyond _q2 =4 GeV2 in Fig. 8. That is, 
2 will larger q data on AD(q 2 ) for -q2 > 4 C&V2 favor the upper dashed curve, - 

which is from Fig. 2b, i.e. , constituent interchange, or is the deuteron already 

scaling at -q2 >, 4 GeV2? Plausible differences could give a factor of - 3 in 

cross section at q2 = 6 GeV2 and a factor of N 6 at 8 GeV2, The principal 

issues would appear to be: 

a. whether it is possible to distinguish which model in Fig. 2, democratic 

chain or constituent interchange, better describes the turn-on of scaling, 

b. whether the internal rearrangements required by the color singlet nature of 

the two hadrons as in Fig. 2a are a viable description of the deuteron at 

xP 
=0, and 

CO what is the magnitude of the deuteron wave function qD(0)? For the evalua- 

tion in Eq, (27), 

curve in Fig., 8, 

etc, 

the value used for (q2)5FD came from the upper dashed 

The calculations need to be refined to include spin effects, 

It is pointed out in Section IV that diffractive features dominate the 3He and 

4 He form factors out to the experimental boundaries at -q2 = 0.8 GeV2. If 

n = 9 and n = 12 quarks are the origin of the short distance behavior of these 

nuclei, then the diffractive behavior should yield to the asymptotic decreases in 

Fn at larger q2, as predicted in Table I and by Eqs. (38) and (39) with an esti- 

mate given in Fig. 10. Otherwise our conjectures will have to be revised in 

order to account for the possible dominance of diffractive behavior at large q2. 

Future experiments will provide the guidance. 



- 33 - 

Clearly work remains to be done in several areas. The success and sim- 

plicity-of the weak binding approximation employed in Ref., 3 has to be fully un- 

derstood. A more careful treatment of the Bethe-Salpeter bound state, which 

permits the mass .scale to enter at a more fundamental level, and the universal- - 

ity of a mean transverse momentum on the propagator should be investigated. 

The normalizations of the form factors are of fundamental significance in rep- 

resenting the wave function at x 
cc 

= 0 and should come naturally out of a success- 

ful theory of hadronic structure, The present explorations using consistency 

with np scattering cross sections should be elaborated. It is very important to 

understand more about the spin structure of the gluon interaction. Although the 

scaling behavior is not changed, different renormalizable field theories will af- 

fect nonasymptotic terms o 

Experiments at larger momentum transfer and those with improved statis- 

tical accuracy will provide decisive answers to whether scale invariance is 

exact in the case of the proton. Are logarithmic corrections visible with pre- 

cise data? We discuss the large q2 proton data in Appendix B, in particular 

examining which form factor scales - F 
P’ 

or G Fl@ Mp’ The issue of scale 

breaking has been discussed from several other points of view. 14 More data on 

the hadron form factors in the timelike region from e+e- -- 7r’~-, K+K-, pfi, nn, 

DE, etc. , will test the crossing symmetry of the dimensional scaling quark 

model ., Deuteron data at larger q2 will determine whether the scaling observed 

in Fig. 8 is illusory. ’ Extensions of the neutron form factors to larger q2 would 

determine the isotopic differences in the nucleon at x 
P 

= 0 and complement the 

vW2 differences in deep inelastic scattering. Predictions for the neutron and 

n/p are given in Appendix C. Finally, the extension of the helium-3 and helium- 

4 form factors to larger q2 would have direct bearing on the ideas we have 
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advanced and in particular test whether nuclei are simply many quark systems 

at shoti dis tances O 
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VI, CONCLUSION 
- Thedeuteron form factor F,(q2) provides an ideal illustration of the con- 

tinuity between nuclear and particle physics at the microscopic level, At low 

momentum transfers, where the nucleons can be treated as pointlike objects and 

are the essential degrees of freedom, the usual effective potential Schrodinger 

theory is appropriate and meson exchange effects provide the framework for the 

nuclear interaction, However, at larger momentum transfers where the nucleon 

form factor differs significantly from its q2 = 0 value, hadronic substructure 

comes into play, and the electromagnetic interaction begins to resolve an ele- 

mentary fermion current, the quark degrees of freedom then become appropriate. 

The elastic form factor of the nucleus is equivalent to the probability amplitude 

to rearrange n elementary constituents; the dimensional counting prediction 

(s2 P-l F(q2) -+ constthen follows assuming a scale-invariant theory. 

Further, the nuclear potential (the irreducible kernel of the two-nucleon 

Green’s function) can be reexpressed in terms of quark diagrams. In particular, 

at large momentum transfers, meson exchange diagrams of the potential theory 

merge at the microscopic level with the quark exchange diagrams (dual graphs). 

In Section IIc we saw that the scaling of the deuteron form factor is in fact con- 

sistent with the observed power law scaling behavior of the two-nucleon ampli- 

tude at ocrn = 90’ (which can also be predicted using quark counting), As shown 

in Ref. 3 the angular distribution of the nucleon-nucleon scattering amplitude at 

large t and u agrees with that predicted by quark interchange diagrams. We 

also emphasize that the empirical fixed angle scaling behavior of the nucleon- 

nucleon scattering amplitude XNN (s’t)/F;(t) =f(ocm ) implies that,after nucleon 

structure is removed, the nucleon-nucleon interaction is scale-invariant, as ex- 

pected in theories without a fundamental length scale. 
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In this paper we have also noted the utility of defining reduced form factors 

- whichxemove the structure of the constituents (see Eqs. (17) and (18)), More 

generally, for any elastic nuclear reaction at large t (aA - aA) (a = e , r, p, 

etc. ) it is useful to define the reduced scattering. amplitude 

T(aA -+ aA) = T (aA - aA) 
(50) 

which removes the effect of the probability amplitude for keeping the nucleons 

intact. The reduced amplitude T.(aA -+ aA) then reflects the nuclear aspects of 

the SC attering. Further, .the ratio 

(51) 

effectively removes the falloff of the amplitude due to keeping the nucleus intact, 

and is the most sensitive test of the specific interaction of the projectile .a, and 

is convenient for analysis of the validity of the’impulse approximation at large 

momentum transfer. 
29 

The methods discussed in this paper can also be applied to inelastic elec - 

tron scattering on nuclei, below the energy for meson production. Following 

I  

the parton model analysis one derives (see Ref, 5) 

A do &(eA - e’x) = zl dt(eNi -+ eNi) GNiiA(X) 

where x = -t/2pAoq is the Bjorken variable (0 < x < l), do/dt is the elastic elec- 

tron-nucleon amplitude evaluated at the effective s l = xs , and G 
Ndx) is the 

probability for the nucleon to have fractional momentum x in the ‘P -+ io frame of 

the nucleus A. In a more general frame, x = (pi + pi)/(Pi + Pi) where PA is 

moving along the z-direction, In the limit of zero binding energy G - 6 (x - i-), 

and Eq, (52) reduces to the usual quasielastic scattering formula. When nucleon 
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interactions are allowed, a quasielastic peak still exists, but there is a finite 

tail (Fermi-motion) which extends to x < 1. Using the quark counting rules, one 

obtains for x - 1 

G Ni,A(x) cc (l-x)6(A-1)-1 - : (53) 

where 3(A-1) is the number of quark spectators in the reaction. This prediction 

could be tested by measurements in the forward fragmentation region of in- 

elastic deuteron scattering, d + A -. p + X. This result also provides continuity 

between the exclusive and inclusive limit and the prediction 

da do =- 
dtdw 2 dt I PW2) 

elastic 

that the inelastic and elastic cross sections fall uniformly in t at fixed 
2 

W = (q + p,t 
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APPENDIX A: THE PARTITION METHOD 
FOR BOUND STATE CALCULATIONS 

Th^ere are many methods available for calculating the covariant amplitude 

for processes involving the scattering of composite states. These include 

Bethe-Salpeter analyses and Fock-space calculations in the infinite momentum 

frame, Perhaps the simplest method is the “partition” method discussed in 

Ref. 3, which is particularly convenient for analyzing the scaling behavior of 

amplitudes, and also for proving cancellations in the infrared region for neutral 

systems. In the Bethe-Salpeter formalism one can replace each hadron with 4- 

momentum p by a cluster of n-constituents each with momenta pi = cvip + ~~ 

(i =l , D 0 0 ,n), where the ai are fixed fractions satisfying 

~ ~i=l) ~ Ki=O 
i=l i=l 

The elastic scattering amplitude for A + B A C + D then takes the form 

where “Kn is the corresponding connected multiparticle scattering amplitude 

and ~~1,~2,00~ ,“n-l ) is the Bethe-Salpeter wave function. 

Note that in the zero binding limit we must have 

o!. 
1 + mi/MT 

since in the rest frame pi --. (mi/MT)p = (mi,r) 0 In fact, if the binding inter- 

actions of a composite system are sufficiently well-behaved, then, at large mo- 

mentum transfers, binding corrections can be ignored and, effectively, the 

bound state scattering amplitude is proportional to the on-shell multiparticle 

amplitude Jcln obtained by partitioning the momentum of each hadron among its 
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c ons tituents 0 The required condition for this to be valid is that the Bethe- 

Salpeter wave function is finite for all relative x + 0, i.e. , so that the inte- 
I-c 

grations over the relative momentum are finite 

z/(x = 0) = 
/ 

‘“;r’ d4K&Ki)-< CO 0 - 
i=l 

This method is equivalent to iterating the Bethe-Salpeter equation and exposing 

the interaction kernel whenever large momentum transfer is required. In the 

case of spin, An includes the on-shell Dirac spinor. In general, $(x=0) < his 

required for the bound state to lie on a Regge trajectory, This condition can 

also be derived in a renormalizable field theory with asymptotic freedom, mod- 

ulo calculable logarithmic corrections. Further discussions may.be found in 

Refs, 3 and 10, 
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APPEND= B: PROTON FORM FACTORS 

Several additional remarks are in order about the proton form factors at 

large q2 because this is the most thoroughly studied hadron. GM is known to 
P 

dominate the cross’section for -q2 >, 1 GeV2 and the quantity q4GM is believed _ 

to be asymptotic (iO e. , scales) out to the experimental boundary at 

g2 = 33,4 Gev2. The empirical dipole fit in Eq. (45) is known to be an approx- 

imate fit which underestimates the data by a few percent for q2 ~5 GeV2 and 

then overestimates the data by N 10 - 20% for -q2 > 10 GeV2, The de tailed 

structure of G 
MP 

can be tracked if one puts enough parameters into the fit. 

Recent efforts in this direction which have theoretical content appear to be in- 

teresting, and we compare the scaling of the proton in this context. In addition 

it is important, when more accurate large q2 proton data become available, to 

understand which form factor is expected to scale, i.e. , F 
P’ .p 

Fl , or GM 0 
P 

Semiphenomenological fits of Iachello, Lande, and Jackson (IJL)30 are dis- 

played in Figs. 12 and 13. The electromagnetic structure of the nucleon is 

represented in the IJL model by both direct and vector meson couplings to the 

external photon., The resultant 5-parameter dipole fit has a good x 2 = 0 924 for 

112 data, as illustrated with representative data in Fig. 12. 
31 However, the 

same phenomenology gives a poor fit to the neutron%, GMnQ 
. GMn is well 

described by the empirical dipole fit or Eq. (46). 

The phenomenology in terms of the Dirac and Pauli nucleon form factors is 

2 

GEP = Flp +LF 
4M2 2p 

G 
MP = Flp + F2p 

W) 

(B2) 
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where F 
IP 

(0) = 1, and F 
2P 

(0) = 1.79 is the proton’s anomalous magnetic moment. 

Thee points are presented about the IJL-fit to the data in Figs. 12 and 13. 

- 

1. It predicts that q4Flp scales exactly for q2 > 20 GeV2 whereas q4G 
MP 

will diminish by N 70/p between _q2 = 10 and 25 GeV2, In .other words , this - 

implies that scaling for G 
MP 

should not be exact., Clearly only more ac- 

curate data would determine this question. 

2. The IJL fit to q4G 
EP 

is acceptable over the small region of existing data. 

There is little hope to separate G 
Ep 

at much larger q2; accordingly, 

6 
q F2p displayed in Fig. 12, which the IJL fit indicates will scale approx- 

imately for -q2 2 25 GeV2, cannot be tested experimentally. 

3. The quantity q4 &$ scales as illustrated in Fig. 3, where the data and Ihe 

IJL fit are displayed. Use of the proton form factor, ap, in this work 

is discussed in Sections II and III ,and defined in Eqs. (41) - (44). 

These observations are in accord with the specific three-quark model cal- 

culation of Ref. 3 for the proton, namely, F lp N (s2) 2, FZp N Flp/s2, and 

G ‘GMp EP 
- constant, all at large q20 Note, however, that the existing data 

are sensitive to only the first observation, q4F 
1y 

N constant at large q2. 
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APPENDIX C: THE NEUTRON FORM FACTOR 

Th,e asymptotic form factor of the neutron, which can be measured in 

deuteron electrodisintegration and possibly determined from eD elastic scatter- 

ing, can be a sensitive test of the symmetry of the nucleon wave function. - 

Asymptotically, we expect from dimensional counting 

(q2)2Fln(q2) - Cln, (q2TF2n(q2) - ‘2n (Cl) 

However, if the up and down quarks have the same wave function dependence in 

the nucleon then Cln is proportional to the sum of quark charges and vanishes. 

Fln(q2) is then presumably negligible at all q2, and we have 

2 
q2 G 

‘En 
GE& I---- 

4M2 lvh 
(q2),- 

R212 
F2) 

Alternatively, the observed behavior of the ratio vWz/vWg at x --) 1 suggests 

that the down (up) quarks in the neutron (proton) dominate the wave function at 

large momentum transfer and Cln # 0. In this case we expect 

Fln(~2)/‘~lp@2) - - ; 9 (C3) 

where- the sign is a crucial part of the prediction of this model. 
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TABLE I 

Compositeness of Matter 

Bound State A fA(t) 

e, c1, Y, q 1 1 to 

r, K 1 2 t-l 

P, n 1 3 t-2 

D Fp (t/4) 2 t-l 

3He Fp <t/g> 3 t-2 

4He Fp(t/W 4 t-3 
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FIGURE CAPTIONS 

1. Ela$ic electromagnetic form factors of hadrons for large spacelike q2 in 

terms of Dimensional Scaling Quark Model. The curves simply connect the 

data points. 

2. Two possible quark constituent views of e-D elastic scattering - (a) demo- 

3. 

4. 

5. 

cratic chain model, (b) quark interchange model. 

“Reduced deuteron form factor,” fD versus +20 

Feynman graphs for r,(q’) + p + n - p’ + no, 

Equipartition of q2 for e-3 He and e-4He elastic scattering at large momen- 

6. 

7. 

80 

tum transfers 0 

Pion data for q2 > 0 from e’e- +- --T ‘IT 0 

9. 

10, 

11. 

12. 

13. 

Pion, proton, and deuteron data of Fig. 1 displayed on a linear scale. 

The elastic form factors with the DSQM refined to include possible binding 

corrections given by Eq. (30). The curves connect the data points and 

dashed curves in (c) are explained in the text. 

Deuteron form factor divided by quark interchange prediction of Eq, (37). 

3He and 4He data and an estimate for large q2 using Eqs. (38) and (39). 

A-B connection for proton form factors. 

Dimensional counting of proton form factors compared with five-parameter 

semiphenomenological fit. 

The proton form factor, = AB compared with IJL fit within the DSQM. 
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