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ABSTRACT 

The large q2 fall-off of the elastic deuteron form factor is used to extract 

se,veral new connections between nuclear and particle physics within the frame- 

. work of a scale invariant quark model. These include the relation of meson 

exchange to underlying quark currents, the relation of the deuteron form 

factor to large angle n-p scattering, evidence for scale-invariant behavior 

of the nucleon-nucleon potential, and a determination of the deuteron wave 

function at small n-p separation. The reduced nuclear form factor fA(q2), 

defined to remove the effect of the nucleon form factors, is predicted to obey 

the dimensional countring rule 2 (q ) A-1 f,(q2, - const. 
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In this Letter we present several new results and predictions on the con- 

‘necti% between nuclear and particle physics which follow from a study of the 

implications of the deuteron having an underlying six quark constituent structure. 192 

The deuteron form factor FD(q2) provides an ideal illustration of the con- 

tinuity between nuclear and particle physics at the microscopic level. At low 

momentum transfers, where the nucleons can be treated as point-like objects 

and are the essential degrees of freedom, the usual effective potential 

Schrodinger theory is appropriate, and meson exchange effects provide the 

framework for the nuclear interaction. However, at large momentum transfers 

where the nucleon form factor differs significantly from its - q2 = 0 value, 

hadronic substructure comes into play and the electromagnetic interaction 

begins to resolve an elementary fermion current.. The quark degrees of- 

freedom then become appropriate. The elastic form factor of.the nucleus is 

equivalent to the probability amplitude to rearrange n elementary constituents; 

the dimensional counting prediction, 

(q2)n-1 Fn - const. (1) 

then-follows assuming a scale-invariant theory. 2 The power law in Eq. (1) is 

to be contrasted with bootstrap or continuum models with a uniform current 

distribution. These theories imply an infinite-composite hadronic structure 

and exponentially damped form factors. Experiment appears to be consistent 

with Eq. (1) for the pion (n =2) and the proton (n=3) for q2 >> M?. The pion 

form factor data extends from 9 GeV2 in the timelike region (q2 > 0) to 

- 4 GeV2 in the spacelike region and the proton data extends to - 33 GeV2. The 
1 

recent measurement of the deuteron elastic form factor out to -q2 = 6 GeV2 

appears to be consistent with an underlying six quark structure for this ele- 

mentary nucleus. 



-3- 

The deuteron form factor has been investigated using the simplest quark 

diagr;rms, in particular a democratic chain model and a constituent interchange 

model. These models are constrained to agree with dimensional counting and 

Bj orken scaling. In particular, the structure of FD in a relativistic theory can 

be understood in some detail from Fig. la. If one neglects the nuclear binding, 

then the calculation of the form factor requires each nucleon to absorb momen- 

tum transfer - i qp. Thus it is natural to define the “reduced” form factor of 

the deuteron, 

f,(q2) - FD(q2)/F; (q2/4) (2) 

where the two powers of the nucleon form factor remove in a minimal way the 

effects of nucleon structure. Using dimensional counting, Eq. (l’), we predict 

for large q2, 

A comparison of this 

Fig. 2. (The ,value rni = 

2 (q -m,2) fD(q2) - const. 

prediction with the data of Refs. 1 and 3 is shown in 

0.28 GeV2 is predicted from the parametrization of 
3 3 7 

the pion form factor. ) The approximately constant behavior of (qy- mi) fD(g-) in 

Fig. 2 for -q2 2 0.7 GeV2 appears to be a striking success for the quark 

counting approach. This result is insensitive to the precise value of rnt. 

Furthermore this premature onset of scaling appears to be a general feature of 

electromagnetic interactions of hadrons. 

The diagram in Fig. la can be regarded as the prototype for meson ex- 

change currents. At lower q2 where coherent exchanges of gluon interactions 

can bind the quark lines to form virtual meson states, the quark approach 

merges with the conventional calculations of the meson exchange currents. 

Previous calculations using the meson degrees of freedom, however, have pre- 

dicted a deuteron form factor at large q2 far in excess of experiment. 
4 

In 
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common with Fig. la, these calculations explore mechanisms which share the 

tramerred momentum qEr equally to the deuteron’s two nucleons. The meson 

exchange current calculations have not, however, included the off-shell vertex 

form factors at the meson-nucleon vertices. ’ These must’diminish at least as 

fast as FN(q2/4) as is immediately evident in the quark calculations. Thus the 

short distance behavior of nucleon interactions as dictated by the quark model 

supplies the missing constraints of the previous hadronic level calculations. 

The deuteron form factor must reflect the underlying five powers of q2. 
t For a democratic chain model as in Fig. lb, we have the result, 

n-l 

F,(s2) - 
4 

p2- j(j+l)q2 -’ 

j=l n2 1 (4) 

where we have assumed a universal mean square quark momentum (propor- 

tional to p2) and have neglected spin effects. To order p2/ q2 Eq. (4) is 

equivalent to 

Fn(s2) = C 
1 [ 1 n-l 

n 1 - q2/mi 
(5) 

where m2 E np2. n Setting the value of p2 from the pion form factor Fx = 

(1 - q2/(0.471 & o.olo))-l , one obtains FN(q2) = CN(l - q2/0.71)-2 for the 

nucleon, and FD(q2) N CD(l - q2/l.41)-5 for the deuteron. We do not attempt 

to calculate the value of CN and CD, which depend on a much more detailed 

parametrization of the binding and interaction strength. Comparison of the 

data with Eqs. (4) or (5) shows that scaling sets in roughly 2 GeV’ lower in q2 

than when using Eq. (1) for the pion, proton and deuteron. 

Three especially interesting results follow from the intimate connection of 

n-p and p-p elastic scattering at large t and fixed angle to the deuteron form 
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factor. If the deuteron wave function +.(x) is finite at x - 0, then the cal- 
P 

culati8n of the large q2 limit of FD(q2) is equivalent to the calculation of the 

amplitude for the process 

r,(q2) +,p + n - p1 +.n’ 

where the initial nucleons each have 4-momentum - p/2 and the final nucleons 

have 4-momentum - (p +q)/2. Thus as seen in Fig. lc, FD has the structure 

FD(s2) - =‘(s2Mq2/2) T(s2)6’;W (6) 

where the coupling of the nucleon to an off-shell state with mass squared 

&12 = q2/2 is given by the vertex function I’(q2), the off-shell nucleon propagator 

is A(&Z2), and 

T(q2) = T( t = u = q2/4, &V2 = q2/2) (7) 

is the connected n-p scattering amplitude for 90’ scattering with one nucleon 

leg off-shell. 

In fact, we can argue from the observation of Bjorken scaling in deep in- 

elastic scattering or e+e- - N + X, that I’(q2) x A(q2/2) is scale invariant at 

large q2. For simplicity we ignore spin here; inclusion of spin factors leads 

to the same results. Thus 

(8) 

and the asymptotic behavior of FD(q2) is controlled directly by the large t =u 

behavior of the off-shell n-p scattering amplitude. 

In the case of on-shell p-p and n-p scattering the fixed 6cm cross section 

fits the form 
do 1 2 Wcm) 
dt = 16rs2 ’ T ’ = sn (9) 
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withn=9.7&0.5forpp-pp, ltl, lul ,2GeV2. (The dimensional counting 

.predi;tion is n =lO. 2, Thus at 90°, T cc s-3.85* 0.25 . For general sets of 

field theory graphs, it is straightforward to show2 that the scaling behavior 

T(s2) cc (q2)-n for t =u-q2/4 is unchanged by the extrapolation from on-shell 

to spacelike/di2 = q2/2. Thus we can predict directly from Bjorken scaling of 

deep-inelastic scattering and the observed fixed angle scaling behavior of 

nucleon-nucleon scattering, the large q2 result 

FD 
2 4.85;t 0.25 = const/(q ) (10) 

in agreement with Eq. (1) for n=6 and Eq. (3) as in Fig. 2. 

It is of interest to see whether we can understand the order of magnitude 

constants entering in the form factor calculation. The large t on-shell 90’ 

nucleon-nucleon scattering amplitude fits the approximate form 

T- 5 x 103(Gevi8/t4. For the off-shell continuation, we shall assume the form 

T(s2) - 5 x 103peTq8/t2 (t +A2)2 (11) 

as suggested by the extrapolation of off-shell form factors. Using Eq. (8), we 

then have 

Taking (q2)” FD(q2) N 1 (GeV)l’ gives 

3/2 u’(0) = JG zjNR(0) - 0.1 rnr (13) 

which is of order of magnitude of the s-wave wavefunction (normalized to 
* 2 

J u (r)dr = 1) obtained for the soft core potentials. 6 

0 
Notice also that the consistency between the asymptotic scaling laws for 

T(q2) and F,(q’) requires u’(r) to be non-zero at r - 0. Thus there is no 
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11 hard core’* in the effective nucleon-nucleon potential, at least for the range 

r 2 lnmax - 0.06/m, - 0.08 F probed thus far by the deuteron form factor 

measurements. 

The third result from the connection of N-N elastic scattering and the 

deuteron form factor relates to V eff(q2) E 2MpT(q2), the effective nucleon- 

nucleon potential in two-body Schrodinger theory. As we have seen, the 

asymptotic decline of T(q2) is consistent with the (q2)-4 behavior of F$q2/4). 

Thus the entire fall-off of the effective potential can be understood to be due to 

just the dynamical structure of the nucleons themselves, with no additional 

fall-off from the exchange force. The scaling behavior for the reduced amplitude 

W2) = T(s2)/‘~~(~2/4, N const. (14) 

is in fact (modulo logarithmic) exactly what is expected in underlying theories 

which are scale-invariant at short distances, including quantum electrodynamics 

(in perturbation theory) and gauge theories with asymptotic freedom. 

The final results which are reported here generalize on the reduced form 

factor in Eq. (2). The underlying partition model as in Fig. 1 is based on the 

finiteness of the hadronic wave function at xP = 0 relative separation. 2 Binding 

corrections can then be neglected at large q2, and the calculation of the asymp- 

totic form factor is equivalent to calculation of the amplitude gn for rearranging 

n-constituent quarks parallel to p’ to the final direction p l” + q? The partition 

model also leads to simple predictions for nuclear targets or general systems 

with a series of scales of compositeness. 

Thus, consider a composite of A constituents each with an on-shell form 

factor Fi(qz). In the limit where binding can be neglected, each constituent 

absorbs momentum (mi/mA)q. Thus it is natural to define the “reduced” 



form factor 

which removes the minimal fall-off of the form factor due to the constituents’ 
_ 

structure. It is clear physically that fA(q2) should be a decreasing function of 

q2 since one still 

counting, i. e. an 

has to pay a penalty for keeping A intact. Using dimensional 

underlying scale-invariant theory, we have from Eq. (l), 

Thus the reduced 

responding bound 
3 

f,(s2) - const/(q2)*-’ . 

form factor is predicted to have the same fall-off as a cor- 

state of elementary constituents! In particular,, fD(q2) and 

f 3He(q”) are predicted to have the same monopole and dipole fall-off as the 

mesons and baryons, respectively. The alpha particle reduced form factor is 

2 -3 predicted to diminish as (q ) . 

The results for the deuteron form factor in Fig. 2 are interpreted as a 

confirmation of Eq. (16) for the A = 2 bound state. 

More generally for any nuclear reaction at large t, a.A - aA where 

a =e,r, p, etc., it is useful to define the reduced scattering amplitudes 

r(aA - aA) 3 $@A - aA) (17) 

which removes the effect of the probability for keeping the nucleons intact. The 

reduced amplitude -r(aA - aA) then reflects the nuclear aspects of the scat- 

tering. Further, the ratio 

R(aA-aA) = $(aA - aA) 
5 (eA - eA) (18) 

effectively removes the fall-off of the amplitude due to keeping the nucleus 
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intact, and is the most sensitive test of the specific interaction of the projectile. 

Therzfore Eq. (18) is convenient for analyses of the validity of the impulse 

approximation at large momentum transfer. 

The methods we have discussed can also be applied to inelastic electron 

scattering on nuclei, below the meson production threshold. Following the 

parton model analyses, one derives 2,7 
A 

-&!- (eA 
dq2dx 

--L etX) = c $J (eNi -e eNi)GNi/A @) (19) 
i=l dq 

where x = (- q2/2pA. q), da/dq2 is the elastic e-nucleon amplitude at s’ = x s, 

and GNi/A is the probability for the nucleon to have fractional momentum x in 

the infinite momentum frame of the nucleus A. For x - 1, and using quark 

counting rules, one obtains 

GN /A 
(x) = c (1 -x)6(*-l)- 1 (20) 

where 3(A- 1) is the number of quark spectators in the reaction. This result 

also provides continuity between the exclusive and inclusive limit and the pre- 

diction d2c dg =- 
dq2dW2 dq2 

P (W2) 
elastic 

(21) 

that the inelastic and elastic cross sections fall uniformly in q2 at fixed 

w2 = (q +pNJ2. The prediction G P,D - (1 -x)~ can be tested in the 

fragmentation of a deuteron in high energy deuteron collisions. 

The results and predictions presented in this Letter should help clarify the 

continuity between nuclear and particle physics, which in our view, exists at 

the microscopic level. 
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Fig. 1 

Fig, 2 

Figure Captions 

Three views of the deuteron form factor at large q2 from 

a) constituent interchange model, 

b) democratic chain model, and 

c) off-shell nucleon-nucleon scattering at fixed Bcm. 

-The deuteron form factor data compared to the quark model 

prediction, (1 - q2/mi) fD(q2) - const. with rni = (6/5)p2 = 0.28 GeV2. 
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