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ABSTRACT 

In this paper we study the generation of extended structures in 

field theory through the agency of dynamical symmetry breaking. We 

generalize Gorkov’s derivation of the Ginzburg-Landau theory of super- 

conductivity to relativistic systems by working entirely at the level of 

the quantum-mechanical action in the presence of a local space-time 

dependent mass source. Our approach provides a compact and elegant 

derivation of the results of Eguchi and Sugawara and also permits an 

analysis of the utility and range of application of their work. 
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1. INTRODUCTION 

TJere is currently much interest in extended structures in particle physics. 

Though it is not yet clear whether such an approach will ultimately be related to 

problems such as.quark confinement, it does at least provide an alternative to 

canonical perturbation theory and is worthy of study in its own right. As such 

extended models isolate particularly useful collective coordinates which summar- 

ize some of the main nonperturbative features of the many-body problem, perhaps 

the most well known example being the vortices of Type II super conductors. 

While there has been much study recently of relativistic analogs of the purely 

classical vortices there has only been a limited analysis 132 of underlying dynami- 

cal quantum-mechanical mechanisms which would generate the vortices in the 

first place. This latter approach is of course very powerful since it eliminates 

the need for arbitrary fundamental scalar tachyons, and is consequently far more 

predictive. In this paper we shall present a new method for studying dynamical 

mechanisms which may serve to complement the analyses of Refs. 1 and 2. 

Following Eguchi and Sugawara we set out to develop a relativistic generali- 

zation of Gorkov’s derivation of the Ginzburg-Landau equations of superconductivity 

and so for the benefit of the reader we quickly review the Ginzburg-Landau theory. 

In 1951 Ginzburg and Landau presented a purely phenomenological macroscopic 

theory of super conductivity. In this theory the superconducting state was to be 

described by an order parameter $ (2). The reason for this was twofold. Firstly 

because this was a general approach which Landau had developed for all ordered 

phases in the solid state, and secondly because of London’s idea of a supercurrent 

which through the presumed rigidity of the many-body wave function would allow 

a macroscopically observable quantum-mechanical state. Ginzburg and Landau 

did not question further the origin of this c-number macroscopic order parameter 
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but intuited that near the critical temperature its dynamics would be described 

in thexresence of an external magnetic field by a (Higgs) Lagrangian with a wrong 

sign mass term, 

Abrikosov then studied this theory and found that it admits of vortex type solutions 

in which $(f;) approaches its vacuum value of b2/h) l/2 at spatial infinity while 

vanishing at the origin with the magnetic field being localized entirely within the 

vortex, thus producing inhomogeneities in the vacuum. 

In 1957 Bardeen, Cooper and Schrieffer (BCS) identified the basic microscopic 

agency responsible for superconductivity, namely the existence of correlated 

Cooper pairs of electrons. By studying the quantum fluctuations of the reduced 

BCS Hamiltonian in a nonperturbative and self-consistent manner they were able 

to show that in the ground state the energy gap 

A= <Sl+zc,IS> (2) 

was nonzero with the state IS> possessing lower energy than the normal state 

IN> where A vanishes. Since IS> was taken to be the translationally invariant 

vacuum we note that for the moment A has no space dependence. 

In 1958 Gorkov realized that the Ginzburg-Landau order parameter would 

correspond to a space dependent gap parameter and was then able to derive 

Eq. (1) starting from the microscopic BCS theory. Though Gorkov himself never 

used the language of coherent states, in the modern terminology of bag models 

we would interpret the order parameter as 

A(z) = < C I@j I@) I C> (3) 

where IC> is built on IS> using a space-dependent Bogoliubov transform. 3 

Gorkov’s actual method of obtaining Eq. (1) was to perturb around the constant 
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value of Eq. (2) by expanding in the gap equation itself, i. e. , in the equation of 

motion&and then restricting to the case of slowly varying order parameters so 

that higher order gradient terms do not appear in Eq. (1). In cases where higher 

gradient terms are important (i. e. , at temperatures well below the critical point) 

Gorkov’s method becomes intractable and for this reason we have developed an 

alternative approach which expands in the action. However in this paper we shall 

restrict our study to relativistic theories and leave the nonzero temperature case 

to the future, 

Gorkov’s method thus allows us to look for coherent states once we have first 

established that the vacuum has undergone dynamical symmetry breaking, and 

thus the natural relativistic theory to study is the four-Fermi model of Nambu 

and Jona-Lasinio. 4 We study the model in Section II and recover the results of 

Ref. 1. We shall contrast the results in four space-time dimensions by applying 

the same analysis in Section III to the same model in two dimensions. This will 

enable us to establish the range of validity of the work of Ref. 1. In Section IV 

we discuss briefly the stability properties of the extended solutions. Finally in 

. - 

Section V we assemble together the main advantages of our approach and make 

some~general comments. 
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11. EXTENDED STRUCTURES FROM AN ACTION PRINCIPLE 

Before we begin to look for extended structures we first review the Hartree- -h 

Fock method for finding the self-consistent vacuum of the cutoff chiral invariant 

four-Fermi theory in four dimensions, 

(4) 

discussed originally by Nambu and Jona-Lasinio. 4 We rewrite the Lagrangian as 

(5) 
m2 =LzD+z +9R=@D+P R 

where $ZD is diagonal (and will eventually include the constant term), and gR is 

known as the residual interaction. Here for the moment m is just a conventional 

space-time independent mass term. The vacuum energy density of gD is easily 

calculable as5 

e(m) = i J d4p 
w4 

Tr In ($‘.‘.) (6 - m+ie) 

=-$[4$-1-Zln(-&-)] 

(6) 

which is a multiple valued function of m2. If we go round the branch point at 

m2=0 we determine the function above the cut in the m2 plane to be 

E(m) = -$[$-1-2ln(&j+i$$ 17) 

which has a completely unacceptable imaginary part and thus we have to choose 

the sheet on which e(m) is real to be the physical sheet. [It will become clear in 

Section III why we have made this apparently pedantic analysis.] From Eq. (6) 
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we can then determine the vacuum expectation value of $$ as 

2 -h 
e’(m) =<Sl$+IS> = -+ + - m3 ln A2 

47r 47r2 2. (8) 

So far everything is formalism. The physics comes by requiring that -LZR vanish 

in the state IS> in the one loop approximation, i. e. , 

<Sl(&b- ;) IS> = <Sl(& ;) Is2 = 0 

(9) 
-cS l(@r5$)2 Is> = <Sl (iJiy5$) lEb2 = 0 

1 The physical mass M is then that particular value of m which satisfies the con- 

straints of Eq. (9), i. e. , which satisfies the gap equation 

(10) 

This is the Hartree-Fock method. Since E(M) < e(0) in the cutoff theory we thus 

see that the nontrivial solution to Eq. (10) is energetically favored, and so the 

self-consistent vacuum lies lower than the normal one. 

We can also calculate the energy of gD in the state IS>. We find 

2 
F(m) = e(m) - + = - m4 ln A2 m2M21n A2 f m4 

167r2 M2-87r2 M2 32,2’ 
(11) 

so that the imposition of the gap equation automatically renders y(m) to be 

logarithmically divergent in contrast to the quadratically divergent e(m), without 

any need to adjust the counter-term by hand. With this renormalization we then 

note that the self-consistent vacuum is found as the variational state in which 

yt(M)=O , (14 

i. e. , we have imposed the gap equation as a stationarity condition. Since y(M) < 0, 

T!(M) > 0 we then confirm that we have found the ground state of LZ in the Hartree- 

Fock approximation. 
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Having set up the formalism to find the vacuum we can now proceed to look 

for extended solutions. We want now to find coherent states in which the residual -h 

interaction again vanishes. To do this we simply introduce a space-time 

dependent mass term m(x) in Eq. (5) and study SD again with a mass term * 

m(x) q(x) q(x). We can then calculate the energy of LYD in the coherent state 

(when we ultimately take the static limit in m(x)) by noting that m(x) acts as an 

- 

external source to the kinetic energy term and defines a vacuum functional 

- [d4x W(m(x)) = c -$ / d4xl. . . d4xn m(x,). . . m(x,) G(“)(xl, . . . x,); 

(13) 

here the G@) are the connected Green’s functions of the $zC, composite calculated 

in the absence of the source, i.e., in a translationally invariant basis, which in 

this case is also in fact a massless basis. 
I 

Thus though the eigenstates of gD 

are no longer translationally invariant the expansion of Eq. (13) enables us to 

isolate the specific nontranslationally invariant terms explicitly and continue to 

use known forms for the G (4 . On Fourier transforming Eq. (13) and expanding 

about the point in momentum space where all momenta vanish, we obtain 

-~d~xW(m(x))=~~~d4xl...d4xnm(xl)...m(xn)d4pl...d4pne 
ipl.xl ipn.xn 

. ..e 

+c pipj +- $- G(“)(pk)l + . . . 
i j Pk=O 1 (14) 

We define l (m(x)) and through the graphical infinite sums of Figs. 1 

and 2. After calculating some nontrivial combinatoric factors we can then set 

- jd4x W(m(x)) = Jd4x {-e(m(x)) + k (dPm)2 Z(m(x)) + . . .) (15) 
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where - 

Z@(x)) = -d n(s2,mW 1 2 ds2 (16) 
q =o 

We now note that the series of Figs. 1 and 2 can be summed analytically. Figure 
- 

1, of course, gives Eq. i6) where the parameter m is to be replaced by m(x) 

after the p-space integration has been performed. Also the infinite summation 

of Fig. 2 of graphs with soft insertions taken in the normal phase (massless 

propagators) sums up into one Feynman graph taken in the ordered phase (massive 

f 
propagator), i. e . , 

R(q2,m(x)J = -i/hTr (&j&j) b 
@7d4 -m(x) 

(17) 

Moreover we can generate the higher gradient terms in Eq. (15) in a similar 

manner by defining 

.- , v(q2 ) m(x)) = -i / d4p Tr (@I&j ($+i-m) & *)) 1 
&d4 

(18) _ 
m-m(x) 

and so on. n”(O) gives the coefficient of (Om)2 and V”(O) gives the coefficient of 

(aPm)4, etc. Thus each coefficient in the expansion of Eq. (15) will be given by 

an appropriate derivative of a Feynman graph calculated first with a conventional 

constant mass with that mass parameter then being replaced by a space-time 

dependent mass in the resulting mathematical expression. At no stage does m(x) 

appear inside the Feynman integrations. 

Calculating Z(m(x)) we’then find that 
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Collecting everything together and incorporating the space-time dependent counter 

term xe then find that 

- Jd4x @(m(x)) = /d4x I-1 m)2 + m2(x) M2 - f m4(x) 1 * 
+ U.V. Finite 

I 
cw 

where lrU. V. Finite” includes terms of order ln(M2/m2(x)) and higher gradient 

terms. We shall see later that there is a lot of physics buried in these terms 

t 
but for the moment if we only keep the terms which depend on the cutoff we then 

obtain the wrong sign Higgs result of Eguchi and Sugawara, with the stationarity 

condition on Eq. (20) leading to 

Om@) - 2m(x) M2 f 2m3(x) = 0 . (21) 

[The extension to include a gauge field is given in the appendix. Note that Eq. 

(21) is an equation of constraint and should not be thought of as an Euler-Lagrange 

equation of motion since aclrn is not an independent degree of freedom. This 

remark will become relevant when we need to include the higher gradient terms 

in Eq. (20). 

Before beginning to discuss the stability and significance of solutions to 

Eq. (21) we turn first to see what happens to the same analysis in two dimensions. 
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III. THE HARTREE-FOCK APPROXIMATION TO THE THIRRING MODEL 

xe proceed exactly as before and calculate the vacuum energy density in 

the cutoff Thirring model in one loop. 

e(m)‘= i J 

=-Tqn($-)+1] 
where m is now space-time independent. If we go round the branch point at 

m2=0 we find that above the cut 

e(m) = -c 2 [ln(&)+{-i< 

(22) 

(23) 

whose imaginary part is negative. In sharp contrast to the situation in four 

dimensions we this time have to conclude that the self-consistent Hartree-Fock 

state is not the ground state since it decays. It cannot of course decay to the 

normal perturbative vacuum since that state lies above the Hartree-Fock vacuum 

(Re e(m) < e(O)). Thus there must be some other state in the theory to which the 

Hartree-Fock state can decay. In fact by putting the theory on a lattice Drell, 

Weinstein and Yankielowicz’ have constructed a configuration space variational 

wave function which does have lower energy than our momentum space trial 

function, This then resolves the conflict between the self-consistent field 

mechanism and the absence of spontaneous breakdown of continuous symmetries 

in two dimensions, 7 and we see that the Hartree-Fock method contains sufficient 

information in it to provide a warning signal against interpreting the calculation 

as evidence of dynamical symmetry breaking. Unfortunately it is not yet 

apparent as to how we may use Eq. (23) to find the state into which the Hartree- 

Fock state does decay and also its y5 structure. This then makes the lattice 
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approach of Ref. 6 more useful at least for some ranges of values of the coupling 

‘; constant. -h 

If we ignore the imaginary part in Eq. (23) we can then build coherent states 

on the Hartree-Fock states and look for extended solutions as before. This is - 

then a useful testing ground for extended model ideas, ’ though these states will 

also eventually decay via the imaginary part of e(m), so their ultimate physical 

interpretation remains open at the present time. 

Thus proceeding as before we obtain a gap equation in two dimensions 

so that for coherent states 

Further 

so that 

Z(m(x)) = ’ 
127rm2(x) 

(24) 

(25) 

(26) 

(27) 

Thus the effective action is 

- ld2x ti(m(x)) = / d2x ’ (a mj2+$ln 
24nm2(x) ’ 

z+*+ . . . 
m2w I 

(28) 

and unlike Eq. (20) has no simple wrong sign mass term interpretation (though 

there is of course a double-well structure). Thus the simple structure of Eq. 

(20) is not a property of only keeping the graphs of Figs. 1 and 2, but rather of 
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subsequently giving physical significance to the cutoff, so that the results of 

Ref. 1 are very restricted. -h In the present case moreover there is no justifica- 

tion for stopping at the first gradient and so we have to include more terms. 

Moreover since we would like to look for solutions in which m(x) van@hes some- 

where we see that Z(m(x)) has an infrared divergence at the core of the vortex. 

Since W(m(x)) of Eq. (13) is infrared finite we then learn that we cannot termin- 

ate the expansion of Eq. (28) at a finite point and hope to investigate extended 

solutions. Unfortunately though we have developed a method for obtaining all 

the coefficients of Eq. (28) we have not yet found a way to perform their sum 

analytically so we are unable to study this point completely. However Dashen, 

Hasslacher and Neveu’ have developed an analytic method to which we return 

below. 

Before discussing their work we note that it is possible to obtain an analytic 

expression for the behavior of a static extended solution in the wings of the vortex, 

i.e., how m(x) approaches M at spatial infinity. It is tempting to anticipate that 

this will be given by the approximate stationarity condition 

?(m(x)) - Z(m(x)) ml’(x) - + Zl(m(x)) mf(x)2 = 0 (29) 

However in the most likely case where the falloff is exponential, so that we may 

even ignore the ml 2 type terms, we are unable to disregard terms of the form 

mct7’(x), etc. These equally leading asymptotic terms are generated entirely by 

the higher derivatives of n(q2, m(x)), so that we again have to sum an infinite 

series. Fortunately this series is readily summable being generated by the action 

J 1 d2x -y(m(x)) ; 
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thus for static solutions Eq. (29) is replaced by 

hWJ + C $4&7ts2,mO) j 
2n 

(g) m(x)=0 . 
‘d&l 1 q2=o 

(30) 

Setting 

we obtain 

m(x) = M(l-A e-a”, 

- 

(31) 

y1 (m(x)) = -M A eWax m(x)) - Rta2, m(x)) 1 , (32) 

so that to lowest order in e 4l.X 

y”(M) =D(O,M) -n(a2,M) 
(33) 

= c”(M) _ $- ~‘0’4 

using the definition of y(M). Since by definition the second derivative of e(M) in 

the presence of the mass is n(O, M) we obtain finally 

n(a2, Ml -+I~7(M)=~ (34) 

From Eq. (26) we then find that a= 2M so that the leading behavior at spatial 

infinity is given by 

m(x) = M(l-A e -2Mx 
) (35) 

with A undetermined. The factor of 2M has a direct physical interpretation. It 

can be thought of as arising from the two particle threshold in 17(q2, M) or as the 

mass of the (Cooper-type) fermion antifermion pair, i. e. , the inverse of the 

coherence length of < C I&x) z+b(x) IC>. To proceed beyond this point and calculate 

the nonleading terms as we come into the core from the wings is for the moment 

beyond our computational ability, and so we turn now to an alternative method 

of solution. 
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The alternative to developing the action in powers of the gradients of the 

order parameter is to diagonalize G(m(x)) directly in terms of its eigenstates. 

Defining the Dirac problem in a space dependent potential 

x 6 + p m(x) 1 u,(x) = Enun(x) 

C -i 01 x & + P m(x) v,(x) = -En v,(x) 1 

we find that8 

J d2x W(m(x)) = i Tr In {tw] = -T G {E~-E~(M=o)) (37) 

(36) 

summed over the negative energy states. [T is the time volume.] After including 

the counter term we find that the stationarity condition on W(m(x))‘leads to 

c v,(x) vn(x) = y = $j$ e’(M) 
n 

(38) 

. - Equations (36) and (38) define a self-consistent problem in whidh the fermion 

moves in a potential generated by its own negative energy sea. However rather 

than solving Eqs. (36) and (38) (say using Eq. (35) as a good input trial wave 

function) the authors of Ref. 2 noted that it is more convenient to work with 

J d2x~%(m(x)) directly using the inverse scattering method which reexpresses 

the counter term m2(x)/2g in terms of the scattering data for the Dirac problem 

of Eq. (36). The remarkable achievement of Dashen, Hasslacher and Neveu was 

that they were then able to obtain an analytic solution to the above coupled equa- 

tions, the kink of Ref. i 8. 2 [We discuss their other solutions in Section IV.] 

Though the method of Ref. 2 is constructive and elegant it suffers from the 

fact that it is difficult to apply in four dimensions (difficult technically rather 

than conceptually) since little is known about the inverse scattering method for 

the Dirac problem in three space dimensions, and so for the moment we can only 
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use our local source methods which provide some physical insight. Solving in 

four dimensions we can again obtain the analytic behavior of the extended solution 
- 

far from its core. The analysis leading to Eq. (34) is exactly as before where 

now the coordinate x of Eq. (31) is the radial coordinate for either spherical or 

cylindrical (stringlike) structures. From Eq. (17) we then find again that a=2M 

for both types of structures with m(x) itself having no dependence on the cutoff 

even though the constraint equation for m(x) is cutoff dependent. We also note 

that these structures are then static solutions of the Eguchi and Sugawara equa- 

tion of motion, Eq. (21). Thus in the wings the leading behavior is obtained 

separately both for the cutoff dependent and cutoff independent parts of $?(m(x)), 

and has the same physical interpretation as in the two dimensional. case. 

At this stage we can now discuss the limitations of Eq. (21). We have seen 

that it does correctly describe the asymptotic behavior of the spherical or 

cylindrical vortices. Suppose we would like such vortices to exist nonasymp- 

totically and have a core where m(x) vanishes. In that case the “U. V. Finite” 

term of Eq. (20) becomes infrared divergent and hence we must still make the 

complete expansion in Eq. (20) as was done in the two dimensional case, despite 

the presence of the cutoff. Thus Eq. (21) becomes unreliable as we go toward 

the core of the vortex. 

Though we have seen that we cannot truncate the vacuum functional at a finite 

point in relativistic field theories the situation is somewhat different in nonrela- 

tivistic theories at finite temperatures. In superconductivity the term Z(m(x)) 

of Eq. (27) behaves as T -2 , so that the expansion of w(m(x)) will be truncatable 

provided we stay away from absolute zero. Further very close to T=Tc ?(m(x)) 

does behave like a wrong sign Higgs potential’ as was already known from Gorkov’s 
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work. Thus in superconductivity as we lower the temperature below Tc more 

and more gradient terms come in in a controllable and calculable fashion so that 
-h 

we can go beyond the Ginzburg-Landau theory to any required degree of accuracy, 

being only required to sum the series to all orders at T=O. Thus our formalism 

is particularly well suited to superconductors when T is substantially below the 

critical point. 

IV. STABILITY PROPERTIES OF THE EXTENDED STRUCTURES 

Up to now we have only studied stationarity conditions and have not yet dis- 

cussed the problem of the stability of our extended solutions. There are two 

main ways of obtaining stability, dynamical (e. g. , the SLAC bag3) and topological 

(e.g., the kink*). We discuss first the topologically stable structures. For such 

structures the potential energy of the state only depends on the modulus of the 

order parameter so that if the modulus only varies from its vacuum value over 

a finite region of space the total energy will be finite, provided of course that the 

energy density is finite. Since the coherent state is constructed by creating an 

infinite number of pairs out of the vacuum (by Bogoliubov transform) we thus see 

that the extended structures are remarkable in that they possess an infinite 

number of modes and yet a finite energy. If further the phase of the order param- 

eter varies over surfaces at spatial infinity, the order parameter then interpo- 

lates between different degenerate vacua, so that the overlap of the coherent state 

with any particular vacuum is zero (i, e. , vanishing tunelling probability in the 

limit of an infinite number of degrees of freedom). The coherent state thus lies 

in a different Hilbert space than any of the degenerate vacua and is hence topo- 

logically stable. This can then provide a basis for confinement of quantum 

numbers as an analog to flux trapping, and general topological structures have 

recently been classified (see e.g. , Refs. 10 and 11). Thus though the two 
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dimensional kink of Ref. 2 is stable the four dimensional cylindrical and spherical 

structures of Eq. (21) have to be rejected, the spherical since it is not topologi- 
-c, 

tally stable (there being no topological relation between the U(1) chiral phase 

group of Eq. (4) and SO(3)), and the cylindrical, because, like the usual Type II - 

vortices of superconductivity, there is still a need for an extra gauge field in 

order to yield finite (kinetic) energy density. [In the original work of Eguchi and 

Sugawara there is an effective gauge field < C 14~ y ~,6lC> (see appendix) since 
1.15 

they break Lorentz invariance spontaneously which is rather unphysical and diffi- 

cult to interpret.] 

The second kind of stability is dynamical in which the coherent state itself 

is not eigenstate (thus eliminating difficulties associated with the ‘translation 

mode of Ref. 8)) but rather the state bl IC> in which we put the lowest positive 

energy fermion into the coherent state is stable. This is achieved by mutually 

balancing the fermion energy against the bag pressure. 3 [In this case the phase 

of the order parameter need not vary over surfaces at spatial infinity.] Thus 

looking now for states in which 

mO (x) 
<C Ibo($ (x) +(x))b; IC> = - 

g (39) 

then leads to the equation of constraint 

ZPo(x))V2mo(x) + f ZW,W (-6-mo@,i2 - 2(m,(x)) + . . . 

where the dots denote the higher gradients. Equation (40) is thus seen to be the 

dynamical analog of the equation of motion of Ref. 3 (Eq. (3.35)) which uses a 

fake scalar tachyon coupled to the localized fermion. The two new features of 

Eq. (40) are that we need to include higher gradient terms and also need to 
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include the summation over the occupied negative energy states which produce 

the dynamical bag pressure in the first place. In this case although there is 

localization in space of the bound state wave function u,(x) there is no confine- 

ment of quantum.numbers since the composite structure bi IC> of the fermion 

localized in its own self-consistent potential has the same quantum numbers as 

the basic fermion. [If anything we confine the wrong vacuum in which <$z@ = 0.3 

There is also an important difference with our previous case of calculating in the 

state IC>. Now the potential m,(x) of Eq. (40) in which the fermion moves is 

determined by the fact that the first positive energy level E. is occupied. This 

is not the same as defining the potential m(x) of Eq. (38) via the coherent state 

(C> and then simply looking at its bound states. [Equation (38) does not even 

possess any nontopologically stable solutions. 21 In other words the potential 

adjusts itself to the fact that the fermion is there. Moreover the wave function 

for a bag with two fermions in it has to be self-consistently determined afresh 

and bears no relation to the second excited state of the potential of Eq. (40). 

Despite the fact that we must now consider positive energy states as well 

we note that asymptotically u,(x) u,(x) vanishes much faster than the potential 

m,(x), since the fermion is bound, and hence the behavior of Eq. (35) is still 

obtained asymptotically in both two and four dimensions. Thus the asymptotic 

behavior of the order parameter is not influenced by the stabilizing fermion so 

we will again have a good input trial wave function for the variational calculation 

of Eq. (40). In passing we also note that we recover the analytic result found in 

Ref. 2, since asymptotically the exact solution behaves as predicted by Eq. (35) 

in the case where there is one positive energy state and only one species of 

fermion. 
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V. GENERAL REMARKS 

In this section we collect together the main advantages of generating extended h 
structures dynamically. The most important feature of course is that the clas- 

sical equations that are obtained are output to.the underlying quantum field theory 

and arise because of nonperturbative infrared effects of quantum fluctuations at 

the fundamental fermion level. There is never any need to quantize the output 

classical equations. Consequently the classical equations are not restricted to 

have the usual structure of renormalizable field theories and moreover can have 

any number of higher gradient terms. Despite the fact that the classical equa- 

tions can even (and usually do) possess an infinite number of derivatives the 

underlying microscopic theory is still completely local, and hence there is no 

loss of locality. Moreover the coefficients in the classical equations are deter- 

mined completely by the microscopic dynamics, so there are no adjustable param- 

eters. The potential energy either yes or no has a double-well structure (and it 

will have if the vacuum undergoes dynamical symmetry breaking), and there is 

no freedom to change the sign of a mass term arbitrarily by hand. Once dynami- 

cal symmetry breaking takes place there will always be extended solutions as 

well (since n(q2, m(x)) cannot vanish), though their stability properties need to be 

investigated separately in each individual case. 

The second important feature is that the order parameter while obviously 

not a fundamental scalar field is not in fact a dynamical tachyon either. It is a 

pure c-number mass term, and couples to q(x) $(x) as an external source. It is 

not a bound state pole in the fermion antifermion scattering amplitude. Indeed 

the (nontranslation invariant) equation of constraint for the order parameter bears 

no relation to the (translation invariant) bound state Bethe-Salpeter equation that 

any prospective dynamical tachyon would satisfy. Whether or not there is a 
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bound state depends on the dynamics of the residual interaction. It is not forced 

by the existence of a self-consistent order parameter, Thus we can envisage a 

situation in which there is an order parameter while at the same time the Bethe- 

Salpeter kernel does not generate any bound states; typically this would occur if 

the kernel is non-Fredholm as in finite quantum electrodynamics (see e.g., 

Ref. 5). In this case even though there is no bound state any external gauge field 

coupled minimally to the order parameter would still acquire a mass as an 

analog to the penetration depth of a Type II superconductor. Thus the method 

gives “Higgs without Higgs. ‘I We are currently investigating whether this is the 

. 

dynamics of W mesons. 

The final advantage of our approach is that it is easily generalizable to inter- 

acting theories since we can start dressing the loops of Figs. 1 and 2 with some 

new interaction such as the exchange of a meson. Provided we do not include 

any additional fermion loops within the basic loop the formalism goes through 

untouched and can hence be applied in theories such as loopwise summed finite 

quantum electrodynamics. In fact we have recently analyzed finite quantum 

electrodynamics this way and find that the Poincare stresses needed to stabilize 

a completely dynamical electron arise as a bag pressure because of a phase 

transition in the vacuum with the electron becoming an extended object. This 

work will be discussed in detail in a forthcoming publication. 12 

After this work was completed we became aware of some recent rather formal 

derivations of the results of Ref. 1 which use a path-integral formulation. 13,14 
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APPENDIX 

In this appendix we discuss briefly the extension of Eq. (21) to include a 

gauge field. Suppose we extend Eq. (4) to a local chiral gauge invariance by 

adding an interaction g $y y A #, so that the .theory is invariant under 
A 1.15 1.15. - 

(A. 1) 

Introducing the convenient parameter 

$ = $II,-i$iy,$ (A. 2) 

we may then rewrite the.four-Fermi interaction as -ig@*$, with @ having the 

property that it transforms as 

2igAA(x) 
@ (A. 3) 

under the chiral transformation. Consequently 

is invariant under the local chiral transformation. Thus any mechanism which 

induces a term ap<$*> d’-+> will automatically induce the minimal coupling to 

Ac15 with a strength 2gA. [This is familiar of course from the theory of supercon- 

ductivity, there being a factor of 2e in Eq. (1) 1 Thus minimal coupling to the 

fundamental fermion implies minimal coupling to the order parameter. 

In the four-Fermi theory calculation we can now introduce A 
c15 

either as an 

external gauge field (as was done by Konisi, Saito and Shigemoto15) so that there 

is no breaking of Lore&z invariance, or have it emerge as a collective coordinate 

A 
c15 

= <$ y y ZJ> by treating the interaction 
p5 

i gA($ypy5+)2 in the Hartree-Fock 

approximation (see Eguchi”). [In this latter case the residual interaction must 

then generate a Goldstone boson in order to restore the Lorenlz symmetry.] 

Either method then extends Eq. (20) to include coupling to a c-number axial gauge 
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field in the form originally given in Ref. 1, viz. 

-dd4x@(<+(x)>,Ap5(x)) = /d4x I~I,-2igAA~5)<$(x)>12 

+ i<$(X)>12M?-$ I<c#I(x.),~~-~ 2 6 gAF;v5 
Ficlv5 1 + U. V. Finite (A.4) 

Graphically this amounts to calculating the one-loop Feynman graphs with appro- 

priate external < $> and A 
1-15 

sources in the action, and we have checked that the 

cutoff dependent parts of the resulting coefficients are indeed in the above 

relative weights required for minimal coupling. Also the axial vacuum polari- 

zation is renormalized by the fermion loop and we have calculated the coefficient 

of F 
PV5 

Fpv5 using a Pauli-Villars regulator of mass A, in order to obtain 

Eq. (A. 4). 
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Fig. 3 

The infinite series of massless graphs with soft insertions used to 

calculate E(m(x)). 

. 

+ 2 m (x 

Fig. 2 

The infinite series of massless graphs with two external insertions carrying 

momentum qP and all possible combinations of soft insertions used to cal- 

&ate n(q 2 , m(x)). The squiggles indicate momentum q 
I-J 

and the crosses 

indicate momentum zero. 


