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ABSTRACT 

The distribution function of particles in a plasma can often be found 

by solving the Fokker-Planck equation. This technique can also be 

used to find the average particle distribution in an electron storage ring 

in the presence of coupling between the particle coordinates and momenta. 

Using a smooth approximation the beam distribution parameters, such 

as the transverse beam sizes, can be described in terms of the eigen- 

values and eigenvectors of the coupling matrix. For some cases, anal- 

ytic expressions for these quantities can be obtained directly. This 

method offers us a straightforward means to find the functional depend- 

ence of the beam shape parameters upon various machine parameters 

which are essential for storage ring design. 
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1. INTRODUCTION 

The stationary particle distribution for an electron beam in a storage ring 

in the presence of linear couplings between the oscillations of the transverse 

motion in x and y and energy deviati.on, 6 = g , can be written as - 

$s CC exp 
( 
c xx.A. .x. 
i j 1 1J J ) 

EO 
with xi denoting the canonical coordinates (x, p,, y, p 

Y 
, 

6, p,) and AijVs some constants. This Gaussian distribution function can be 

obtained by solving the time-independent Fokker-Planck equation. L2 Under certain 

conditions in the presence of perturbation, the particle distribution $ is nonsta- 

tionary and is different fr.om $,. After the perturbation is terminated at +O, 

Z/J leaves its initial form z/J~, and changes toward its final form #s. This transient 

behavior of # can be obtained by solving the time-dependent Fokker-Planck equa- 

tion with the boundary condition 21, = q. at t=O. The time-dependent particle dis- 

tribution can also be expressed in a similar form as $, but with the values of A.. 
13 

time-dependent. 

In this paper, a general method for finding the matrix A for a stored electron 

beam will be described, taking into account the radiation damping, quantum fluc- 

tuation and linear coupling effects. Since the average <xixj> is equal to the ij-th 

element of the matrix - $ A -1 , this procedure offers us a systematic method for 

obtaining the dependence of these quantities upon the coupling element strengths 

and machine operation conditions. From the expressions for <xixj> some physi- 

cal quantities can be derived. 

As an example, the above method will be applied to obtain the dependence 

of the stationary transverse beam sizes and the tilt angle of the beam profile 

upon the strength of rotated quadrupoles and solenoid magnets in a storage ring. 

In a smooth approximation3 for weak coupling it will be shown that 

the beam sizes resulting from betatron oscillations, Q 
XP 

and c 
YP’ 

satisfy an 
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invariant condition: the value of 

is independent of coupling strengths; with p x 
2 
y the betatron functions4-and a! 

XSY 
the damping rates. A generalized definition of the aspect ratio which character- 

izes the emittance transfers between x- and y-motions as caused by coupling 

will be presented. Some of these results have been confirmed by experimental 

observations in SPEAR. 5 

The transient behavior of the horizontal beam width for an injected electron 

beam will be studied as an illustration of the time-dependent solution. These 

results can be useful for studying the effects of the injection system parameters 

upon the beam width for an electron storage ring. 

II. EQUATIONS OF MOTION 

The equation of motion for each of the three modes of oscillation (i=x, y, 6) 

is given by 296 

2 quantum 
iii + 2aiui+ wi ui = + coupling (1) 

excitation 

with CY~ the damping rate and wi the frequency of oscillation. If we introduce the 

canonical variables xi’s for (x, p,, y, py, 6, p,), the equations of motion reduce to 

a system of six first order differential equations. In particular, for a storage 

ring having lattice elements which only produce linear coupling between xi and 

xj the system of equations are: 

CijXj + di ~ (t) , i=lto6 , (2) 

with the values of damping rates, oscillation frequencies and coupling coefficients 

given by the matrix C; the quantum excitation effects are given by a succession of 
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sudden random variations of xi and are specified by a stochastic function t(t) 

representing energy jumps caused by photon emissions. In the smooth approxi- 

mation, Cij’s and di’s are taken to be: dl 9 3 = -77 x y/Eo, d5 = -E;‘, 
, 

d2=d4=d6=0 

with n 
x9 Y 

the energy dispersion functions, E. the ideal par title energy and 

0 1 

2 
-w 

X 
-2ax 

------- i 

I 
1 

coupling 1 
c= 

coupling 

I 
t------1 

coefficients 

I O 1 

I -cd; 
I 

-2o! 1 
L Y I __-_-- ------- t 

coefficients i 0 1 

/ -cd; -2cYg . 

III. PARTICLE DISTRlBUTION FUNCTION 

Under the above assumptions the particle distribution function, $, satisfies 

the F okker -Planck equation 132 

C 'ii+ + C C 'ijxj $ - C C Dij 
d2111 - 2 

& & - at 
i i j i i j i j 

(3) 

with 

Dij = ; < CB d.d.> 
1 JB 

(4) 

where < >B means averaging over all bending magnets; 93 is the product of the 

mean square photon energy and the mean rate whose value 
296 is given by 

55 47 3. 

24&3 
reEmc Y/P , <with re the classical electron radius, c the speed of light, 

li the Planck’s constant, p the radius of curvature, ymc2 the particle energy, 

and m the electron rest mass. 

We will first describe a time-dependent transient solution of z) which satisfies 

a certain initial condition at time +O. The stationary particle distribution $s is 
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then simply obtained by letting t - ~0, At t=O, we assume that the initial distri- 

bution& Gaussian (the solution of non-Gaussian cases will be described later): 

Aijo(xi -ziO)(xj -‘jO) ; (5) 
- 

F (0)) Aijo and iii0 are known constants. Under this assumption the distribution 

function at t>O is taken to be: 

zc, = F(t)-’ exp 7 x Aij (t) (Xi - ‘i(t) ) (x j - ‘j (t) ) 
i j 

with xi(t) and Aij(t) some unknown functions of time. From symmetry, 

Aij(t) = Aji(t) . The normalization factor F(t) is determined by 

J @x1...dx6= 1 . 

(6) 

Substituting Eq. (6) into Eq. (3) and equating the coefficients for the terms con- 

taining the same factors yields the following conditions: from-the (xi - %) (x. -gj) 
3 

terms 

$A=4ADA-AC-CA (8) 

from the (xi -Xi) terms 

& z(t) = m(t) ; 

and from the remaining terms 

(9) 

1 dF 
vrt = trace (C) - 2 trace (DA) . (10) 

The initial values of Aij and xi are A.. 
130 

and ii,,, respectively. A tilde is used to 

denote the transpose of a matrix; A(t), C and D are matrices whose elements are 

Aij(t), Cij and D.., 1J respectively; X(t) is a column vector whose elements are xi(t). 

The number of independent conditions in Eq. (8) is equal to the number of 

unknown functions, Aij(t), which is given by m(2m+l) with m the number of modes 
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of oscillation, Equation (9) are 2m coupled differential equations of an m- 

dimentional damped harmonic oscillator whose solution can be found independ- 

ently from the A. .‘s. 
13 

It can be shown that Eq. (10) is automatically satisfied 

if A(t) is a solution of Eq. (8). To obtain the particle distribution function, we 

therefore ,only have to solve Eqs. (8) and (9) independently. 

Since x = A, from Eq. (8) we obtain an equation for the inverse of A: 

$A-‘= A-l c” -I- CA-l -4D . 

Now we assume that C can be diagonalized, then 

C = EAE-1 

and 

&“E-Q , 

(11) 

(12) 

(13) 

with X a diagonal matrix whose elements are the eigenvalues of C, and E is com- 

posed of the corresponding eigenvectors; i. e., the ith column of E is given by 

the eigenvector corresponding to the eigenvalue hii. It may be noted that for the 

single particle motion to be bounded, we must have Re (hii) < 0. The solution of 

Eq. (11) can be shown to be 

A-l = EBE (14) 

with 

Bij(t) = Bij(0) e 
Aijt 

+ -$- (E-lD”E-l)ij , (15) 
ij 

which satisfies 

$B = BA+AB-4E-lDE-l 

and the initial conditions 

Bij(0) = E-lA-l(0)E-l , 

where we have used hij=hii+A.. . 
JJ 

(16) 

(17) 
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The other unknown functions, xi(t), must satisfy Eq. (9) and the initial 

conditions %(O) =xio. The solution is 

x(t) = Eeht E -1x o , (18) 

where z. is a column matrix whose’i-th element is xio. s 

Note that the above analysis could be extended for a non-Gaussian initial 

distribution function. In particular, for a delta function initial distribution 

6(x1-xlo). . .6(X6 - xso) the transient solution, $,, is the same as that for the 

Gaussian initial distribution but with Bij(0) = 0. The transient solution for a 

general initial distribution Go is given by / @$jdxlO- ’ - dx6()’ 

The stationary distribution es = exp @AX) can be obtained by letting t ---r~ in 

the above calculation. Thus the corresponding matrix A is determined by Eq. 

(14) with 

Bij = + (E-lDE-j.. . 
ij 1J 

The stationary distribution obtained is independent of initial conditions. 

From Eq. (6), it follows that the first and second moments of the distribu- 

tion are given by 

<Xi> = c(t) (20) 

and 

< txi - uri>)(X. - <Xj>)> = 
J 

= - ; [EB(t)aij ’ 
(21) 

respectively. The trajectory of the center of this distribution q(t) therefore 

coincides with the trajectory of a damped harmonic oscillator in the presence 

of coupling and the rms distribution widths are readily obtained from Eq. (21). 

For stationary cases, <xi>=O. 
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IV. TRANSVERSE BEAM SHAPE WITH COUPLING MAGNETS 

TAX transverse beam shape in the absence of perturbations is determined 

by coupling elements such as rotated quadrupole and solenoid magnets. The 

equation of motion obtained by smooth approximation near the coupling resonance 

=bJ 
wx Y 

M w can be shown to be given by Eq. (2) with the coupling matrix5 

[ 

0 1 -k2 0 

2 
-w 

c= x 
-2ax -kl -k2 

k2 0 0 1 

L -kl k2 2 
-w -2o! 

Y ! Y 

(22) 

The energy oscillation is nonessential and has been ignored. The betatron 
l/2 

oscillation coordinates x and y have been normalized by (v~/‘R)~ y, with R the 9 
machine radius and 2r the betatron wave number4 given by Rw/c. The coeffi- 

cients k and k2 are defined to be 
.1 

ZQ, vc2 
kl = 

Ii2 

and 

Q2c k2=-R . 

For weak coupling case, the coupling coefficient Q is given by7: 

Q = Ql + iQ2 

(23) 

(24) 
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where 

and (25) 

M(0) = $- BZ (0) 

are the strengths of rotated quadrupole and solenoid magnets, respectively, Be 

is the azimuthal position of the observation point, Bp is the particle rigidity and 

Av=vx- vy is the split in betatron wave numbers. 

As shown in the previous section, the stationary particle distribution is 

given by 

$=exP($xiAijxj) ’ (26) 

For the present special example, it is possible to solve the problem without 

. - diagonalizing the C matrix. Indeed, we can obtain the symmetric matrix A-’ 

by directly solving the ten independent linear equations contained in Eq. (11) with 

the left hand side replaced by zero. The diffusion matrix D is given by 

D=L 
2Ef 

<caq ?J > 
x YB 

01 

0 0 0 0 

0 0 0 0 

(27) 

Since qy as caused by coupling elements oscillates rapidly around the ring, it 

contributes very little to an average over all mending magnets; for this example, 

we will neglect <%j n > x y B’ 
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By explicitly solving Eq. (11) and using Eq. (21), we can obtain the beam 

shape parameters < x2>, <y2> and <xy > in terms of the parameters < x2>o and 

< y2>o without coupling: 

2 
2 1. 2 ‘Ax a! 

- 
<x >=- 

l+A2 
<x> +- 0 l+A2 ” <y2>o ’ 

Y X 

(28) 

2 A2 cv 
<y >ZYX 

l+A; MY <X2>o + ,+,2 <Y2% 
X 

T and 
ctxa AvQ, ,x2, 

( 0 - <y2> 0 <xy> = 
(LU~+“~)~ IQ 12+ axay Av 

2 ’ 

where A, and Ay are the generalized aspect ratios: 

axNx+~ ) IQ I2 

1 

l/2 

Ax = 
IQ 12+(uxb2] 

(29) 

and 

l/2 

AY = 

a (ax+ol )lQ12 

y y ay) IQ 12+ ayb2] 

It can be seen from Eq. (28) that the value of <x2> is jointly determined by 

the contributions from <x2,0 and <Y~>~. The value of At determines the portion 

contributed from <x2> o, and a similar interpretation for A:. In the derivation 

of these results, we have assumed slow damping rates, keeping only the lead- 

ing order in a! -1 
x7 Y 

and have consistently neglected higher order terms in Q,, Q,, 

and Av . The natural beam shape due to betatron oscillations in the absence of’ 
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coupling is characterized by 

- 

<x2> = 
<gq ;>B <GBq 2> 

0 4axE; ’ 
<y2>o =-q , 

4ac E 
<xy>, = 0 . 

YO 

(36) 

Equation (28) also shows that the normalized transverse beam sizes due to 

betatron oscillations satisfy the invariance condition 

2 cyx<x2> + cYy<y > = ---& <+;++B ’ 
0 

(31) 

which is independent of the coupling coefficients. For the special case of equal 

damping rates (i. e. , 01~’ ay), this invariant reduces to the well known condition 

in Ref. 6. 

The tilting angle of the beam profile due to betatron oscillations 4, can be 

obtained from 

tan 2@ = 2<xy> 

<x2>-<y2> 
(32) ’ ’ 

2Ql ZZ- Av 
This result coincides with Ref. 8 for the tilt of the principle axes of 

the normal modes for a uniform proton storage ring without diffusion effects. 

The aspect ratios of the beam, defined in Eq. (29), become equal when 

cgx=a! 
Y 

; i.e., 
AX=AY=A with 

i A=[2,;;z;b21’/2 (33) 

independent of the damping rates. Furthermore, if we neglect the contribution 

from qy, we obtain the usual expressions6: 

2 1 2 <x >= -<x > 
1+A2 ’ 

(34) 
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and 

2 A2 2 <y >= -<x% * l+A2 

In practice, the transverse beam shape is determined not just by the coupled - 

betatron oscillations but also by the values of the energy dispersion functions 

(r ) 
X,Y e 

at the point of observation and the value of energy spread, 6. For a beam 

without bunch lengthening, 

2 <cB> B <6> =- 
4o16E; ’ 

(35) 

where o 6 is the damping rate in synchrotron oscillation. In addition, the beam 

sizes due to the betatron motions must be scaled by the betatron functions at the 

observa’tion point, (px y)8 . When all these factors are included, the observable 
, 

transverse beam parameters become’ 

and 

‘xpxe <x >=- e R 

<:, >=( 

<x2, + 7j 2 
xe <lj2> 

‘xpxe ‘/ye 
) 

w 

e e R2 
<x Y> -t qxeqye d2> (36) 

2 <ye> = ‘+$e 
R 2 2 <cJ2> <Y >+“yB - 

The observable tilt angle, Ge, is given by 

tan2+e= 
2<xgYg> 

<x;>-<y;> 

The horizontal and vertical beam sizes, as well as the tilting angle of the 

transverse beam profile, have been measured in SPEAR as a function of the 

strength of a rotated quadrupole magnet. The results are in reasonable 
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agreement with Eqs. (36) and (37), 5 which are useful expressions for storage 

ring design studies. 

V. TRANSIENT DISTRIBUTION AFTER INJECTION 

As an illustration of the time-dependent solution, we consider the behavior 

of the horizontal beam width for an injected beam. For this example we assume 

no coupling between the horizontal motion and energy deviation and neglect the 

vertical motion. The matrices C and D are given by: 

1 -wX .’ 0 2 -2ax 1 0 0 0 0 1 
I 

c= I 
0 0 

L "0 0 

and 

L 

0 1 

2 I 
-w 6 

-201 
L’ 

0 0 0 

0 <g% ,o 

0 0 0 i 

(38) 

For simplicity we assume that the initial distribution at t=O is a delta function 

of the form 

$0 = w+x,) “(Px-Pxo) 6Wo) “(PS’PGO) . 

The corresponding boundary conditions for the B matrix are B ij=O at t=O. By 

using the procedure described in Eqs. (14), (15) and (17), we obtain the matrix 

A(t)-’ as well as expressions for ii(t) =x,(t) and z(t) =jt3(t). From these results, 

we can describe the transient behavior of the beam by finding the horizontal posi- 

tion for the particle distribution center and the rms horizontal width about this 
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center. The distribution center is described by 

- <x$ = z(t) 4- qxe T;(t) 

with 

[ 

P x0 ii(t) = x0 cos wxt + - 
wX 

sin wxt 1 -a,t 
e 

and 

[ 

p6O 
s'(t) = a0 cos w6t f - sin w t 6 

3 
e 

-ct6t 
3 

(-2 

where qxe is the energy dispersion function at the observation point, Slow 

(41) 

(42) 

damping rates 01 have been assumed in the calculation. 
X,Y 

The beam width is 

found to be 

v; = <x2>o(1+!-2@xt)+ “;e<62>o [LZa(+) (43) 

where the stationary values <x2>o and < 62>o are given by Eqs. (30) and (35), 

respectively. 
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