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ABSTRACT 

This paper (the second in a series) reports our recent progress in the study 

of strong coupling quantum field theories on a lattice. In particular we study 

theories involving fermions and gauge fields and pay special attention to the pe- 

culiar problems encountered when one formulates theories of fermions on a lat- 

tice. It is unique to our approach that we preserve local chiral symmetry and 

at the same time correctly count the number of fermionic states. 

We demonstrate how our formalism works with the lattice Thirring and 

Schwinger models, whose continuum limits are solvable in lx-lt dimensions 0 

We show in the strong coupling limit that these theories are equivalent to a 

Heisenberg antiferromagnetic chain. We also discuss briefly some general 

features of non-Abelian gauge theory of quarks and gluons in 3x-lt dimensions. 

The most interesting results we have to report at this stage are: 

(i) The only “gauge invariant states” which remain at low mass in the 

limit of very strong gauge coupling have the quantum number of 

physical hadrons D 

(ii) The resulting “effective strong coupling” theory preserves the 

full chiral symmetry of the exact theory (SU(3) x SU(3) if we 

introduce three flavors of quarks each with three colors) and 

describes a theory of “massless bare hadrons” interacting 

with one another through a quark interchange mechanism of 

finite strength, 
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1. INTRODUCTION 

Tke goal of explaining the observed properties of hadrons starting from a 

field theory of elementary quark constituents has motivated the search for 

reliable ways to study strong coupling field theories. This paper is number - 

two in a series reporting our efforts along these lines. 

In our earlier paper1 we applied variational methods to study low lying 

states and possible phase transitions of boson field theories that are rendered 

finite by formulating them on a spatial lattice. In particular in order to learn 

about the reliability of our methods we analyzed in some detail the conditions 

for the occurrence of spontaneous symmetry breakdown in scalar @4-theory in 

lx-lt dimensions. This model has little physical content and so, .building on 

this experience, we now turn our attention to theories involving fermions. 

Since current opinion holds that non-Abelian theories of quarks coupled to color- 

gauge gluons comprise the class from which “the theory” will emerge, these 

models are of particular interest. The most interesting general results we 

have to report at this stage in our studies of such gauge models are: 

(i) The only “gauge invariant states” which remain at low mass 

in the limit of very strong gauge coupling have the quantum 

numbers of physical hadrons. 

(ii) The resulting “effective strong coupling” theory preserves 

the full chiral symmetry of the exact theory (SU(3) x SU(3) if 

we introduce three flavors of quarks each with three colors) 

and describes a theory of “massless bare hadrons” inter- 

acting with one another through a quark interchange mechanism 

of finite strength. 
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In formulating gauge theories of fermions on a lattice two kinds of problems 

-are fzteed. First there is the general question of how one introduces gauge 

fields on a lattice so that the theory has full “gauge-invariance. ” Our approach 

to this question is to adopt the prescription of Wilsor?and Kogut and SusskindP 

according to which the gauge field is defined not at the individual lattice sites 

but on links joining lattice points. 

The second problem concerns the prescription for describing the fermion 

field on a lattice. In this we differ from previous approaches in a way which is 

crucial for obtaining the two general results given above. 

This difference is a consequence of our way of resolving a problem peculiar 

to theories of fermions on a lattice; namely the usual transcription of the 

gradient in the Dirac Hamiltonian as a difference operator (let A=l/a be the 

reciprocal lattice spacing) 

(‘$)j = N4+1) - W) P-1) 

leads directly to a doubling of the fermionic degrees of freedom. In particular 

for a free Dirac particle the energy-momentum dispersion relation based on 

(1.1) in Ix-It dimension is 

J5--r-z& E(k) = m +A sin n (l-2) 

where -r 2 k A 5 7r. As illustrated in Fig. 1, this formula shows that to each 

eigenvalue E there correspond two distinct states of k>O and two of k<O; 

hence the spectrum of states possesses a doubling of levels not encountered in 

the continuum theory. 

Kogut and Susskind4 have proposed one technique for avoiding this problem 

in two dimensions. They simply put the upper (lower) components of Dirac 

spinors on even (odd) lattice sites. The advantage of their procedure is 
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calculational, in that only nearest neighbor sites are coupled together by the 

gradient operator (1.1). The disadvantage of this procedure is that it makes it 

impossible to write down locally chiral invariant interactions since one does 

not have both particles and antiparticles at the same point. In higher- dimen- 

sions their procedure is very contrived since it becomes also necessary to split 

spin components in 2x-lt dimension and to double the number of fermions (say 

proton and neutron) in 3x-lt dimensions. An alternate projection operator 

technique recently introduced by Wilson’ in his action formulation also destroys 

local y5 invariance. 

We avoid this difficulty by defining the gradient operator via the prescrip- 

we define 

tion of Ref. 1; i.e., for 

f(j) = C f(k) eikj’* 
k 

(Vf)j = G ik f(k) eikj’* 

= C f(jt) CA e ik(j-jl)/A 
‘1 J 1 k (2N+1) 

(l-3) 

(1.4) 

where (2N+l) is the number of sites in the lattice. In 3x dimensions (1.4) be- 

comes 

(o$)j j j = C f(j&, jy9 jz) {-6Yj,-j;)} . 

xv j; 

(1.5) 
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As in the case of the free boson field discussed in Ref. 1 this prescription 

yields the exact relativistic Einstein energy momentum relation for a free fer- - 

mion of mass m 

E(k)= m (l-6) 
- 

Thus, the only difference between the lattice “free fermion” theory and the 

continuum theory is that in the lattice version we have a maximum allowable 

momentum, I kmax 1 = nA. On the basis of (1.5) and (1.6) there is no doubling 

of energy levels and no need to split field components onto different lattice 

sites. We can therefore easily incorporate exact y5 (chiral) invariance into 

theories with this formalism. The only cumbersome feature of (1.5) is that it 

couples all lattice sites along the direction of each component of the gradient 

instead of coupling only nearest neighbor sites as in (1.1). 

Since our formulation and conclusions depend crucially on the way in which 

we define the gradient operator we turn first to the study of simple soluble 

models with fermions. These are the Thirring model,6 both in lx-lt and 

3x-lt dimensions, and the Schwinger model .7 We isolate the important fea- 

tures and compare the results of our formalism with the known properties of 

these models in their continuum version. In addition we show that the fact that 

our formulation of the lattice theory preserves full chiral invariance leads to 

very different results in the strong coupling limit than those based upon (1.1) 

and the method of Kogut and Susskind. 

In Chapters 2 and 3 we develop the general formalism and discuss the 

spectrum of low lying states for the Thirring models. In particular, in 

Chapter 2 we show that for the strong coupling theory the effective potential 

method introduced by Nambu and Jona 
8 

Lasinio in their pioneering work on 

developing a dynamical model of nucleons, fails to describe correctly the 
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symmetry properties of the theory. This is in agreement with similar conclu- 

-sionmade much earlier by Ichimura, Kikkawa, and Yazaki’ using different 

techniques. 

In Chapter 3 .we relate the strong coupling two-dimensional Thirring 

model to the linear Heisenberg antiferromagnetic chain with more than nearest 

neighbor interactions. We discuss some general properties of the ground state 

building upon the wealth of knowledge developed about this spin system starting 

with Bethe in 1931. In particular the crucial role of being able to locate 

fermions and antifermions at the same lattice site will be apparent in this 

model. Bound pairs of fermions and antifermions on individual lattice sites 

are present in the ground state and their “spin waves” form a massless excita- 

tion spectrum. 

In Chapter 4 we turn to the simplest Abelian gauge theory-i. e. , the 

Schwinger model, or QED in lx-lt dimensions. In the strong coupling limit 

we find for the low lying states essentially the spectrum of the Thirring model. 

In addition there are the high lying excitations when flux links, corresponding 

to “massive photons”, are present. This spectrum again depends crucially on 

(1.4) and the fact that our formulation permits locating fermions and anti- 

fermions on the same lattice site. The relation of these results to the con- 

tinuum Schwinger model for weak and strong coupling is also described. 

Finally, Chapter 5 is devoted to some preliminary discussion of non- 

Abelian color gauge theories for which we have not yet carried out a detailed 

analysis. 
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2. FERMION MODELS ON A LATTICE 

SQe introduce a spatial lattice as in Ref. 1 by replacing the continuum 

variable ‘;r by points on a discrete lattice of linear dimension L and minimum 

spacing a= l/A, chosen so that there are 2N+l points in each direction: i. e. , - 

L = (2N+l)/A 

v = Lp 
(2-l) 

Time remains a continuous variable and p=l, 2, or 3 is the dimension of the 

lattice in the model being analyzed. The lattice points are labeled by 

j= (j,, . . . jp); -NI jiL+N 

and as in Ref. 1, the momentum variables are labeled 

g=(kI,...,kp); k =Fn; i 
-Nlni<+N 

(2.2) 

The gradient defined in (1.4) sums over lattice points only along the direction 

of its vector components. 

The Hamiltonian for a free massive Dirac field is in this notation 

Hod- Ap C q+@ {-G~-Qf+NQ+~ C ~+W#U) 

[ 1 (2.4) 
T*Y 
31’ I2 T 

where 2, p are anticommuting Dirac matrices. 

As discussed in Chapter 1, Ho is diagonalized in a basis 

$@ = c [uJN bJk)+vJ-k) d;(-k;l o! 

(2.5) 
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where ua! t@ (vo16) are the linearly independent positive (negative) energy 

solutiollfi to the Dirac equation 

(G. J? + pm) us(k) = E(k) u,(k) 

(z-& + pm) vly(-k) = -E(k) v,(-k) 

P-6) 

with 

E(k) = Jk2+m2 (2.7) 

Eq: (2.7) gives the correct energy-momentum relation up to the lattice cutoff 

k max 
+‘Jz?& . 

2N+1 

A. Lattice Thirring Models 

We first study lattice versions of the continuum models based upon the 

chirally invariant Hamiltonian 

(2.8) 

In 1x-X dimensions (2.8) describes the massless Thirring model.6 H can also 

be Fierz-transformed into a current-current interaction 

In either version H is invariant under the transformations 

where 8 is an arbitrary constant. Hence their generators 

(2.9) 

(2.10) 

(2.11) 
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commute with H. It is also the usual conclusion that the local currents 

* jp = ?r,ll, 
(2.12) 

j5p = thpr5# 
- 

are conserved. The Hamiltonian (2.8) has dimensions of energy, and the 

canonical dimension for the field $ is (mass) P/2 where p is the lattice dimension. 

The coupling constant go has dimension (mass) -P+l . In transcribing to a lattice 

version of (2.8) we introduce dimensionless variables x (7)) i (7)) and g via 

with the canonical anticommutation relations 

(2.13) 

(2.14) 

In terms of these variables we write the lattice Hamiltonian 

H = fl x*(Tl) iZ.Z (Tl-T2) ~(7~) - f c {m xtn2 - (j;(fi Y5X(g)2 
-t 
3 

(2.15) 

The lattice “conserved charges” are 

N=CX+tYJxn 
-rt 
J (2.16) 

Q5 = C x+(3 r,x(?j 
Y 
I 

and the field equation for the lattice field ~(7) as computed directly from the 

Heisenberg equation ifc) = [H, ~(31 is 

i(yo30+Ay~V) ~(77 = -2hg C Zjx(7j - X5r5x(3Y5 1 XC) (2.17) 
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with TX(j) defined by (1.4). We can also construct conserved but nonlocal 

currents on the lattice 

j,m and j5$TJ 

which are given by 

jog) = x+tTJx(Tl , j,,(TJ = x+Gb5xt3 

ml = x’(T) ~xt3 + c &772, x+q, ZXQ (2.18) 
TLY 
Jl’ J2 

g7J = x+t5 ZY,X(3 + c S(x&) x+!Q ZY5XK2) * 
y+Tc 
Jl’J2 

S(r;TI,T2) is uniquely defined in terms of the gradient operator (1.4) by the con- 

dition that for any two functions 

v fck(3 + c %+;T~9T2)f(qg(r2) = w7M3 + fmm) 
I 1 

(2.19) 
-t-;, 
jl’J2 

An explicit formula for S(T;TI,‘;ji) is derived in Appendix A. As defined j,(T) 

and j (7) satisfy 
5P 

‘ . aojo + F-T(j ) = dOJ5, o + T-7 = ‘5 O (2.20) 

and the charges (2.16) are conserved. The nonlocal terms in the space compo- 

nents of (2.18) arise from the free field gradient terms in H. If we evaluate 

commutators involving time and space components of these currents we obtain 

a nonlocal term which, in the continuum limit, becomes the familiar Schwinger 

term. 

B. Variational Solution in a Momentum Space Basis 

Our goal is to develop reliable methods for diagonalizing (2.15). In par- 

ticular, we wish to calculate the ground state and low-lying excitation spectrum 
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of H. We have already seen in (2.4) and (2.7) that the g -0 free field limit of 

this theory is readily solved by diagonalizing H in a momentum basis. Re- 

calling the analysis of Ref. 1, we anticipate that it might also be a valid approxi- 

mation to perform a variational calculation for the upper bound of the ground - 

state energy in a momentum basis with the mass as variational parameter if 

we are in the weak coupling limit of g << 1 in (2.15). However, in the light of 

Ref. 1, we also may expect this approach to fail for intermediate or strong 

coupling g 2 1. Just as the spontaneous symmetry breaking was found to be 

incorrectly represented in the scalar Cp4 theory by such an approach, it would 

come as no surprise to find here that momentum space variational methods fail 

to describe the y5 -symmetry properties of the ground state for (2.15). In fact 

the principal conclusions of Ref. 1 are that we should work in a configuration 

space basis to construct reliable approximate solutions to (2.15) for intermediate 

and strong couplings. 

Nambu and Jona-Lasinic? constructed an approximate solution of this prob- 

lem in their pioneering attempt to develop a dynamical model of elementary 

particles based on a cutoff version of (2.8) or (2.9). In their calculation the 

one-loop contribution to the mass operator was computed and a finite non- 

vanishing fermion mass shown to exist when certain inequalities on the coupling 

parameter g were satisfied. Their approach is identical to performing a vari- 

ational calculation for a bound on the ground state eigenvalue of (2.8) in a 

momentum basis. To obtain their equation for the mass gap we take the expec- 

tation value of (2.8) in the trial ground state IPtrial(m)> defined by 

bmOc) I*trial(m)> = 0 

d,@) I*t.ial(m)> = 0 

(2.21) 
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where the b,(k) and d,@) are the fermion (antifermion) annihilation operators 

“defined by the plane wave expansion (2.5)) (2.6)) and (2.7) in terms of a mass 

parameter that is chosen arbitrarily. Either the continuum theory with a 

k max= nA cutoff,. or the, lattice theory can be used since, as formula_ted, they 

lead to the same dispersion relation (1.6). Minimizing this expectation value 

with respect to the variation parameter, m, leads directly to 

[ 

*l-P 
m l-4g- 

LP F&+-J =O. 
I 

(2.22) 

Following from (2.22) either m=O or the “gap equation” of Nambu and Jona- 

Lasinio must be satisfied. Whenever g has values such that there exists a solu- 

tion of the gap equation, the m#O solution corresponds to the energy minimum 

and m=O to a local maximum. In particular (2.22) has an m#O solution for all 

finite values of the volume V. For p>l (i . e. , for a two or three spatial dimen- 

sional lattice model) there is a critical value of g such that as V - m, for 

g < gcrit M 1, m=O is the only solution, whereas for g, gcrit, m#O is the true 

minimum. In general for g ~1, this value of m satisfies 0 <m <<A; on the other 

hand m -gA when g >> 1. When p=l (i. e., for the one-space dimensional 

Thirring model) there is a finite mass solution of the gap equation (2.22) for all 

values of g . In particular for p=l: 

g - l/QnR/m for A/m >> 1 
(2.23) 

g rm/A for m/A >> 1 

As argued in Ref. 8 when m#O, corresponding to the existence of massive 

fermion states, the ground state of (2.8) is (continuously) infinitely degenerate 

implying the existence of massless Goldstone bosons. This result is, however, 

in conflict with Coleman’s theorem 10 for p=l. Hence this technique, which is 
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identical to the one-loop effective potential method, must be misleading for 

I determining chiral properties of the ground state. It is evident that the appli- 

cation of such techniques, which have been proposed for studying spontaneous 

breakdown of y5 invariance and the formation of dynamical Goldstone_bosons, 

are open to challenge. To see why this is so recall from Ref. 1 that this 

technique for calculating the ground state energy in k-space diagonalizes the 

gradient term, but makes a Hartree-Fock approximation to the quartic self- 

interaction potential, viz. 

4&N2> - <ij$? (2.24) 

In our earlier study of the scalar G4 theory we found that such a variational 

analysis was reliable for weak coupling, where the gradient term is the more 

important one, but can be very misleading when applied in the strong coupling 

regime which requires a more accurate treatment of the nonlinear potential 

effects. 

We turn therefore to a configuration space approach to construct reliable 

approximate solutions to (2. 15) when g 2 1. It will turn out that a site basis gives 

lower (i. e. , better) ground state energies than the above method; and furthermore 

we realize the y5 symmetry of the theory in the %ormal way”; i. e . , we find a 

spectrum of massive, parity doubled bosons and fermions rather than massless 

Goldstone bosons and infinitely degenerate ground states. Similar conclusions 

were stated by Ichimura, Kikkawa, and Yazaki’ in 1966 using a truncated 

Hamiltonian. 

C. Configuration Space Analysis of the “Thirring Model” in 3x-lt Dimensions 

We begin by studying (2.15) in the strong coupling limit in 3x-X dimensions 

because it is formally simpler, though less interesting, than the Thirring model 

in lx-lt dimension. The subtleties of the latter and a comparison of its 
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continuum and lattice versions are explored in Chapter 3. A convenient repre- 

.sentation for finding the ground state and excitation spectrum in the strong 

coupling limit, g >> 1, is 

(2.25) 

in terms of which 

=HO+ K (2.26) 

and the conserved charges Q and Q5 take the form 

Q~N-xz=x 

j j 
+% 

j+ j- 
-nd -nd 

j+ j- ) 

+ndj++ndj - “) . 

In the strong coupling limit we diagonalize the first or “potential” term in 

(2.26)) denoted Ho, and treat the kinetic term iteratively as a perturbation. 11 

Ho is diagonal in a site basis and the eigenstates, energy eigenvalues, and 

corresponding charges at a single site are listed in Table I. Our first observa- 

tion is that with the conventional choice, g > 0, there is a unique ground state 

with Q=Q,=O. The gradient term commutes with Q and Q5 and mixes states 
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only within the same (Q, Q,) sector of the Fock space. Hence it splits the 

-degenerate excited states but induces only negligible corrections -l/g to the 

nondegenerate ground state structure. Table I also shows that the lowest 

excited states are a chiral pair of spin zero ffbosonsf’ separated from the - 

ground state by a gap of 4gh. There are also parity doubled fermion states 

separated from the ground states by 6gR. Evidently there is little content 

to this model of physical interest since, for g >> 1, all particle states are very 

massive, since m - gA which is larger than the cutoff. The importance of our 

conclusion that there exists no Goldstone bosons, but a unique ground state plus 

massive degenerate chiral multiplets of bosons and fermions, lies in its differ- 

ence from the widely applied effective potential technique. As noted, the loop- 

wise effective potential expansion leads to (2.22) in the l-loop approximation 

and to the prediction of Goldstone bosons when g 2 1 and m#O for the energy 

minimum. Further evidence in support of our analysis for comes from 

the following two observations: 

1. The site basis gives a lower value for the ground state energy 

than the upper bound obtained from (2.21) and (2.22). According 

to Table I the ground state energy for a cubic lattice of 

(2N+1)3=VA3 sites is, for g>> 1, 

site 
EO = -8gA(2N+1)3 = -8gA4V 

The corresponding result using (2.21) and filling the negative energy sea with 

fermions of mass m gives for the ground state 

Eyom = -2V/ 
(pM= TA) 

-!ii Jp2+m2 
(27r)3 

(2.29) 
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In the strong coupling limit of the gap equation (2.22) 

and (2.29) becomes 

mom 2 
E. = -$flSVm e -% gA4V (2.31) 

which is higher than the site basis result (2.28) by a factor of greater than 3.5. 

2. In the weak coupling limit of g << 1, (2.25) becomes the 

Hamiltonian of free massless fermions and as a result of our 

treatment of the gradient operator we obtain the correct rela- 

tivistic energy momentum relation 

E(k) = Ik I . 

No finite iterative treatment of the interaction terms in powers of g can lead to 

the prediction of Goldstone bosons. Although we have not attempted a syste- 

matic study of (2.15) for g -1 it is difficult to understand how the symmetry 

structure of the theory can change so radically in this region, leading to 

Goldstone bosons that must cleverly hide themselves in both the strong and weak 

coupling regions. 
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3. THE THlRRING MODEL IN TWO DIMENSIONS 

Iwthis chapter we analyze the two-dimensional lattice Thirring model 

defined by the Hamiltonian (2.15) for the case p=l. This theory has important 

features in common with gauge theories and so this analysis. will prove useful 

to our subsequent discussions. In particular we find that the strong coupling 

limit of this model in lx-It dimension, in contrast to the preceding discussion 

for p=3, describes a system of massless fermion-antifermion bound states in 

addition to super-massive charged fermions of mass -gA >>A. Hence this 

model provides a concrete example of a theory for which, as g - 00, the original 

fermionic degrees of freedom become “frozen out”, but new massless degrees 

of freedom are left behind. In addition, we can l%rack” these massless states 

into the weak coupling region of the theory formulated on a few lattice sites. 

A. Strong Coupling Calculation on a Lattice 

For g>> 1 we follow our strategy of first diagonalizing the quartic part of 

the Hamiltonian (2.15) exactly. For this purpose a convenient two-component 

representation is 

and 

x(j) = 

with b(j) and d(j) satisfying the standard anticommutation relations viz. 

(3.2) 

~(j),b+(Y)] = [d(j), d+(Y)} = ‘jjl 
(3.3) 

[b(j), d(j’)) = 0 , etc. 
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Substituting these formulae into (2.15) gives (using S’(j,-j,) = -S’(j,-j,)) 

=K+V 

where 

y.,(j) =b+(j) b(j) 

nd(j) = d+(j) d(j) 

- (3.4) 

(3.5) 

are particle and antiparticle number operators respectively. As before, since 

the potential V is a sum of commuting single site terms we can diagonalize each 

term separately and form a product basis over all sites. 

There are only four states for each j corresponding to the different choices 

rib(j)) = 1,0 and n,(j) = l,O. If we define 1 O(j)> by 

b(j) I O(j)> = d(j) I O(j)> = 0 (3.6) 

we find the four eigenstates of the interaction term listed in Table II. Even at 

the one site level the ground state is two-fold degenerate with 

Eo(j) = E*(j) = -gA (3.7) 

corresponding to having nothing, with Q(j) = 0, Q,(j) = -1, or a particle- 

antiparticle pair, Q(j) =O, Q5=+l, at a site. One also sees that the single site 

charged states, with Q(j) = *l, Q,(j) = 0, lie high above the ground state from 

which they are separated by a gap -gA. 

This two-fold degeneracy of the single-site eigenstates, which did not occur 

in the three-dimensional lattice, means that in the absence of the gradient term, 

the ground state of the strong interaction part of H is 2 
2N+l -fold degenerate, 

since there can be either nothing or a “bound” fermion-antifermion pair at each 
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lattice site. The total electric charge of these degenerate states 

Q = c{y$) - nd(j)] j 
is zero and their-y5 charge 

Q5 = x{y$) + nd(j) - j (3.9) 
can take any odd integer value from -(2N+l) to +(2N+l) depending on the number 

of sites occupied by pairs. Note that any neutral state which contains an un- 

bound pair with a fermion and antifermion split to different lattice sites will lie 

higher in energy by an amount equal to 2gA for each such split pair. The states 

in this sector and their eigenvalues are listed in Table III for a three-site 

lattice, where we have introduced the notation 

nb(-N), . . . +b(j)y.. . ah(N)\ 

( nd(-N), . . . , nd(j), . . . , rid(N)) I 

to label a given state. 

(3.10) 

Our key interest here is to analyze how K, the kinetic energy term in (3.4), 

splits the degeneracies among the low lying Q=O states. Since it commutes 

withQandQ5, K connects states within each Q and Q5 sector only. Thus, we 

will treat it as a perturbation for g>>l, and work within the Q=O sector to 

construct the low lying energy spectrum. It is clear from the form of (3.4) that 

K, which moves a single fermion or antifermion from one lattice site to another, 

gives no first order energy shift to the low lying states. The state splitting 

therefore requires that we do second order degenerate perturbation theory in 

the ground state sector of (3.10) with rib(j)) =n,(j) for each site j. Since all 

energy denominators between the ground state and an excited state with one 

unbound pair are the same, Ex-Eg = 2gA, the intermediate state sum can be 



- 20 - 

performed and we obtain an effective second order Hamiltonian for the ground 

state sector 

H A 
eff = - 2g 

(3.11) 

Equation (3.11) expresses the fact that both a fermion and antifermion at the 

same initial site must be transferred to a common final site. 

A simple and suggestive “spin” formalism can now be introduced, since 

at each lattice site only two eigenstates, IO> and If>, which correspond to 

“spin down” and “spin up”, respectively, occur in the Q=O sector. We identify 

7rspin” raising and lowering operators 

S+(j) = d+(j) b+(j) 
S-(j) = b(j) d(j) = {S+(j)\’ 

such that 

(3.12) 

l*(j)> = S+(j) I O(j)> , 

and introduce 

nbtj) = ndtj) = s3tj) + + 
in terms of which (3.11) can be rewritten 

H eff = - g A C ts’(jl-~2))2[+ + S+(j,) S-U,) - S,tj,) s,(j,)] - (3.13) 
j17 j, 

Except for the relative minus sign between the spin-spin terms Heff describes 
12 

the Heisenberg antiferromagnetic chain, about which a great deal is known. 

In order to understand this analogy let us, for the moment only, abandon 

our definition (1.4) of the gradient and return to its definition in (1.1) as a 

difference, in which case (3.13) contains only nearest neighbor interactions. 
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If we now make a unitary transformation changing the representation (3.12) by 

-rotat&g through angle r about the three-axis at every other lattice site; i. e., 

S,(j) - (4 SJj) 

S,(j) --) S,(j) 

the effective spin Hamiltonian becomes 

ii 
A 

eff= g xi 3(j) 
j 

- 3 (j+l) - $} (3.14) 

Equation (3.14) now describes the well studied linear Heisenberg antiferro- 

magnetic chain with nearest neighbor interactions. The eigenstates of !?Ieff 

can be classified into degenerate multiplets of the total spin as well as of its 

three-component, z 5 ’ Q =+cS3(j). If we further assume that the sum over j 
j 

extends over a linear chain with an even number of sites and impose cyclic 

boundary conditions we can refer to two exact theorems for important infor- 

mation on the ground state and excitation spectrum of (3.14): 

Theorem 1: When A/g > 0, corresponding to an antiferromagnetic 

interaction, the ground state of (3.14) has total spin S=O and is 

unique. 13 

Theorem 2: The theory has no mass gap in the limit as the length 

of the linear chain becomes infinite; i. e. , there is a state orthogonal 

to the ground state having vanishingly small excitation energy. 
14 

There is a minor difference in Theorem 1 for a lattice with an odd number 

of sites arising from the fact that it is impossible to form a state of S3=0. In 

this case S3= *$ is the lowest possible value and the ground state is two-fold 

degenerate corresponding to the invariance of the massless theory under 

Q5 - - Q5. This doubling of ground state is also suggested by the careful study 

of the infinitely long linear chain. 15 
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The original solution for the ground state and excitation spectrum of (3.14) is 

due to Bethe 16 in 1931. In agreement with the general theorems his analysis 

of the lowest lying excitations in each sector of definite S3 showed that the 

ground state of the system is unique (for even numbers of sites) and corresponds 

to a state having S3=0 (i. e. , in the language of the Thirring model one has a 

linear superposition of states having half of the lattice sites empty and half 

occupied by fermion-antifermion pairs). His methods also show that the exci- 

tation spectrum starts off linearly in k, corresponding to a massless particle 

spectrum. If these results carry over to the solution of (3.13), which we 

constructed using (1.4) to avoid the doubling of the free fermion states on a 

lattice, we see from the above theorems that to leading order in l/g there 

exists a low lying spectrum of massless excitations of the Thirring model in 

addition to the arbitrarily massive (-gA) normal fermionic excitations. This 

low lying excitation spectrum corresponds to bound fermion pairs but, like a 

fermion, obeys the exclusion principle limit of no more than one pair per lattice 

site. This spectrum is built upon a unique or doubly degenerate vacuum (de- 

pending upon whether we use an even or an odd number of sites), and there is 

no spontaneous breaking of y5 -invariance leading to Goldstone bosons . Recall 

that recently Coleman has obtained a similar result for the strong coupling 

limit of the massive Thirring model. 
17 

The above insights into solutions of the nearest neighbor problem (3.14) 

are useful guides, although we have been unable to generalize Bethe’s technique 

to solve completely the problem at hand in (3.13). In particular the sectors 

with S3= 7 $(2N+l), corresponding to all sites empty, or occupied by a pair, 

are eigenstates of Heff with eigenvalue 0 and are evidently the nondegenerate 

ground states in their respective sectors of Q5 = T (2N+1). These states are 
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eigenstates of the total Hamiltonian of energy -gA (2N+l) according to Table II 

and (8.7). 

A less trivial case is the exact solution of (3.13) in the sector &,=+(2N-1) 

which corresponds to constructing appropriate -superpositions of (3.10) with a - 
single bound pair present (or absent). The ground state in this sector lies 

below the above result for the Q5 = &(2N+l) sector and the excitation spectrum 

is found (see Appendix B) to start off linearly in the total momentum k: i. e. , 

EQ 
Q5= rt(2N-1) 

(3.15) 

where k =% lkl < ?rR=kmax. min L With suitable wave function renormalization 

(3.15) describes a relativistic massless particle spectrum since in the limit 

A -co the k2 term vanishes. Except for a numerical factor resulting from the 

definition (1.4)) the spectrum (3.15) is identical to that found by Bethe 16 for 

(3.14). 

In all other sectors containing (or lacking) two or more bound pairs the 

analysis becomes much more formidable since it becomes necessary to solve 

a quasi particle scattering problem for two or more spin waves. This is the 

problem solved only for nearest neighbor interactions by Bethe in his remark- 

able 1931 analysis of (3.14). In Appendix C we describe the formulation of this 

scattering problem in the Q5 = -(2N-3) two-pair sector. 

On the basis of the analysis of (3.14) we expect the ground state solution 

of (3.13) with the lowest energy to lie in the Q5 =&l =+2S3 sector. We have 

explicitly verified this on a three site lattice but for the general case must rely 

on a variational calculation to construct upper bounds on the ground state energy 
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in each Q5 sector. This bound can then be compared with the known Bethe 

s oluti9ns 

at OLp< - 

for fieff. In particular for the sector, Q5 = -(2N+l) f 2p, with pairs 

(2N+l) sites we use a fully symmetrized trial state 

G(P)>=+ p ( 2?+1 -l/2 ) c ST ST ..* ST IO> 
il’ * *iP 

ll l2 $I 
(3.16) 

= lim IO> 
cl!- 0 

The latter form automatically does the bookkeeping of summing over all ways of 

choosing p different lattice sites since (SJ2=0. The upper bound,on the 

energy as a function of the number of occupied or spinup lattice sites is 

ated directly as a function of p 

E var(p) = -(2N+l)Ag - $ w A ; p=O, 1, . . . (2N+l) (3.17) 

total 

evalu- 

The bound in (3.17) is also the exact result for p=O and for p=l, coinciding with 

(3.15) for the ground state with k=O. Equation (3.17) describes a parabola as a 

function of p with a doubly degenerate minimum at p=N and N+l corresponding 

to s3=3$. This suggests that (3.13) has the same general structure as the 

theory defined by (3.14): namely, the ground state is a y5 doublet, and the 

spectrum has no mass gap. 

As a further calibration of the guess (3.16) for the ground state we can use 

it to calculate an upper bound on the ground state energy of (3.14) and compare 

the answer with Bethels exact result. Since (3. 16) is symmetric in all 2N+l 

sites the expectation value of the sums over sites in (3.13) and (3.14) can be 
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performed explicitly and their ratio 

(3.18) 

gives the factor by which the bound on the l/g terms in (3.17) has to be reduced 

to compare with the exact energy. In particular the ground state of (3.17) when 

p=N gives for the nearest neighbor case 

E var (9 = - G’N+l) &c - p (N+q (3.19) 

which is to be compared.with the exact ground state energy of 

E BethetN) = -W+UQ - i(N+l) (2Qn21 (3.20) 

This comparison suggests that the guess (3.16) of a symmetric spin function 

without correlations is a reasonable representation of the low lying states and 

also that the general structure of the spectra for (3.13) and (3.. 14) are similar. 

B. Weak Coupling Analysis 

As we have defined it on the lattice the Thirring model realizes its y5 

symmetry in the strong coupling region in the normal way-i. e. , a singly or 

doubly degenerate vacuum but not an infinitely degenerate one with Goldstone 

bosons. The bound pairs obey the exclusion principle and, at least for the case 

of nearest neighbor interactions described by (3.14), are massless. We want to 

show that this is entirely consistent with what is known about the weak coupling 

limit of the theory. As an explicit example we also construct the exact solution 

of the simple three site example and track the low lying states from the g << 1 

to the g >> 1 region. 

Since our definition of the gradient reproduces the relativistic free particle 

energy-momentum relation it is not surprising that our formulation joins 

smoothly to the known results of the continuum model for small g and that we 
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arrive at the usual weak coupling Feynman rules. In contrast, the procedure 

-base&on the definition of the gradient operator by (1.1) and the splitting of 

fermions from antifermions onto alternate lattice sites leads to a very different 

low lying spectrum as a result of violating local y5-invariance. We shall dis- 
- 

cuss this and its implications for gauge models in the analysis of the Schwinger 

model in the next chapter. 

To study the weak coupling behavior of (3.4) it is convenient (as usual) to 

chagonalize the kinetic energy term in momentum space. We do this by intro- 

ducing 

b(k) = C -A- b(j) e-ikj/A 
j JiKi 

(3.21) 

which satisfy the familiar anticommutation relations, (b+(k’),b(k)] = 6kk, , etc. 

We obtain 
k 

K = k;tttA k@+(k) b(k) - d+@) d(k)) = -kEm k bb@) - nd(k)} 
max 

(3.22) 

Q = c I”b@) - ndtk)} 
k 

Q5 = c {nboi, + ndtk) - 1) 
k 

(3.23) 

V=gAQ, -& c 
kI...k4 

6 p(kl+k2-k3-k4) b+($) h+tk,) dCx3) btk4) 
(3. 24) 

where 

Ap(kl+k2-k3-k4) E 1 c e 
i(kl+k2-k3-k4) j/A 

2N+l 
j 
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is the periodic 6-function which vanishes unless the sum of the momentum 

Svectoxs is zero or a multiple of 2n. It is apparent from (3.22) and (3.23) that 

for g - 0, the lowest eigenstate of k corresponds to filling all k < 0 states with 

fermions and all -positive energy ones with antifermions, i. e. , 

rib(k)) = ’ kk) 
(3.25) 

This leads to a doubly degenerate ground state in the neutral Q=O sector, de- 

t 
pending on whether the k=O state is empty or occupied by a pair, with energy 

k max 
E Q=() = -2 c k , 

Q5= *l k=O 
(3.26) 

and to two states of the same energy and with charge Q=*l, Q5=0 corresponding 

to a fermion or an antifermion present in the state k=O. The neutral Q=O - 

ground states in the different Q5 sectors can also be deduced from (3.22). For 

Q5=2p - (2N+l) th e ground state corresponds to a state having p fermion-anti- 

fermion pairs chosen successively to have the largest negative (for fermions) 

and positive (for antifermions) available k values; i. e. , 
Nk =k min max 

I$G{Q=O, Qg=2~-(2N+l)] ’ = k=fNIIl P)k (bTk$)lo> 
min 

k max 
E&) 7 -2 c 

k=(N+l-p)kmin 
k; kmin+&a 

2N+l 

(3.27) 

So far we have just been labelling the eigenstates of definite Q and 

Q5 for the theory of a free massless fermion. An iterative weak 

coupling treatment of (3.24) modifies this spectrum but does not 
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change the nature of the Q5-symmetry. Thus we find the massless free 

fertions of the g=O limit bind in pairs and become the massless states of strong 

coupling limit. Although there is no spin degree of freedom in the linear lattice 

chain in lx-It dimension, both the weak coupling g-0 and the strong coupling 

l/g-O limits the lowest lying objects are llfermionsll in that they obey an 

exclusion principle. 

It is instructive to trace the low lying levels from the weak into the strong 

coupling region by exactly diagonalizing H in (3.4) for a lattice of a few sites 

only. In particular choosing a three-site lattice with N=l, there are four 

possible states at each lattice site as in Table II or a total of 64 states in terms 

of which to diagonalize H. However only the nine-dimensional sector with Q=O 

and Q5=-1 needs to be considered. Since (3.4) is invariant under a parity 

transformation 

b/d+. Q-Q 
1 -j ’ 

(3.29) 

d/b+.; Q5--Q5 
J -3 

the spectrum in the Q=O and Q5=+l sector is identical. The sectors with QfO 

all lie higher in energy. We found this to be the case in the study of the strong 

coupling behavior in the preceding section and can readily confirm it here by 

direct calculation. In particular the low lying states with Q5=0 and Q=&l formed 

as described below (3.26) by putting a single fermion or antifermion in the k=O 

momentum state aretall pushed up in energy relative to the ground state for 

g>O. Within the Q=O sector itself the nine-dimensional problem is further 

reduced to three tractable three-dimensional ones by classifying the states 

according to their total momentum k/A = 0, 2n/3, or -2~/3 (modulo 27r due to 

47T the Umklapps in (3.4); i.e. , 3 = - T). The corresponding nine 
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eigenvalues are 

-c, 

E= J 2 7r2 g +Ta2 cos q/3 

(3.30) 

-$-gA++ J g 
2 lr2 2 

= +3a cos c 9 
7r 3 -3 ) 

where 

7r2a2 
-3/2 

cos@= 1+- 
( > 3g2 

; 

a=1 in the zero momentum sector, and a=+1/2 in the sector of momentum f 

The small and large g limits reduce to previous results. For small g the 

spectrum is as shown in Fig. 2. In the limit g=O there is a gap of kmin=2A 

between the energy of the lowest lying zero momentum ground state (a=l) and 

the lowest state with momentum %A (a=1/2). As g increases these states are 

shifted downward in 

massless excitation 

i. e., 

energy, tracking one another linearly corresponding to a 

spectrum but there is a wave function renormalization- 

Eo(a=1/2) - Eo(a=l) = k min[(l-$)+ . ..) (3.31) 

A similar analysis of the five site problem has been carried out for g<<l 

as a perturbative exljansion and shows that the ground state lies in the Q=O, 

Q5=-1 (or +l) sector and within this sector the lowest energy state of momentum 

km= 2A follows the k=O ground state down in energy as g increases staying a 

distance -km away. As in the exact three site analysis (3.31) it starts off for 

small g<< 1 like a massless spectrum and acquires a wave function renormalization. 
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All other states are pushed up in mass so that the gap between them and the 

grou@ state is -gA. 

In summary we have found on the basis of our lattice formalism that the 

free massless fermions of the g -0 limit form into bound pairs obeying an 
- 

exclusion principle for each lattice site for strong coupling g >> 1. For the 

case of nearest neighbor interactions in (3.14) there exists a proof that these 

bound pairs are also massless. We have no proof of the massless nature of 

the low lying excitations in the actual case with long range interactions 

described by (3.13). However we found the excitations to be massless for a 

lattice with a few sites (3 or 5) and the similarity in the structure of the states 

as discussed earlier leads us to conjecture that the low lying excitations of the 

Thirring model (3.13) are indeed massless. 
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4. THE SCHWINGER MODEL 

We turn now to the simplest model of interacting fermions plus gauge fields- 

i. e., the Schwinger model,7 or QED in lx-lt dimensions. The new ingredient 

here is the gauge field, which we treat in the same way as prescribed by Wilson2 - 

and Kogut and Susskind3namely, we associate the gauge field with the links be- 

tween lattice points. Hence, each link corresponds to an independent degree of 

freedom (i. e., the gauge field) in this formalism. The Schwinger model is a 

“warm-up exercise” preparatory to tackling the full four-dimensional ‘?color 

gauge theory”. We will show that it is soluble for strong coupling since then we 

can reduce it to a variant of the linear Heisenberg antiferromagnetic chain studied 

in the preceding chapter. 

The Hamiltonian of the Schwinger model on a lattice in lx-lt dimension is 

written as 

H=A 

I 

x xila (+@‘(j,-j,)) U(jl-j2) xj + L ‘?’ E2(Q) 
2 2r 

(4.1) 
j,, j, 

in terms of the charged fermion xj and the gauge field E(Q) = -4. We define3 

W ,-j,) as 

W,-j,) = l-I U(Q) = U(Q. 
j pQ< j, Jl,jl+l ) U(Q. ~~+l, jl+2 1 . . . U(Q. 

J2- 
,1 j ) (4.2) 

’ 2 

where the product is to be taken over all links, Q, between the lattice points j, 

and j,. For a unit link 

U(Q) = eiga A(Q) , a z l/A 

with the convention 

A(Ql, 2) = -A(Q2, 1) = -A(-Q1, 2) (4.4) 
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so that 

4. U(Ql 2) = U+(Q2 1) = U+(-e, 2) . (4.5) 9 , , 

Note that the electric flux has a direction associated with it so that UQ, 2) is 
f 

1 2 to be thought of as creating a unit flux (of magnitude 5 g ) oriented from site 1 to 

site 2. 

As indicated the first term in Eq. (4.1) is summed over lattice points, while 

the second one is over all links. We have scaled all degrees of freedom by the 

appropriate powers of A so as to work with dimensionless fields. The coupling 

constant g has dimension A, and we introduce the dimensionless constant go = ga . 

Formally (4.1) reduces to the usual continuum Hamiltonian of the Schwinger model 

in the limit a - 0. Finally we assume that canonical commutation relations for 

the fermion field are given by (2.14), and for the gauge field by 

[A(n), E(m)] = i6 n,m ’ (4.5) 

This completes our specification of the theory. One useful fact which follows 

from (4.3) and (4.5) is that the operator U acts as a ladder operator on the eigen- 

states of E shifting them by the value go, since 

[E(n) , U(m)] = [E(n) , eigoA(ml = go eigoA(I1) ‘n, m 

=goWNn m . (4.7) t 

We are interested in setting up an approximation scheme that is reliable for 

studying the strong coupling behavior of (4.1) when go - ~0. Note that this limit 

means that g = go/a >> l/a as a -0. It turns out to be useful to rescale3 the 

gauge fields to 

J(Q) = go A(Q) 

(4.3) 
G(Q) = 1 E(Q) 

80 
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so that in place of (4.7) we have 

-h BW, W-01 = U(n) 6, m - f (4.9) 

Now, if U(n) operates on an eigenstate of & containing S units of gauge flux on 

link n, i. e., 

G(n) IS(n)> = S IS(n)> (4.10) 

it increases the flux by one unit, i.e., by (4.9) 

U(n) IS(n)> = I(*l)@)> (4.11) 

The virtue of this resealing is that we recognize immediately that the free gauge 

field energy is the dominant term in H for large go >> 1: 

gt z&2(Q) + x xTlcx (iS’(j,-j,)) 17 
Q jlj2 jpQ< j, 

ei*d(Q)xj2 
1 

rHO+K (4.12) 

. - It is therefore natural to divide H into the large energy 

Ho = $g; xg2(Q) 
Q 

(4.13) 

associated with the flux links, plus the perturbing effects of the fermion sources 

in the kinetic term, K. The ground state of Ho is evidently the state of zero flux 

with eigenvalue 0, and all other states containing one or more flux links lie higher 
1 2 by at leastzgoA>>A. 

As Ho contains no reference to the fermionic configuration, all zero electric 

flux states I$, O>, where $ is any fermionic configuration, are degenerate. The 

kinetic term K will lift this degeneracy; however, since U(j,-j,) creates flux links, 

by (4.11) connecting I?, O> to states with flux whose energy is 2 1- 2 llj j lg2A there o , 

is no energy shift in first order. Second order is the lowest one in which the flux 

links cancel by (4.5). Using the matrix representations of Chapter 3 we find the 
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effective second order Hamiltonian to be 

. 

Heff = -A jljs3j4 (-ia’(j,-j,)) (-iW,-j,)) z[( biFj2-dj;i2) U(j,-j,) In> 
n 

(4.14) 

The only intermediate states which contribute in (4.14) are those in which the 

electric flux created from IO> by U(j,-j,) is annihilated by U(j,-j,). Hence the 

sums are restricted to j,= j,, j,= j,, and the energy denominator, En, is deter- 

mined by the fact that 

Ho U(j,-j,) IO> = Ho 1 I 
n U(Q) IO> = $gi Ij,-j, IU(j,-j,) IO> . (4.15) 

jlLQ$j2 

The intermediate state sum can now be performed leading to an effective Hamil- 

tonian for the fluxless gauge invariant sector which is very similar to (3.11) for 

the Thirring model 

)(I-nJ(j2))+nd(j1)(1 n (j ))+ZC+ C -d 2 j, j, 

(4.16) 

where 

Cj =d.b. . 
J J 

As for the Thirring model we can also define conserved fermion charges Q and 

Q5’ 
Since we limit out discussion to “gauge invariant” zero flux states there 

must be either a fermion-antifermion pair or nothing at each site. Once again 

these are neutral states, Q=O, which differ in their Q5 eigenvalues depending on 

the number of sites, p, occupied by pairs, i.e., Q,=-(2N+1)+2p. Within this 
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subspace r+(j) = n,(j) and (4.16) further simplifies to 

c, 
H 4A c (s’(j1-j2)j2 k 

eff = -2 I j,-j,l jl 
(lmn 

j2 
) + c+ c 

go j,j, j, j, 
) 

= 4;’ c -- 
go j,J, 

(s’(jl-j2))2 (i+ si s- _ s3 ,3 ) 
I j,-j,l j, j, j, j, 

(4.17) 

where we have introduced the spin operator in the same way as for the Thirring 

model. Therefore, for gauge invariant states in which no flux links are excited, 

the. Schwinger model is equivalent to the linear Heisenberg antiferromagnetic 

chain and the analysis of Chapter 3 can be applied. 
18 

The continuum Schwinger model has been solved exactly, so it is of interest 

to compare the spectrum of low lying states obtained in the lattice formulation 

with the spectrum of the continuum theory. It is a feature of the Schwinger model 

that for the sector of gauge invariant states only fermion-antifermion bound states 

exist which cannot be pulled apart. This result is of especial interest in connec- 

tion with efforts based on field theory to understand color or quark confinement. 

We also find this result in the strong coupling limit of the lattice model: all 

gauge invariant states formed from the vacuum must have zero total charge, 

Q=O, and the lattice sites containing particles must be joined to those with anti- 

particles by flux links each of which costs an energy f gi Ij,-j,l A. Therefore 

no separated individual charges exist at finite energy for A--m. In that (4.12) 

and (4.17) are equivalent to the strong coupling Thirring model (3.13), aside 

from the extra factor l/ I j ,-j, I in Heff, plus extra massive “photons” our con- 

clusions are similar to those described in the previous chapter. 
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The major difference between the low lying spectrum in our lattice formu- 

lation amd the usual description of states created by the “gauge invariant 

observables” from the vacuum in the continuum theory is that we discuss as 

physical the massless neutral states of zero flux links. We do this because _ 
these bound particle-antiparticle pairs at a lattice site (as listed in Table II for 

example) can be created by the well defined gauge invariant operator. In con- 

trast to this one does not consider the massless solutions with zero flux links 19 

in the continuum spectrum because the bilinear operator is singular and not 

included among the “gauge invariant observables” of the Schwinger model. In 

the continuum, gauge invariant operators are defined by a split point method 

which in the lattice language corresponds to having particles and a.ntiparticles 

to different lattice sites with gauge field links between them. Therefore a neutral 

pair created in this way contains an excited flux link and so is massive. 

States made by joining a quark and antiquark via a massive flux link are 

preserved by Kogut and Susskind4 in their lattice formulation. In particular 

Banks, Kogut, and Susskind” show that the gauge invariant state 

I-y> = c b+ U(Qj, j+l) dhl IO> 
j J 

represents a massive “photon” with zero momentum; however, since they split 

particle and antiparticle unlike our formulation, they find no additional low lying 

states of interest. To summarize, having formulated the fermion theory so that 

particles and antiparticles can exist at the same lattice point without doubling 

the number of degrees of freedom, we show that in addition to massive states 

there exist low lying massless and gauge invariant states formed of bound pairs 

without flux links in the strong coupling limit. Moreover, these correspond to 

the massless states of the Thirring model. 
19 
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Throughout this discussion we have restricted our attention to gauge invari- 

ant st%es. While it is consistent to work within only this sector since H in (4.12) 

is gauge invariant, we cannot prove in general that this sector contains the state 

of lowest energy. This is because-there exist low lying gauge noninvariant 

states containing particles and/or antiparticles on different sites, but no flux 

links. However, these “unshielded particles” cannot move according to (4.12) 

without the kinetic term K creating massive flux links. As a result of this 

restriction it is reasonable to conjecture that the gauge invariant states will have 

their energy lowered by the action of K relative to the nongauge invariant ones. 

This conjecture has been shown to be true for the case of three sites by explicit 

calculation, but no general proof has been found. 

Depending on how one defines the fermion gradient one is evidently led to 

two different formulations of what one means by the Schwinger .and Thirring 

models for strong couplings. The question of which is the “righV one cannot 

be posed in terms of observation since these are no more than mathematical 

models. We have presented a formulation that preserves the local chiral invar- 

iance of the model and which in addition meets the following criteria: 

1) It is well defined and self-consistent. There is a well defined procedure 

for defining the conserved charges associated with local symmetries such as 

chiral invariance, and moreover the free field limit of any theory formulated in 

our way is guaranteed to be sensible. 

2) The fact that our free field Hamiltonian leads to usual Feynman propa- 

gators says that for weak coupling our version of the theory looks, in perturba- 

tion theory, like ordinary renormizable field theory. 
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3) There is a well-defined procedure for deriving equations of motion and 

comm&ation relations for conserved currents and, for example, the commuta- 

tors of time and space components of conserved currents contain the appropriate 

ffSchwinger terms”. 

The real question which remains to be answered is whether a four-dimensional 

non-Abelian color gauge theory interacting with quarks can reproduce the obser- 

vations of quark and color confinement as well as of hadronic spectra. At the 

same time the formalism applied to Abelian QED must lead to Coulomb’s law 

and the observed properties of “unconfining” Maxwell-Dirac theory. 
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5. THE NON-ABELIAN COLOR GAUGE THEORIES IN 3x-lt DIMENSIONS 

Phe results obtained in the preceding discussion can be directly generalized 

to non-Abelian gauge models in higher dimensions. As in the preceding discus- 

sion, because our formalism includes gauge invariant states with fermions and - 

- 

antifermions at the same lattice site and no flux links, there are low mass states 

in the strong coupling limit. We follow the same prescription of Wilson and 

Kogut and Susskind for the gauge field in 3x-lt dimensions. For the fermion 

field the gradient operator as defined in (1.6) leads to the Hamiltonian 

H = H electric part .of 
0 gauge field 

where 

Si(T-T)E 6’(j -Q ) 6. 1 1 j2,Qzbj3,Q3 ’ etc’ (5 * 2) 

and U(Tl-T2) is a product of terms of the form 

(5.3) 

where A(Q) are the canonical link fields, and h are c-number matrices belonging 

to a specific (N, fl) representation of the gauge group as determined by the choice 

of representation for the fermion fields. Equation (5.2) defines the obvious 

straight line path on the lattice for the flux links joining Tl to-j-, . 

In the strong coupling region of large go the important properties of (5.1) 

are: 

1) The low mass states are those with zero flux links and an arbitrary 

configuration of fermions. All others are pushed up in energy above NgtA. 
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2) When U(Q) hits an unoccupied link-i. e. , one for which no gauge field 

has been excited-it excites the link and increases the energy of the state by 

At this point we proceed.in close parallel to-the discussion of the Schwinger - 

model with strong coupling. Focusing our attention on the sector of gauge invari- 

ant states, we study the way in which the fermionic part of H mixes all the zero 

energy eigenstates of Ho (gauge) that have no flux links to split their degeneracy. 

In a theory with the SU(3) x [SU(3)]color symmetry of the quark model all states 

with (qa or (qqq) at a lattice site in color singlet states are included in the low 

lying sector of gauge invariant states. These are the states having the quantum 

numbers of ordinary hadrons. 

If we choose the same spinor representation introduced in (2.25) and (2.26) 

we can rewrite the fermionic part of H as 

K = x i$(Tl-T2) U(Tl-T2) - Wl)~D+ci2)l (5 * 4) 
-q2 

As before K moves a quark in a straight line fromT2 toTlq2 (or an antiquark 

fromTl toT2) and at the same time excites a unit of gauge flux on each inter- 

vening link. Therefore we must go to second or higher order in K in order to 

mix the degenerate color singlet fluxless states. 

Furthermore since S’(O) = 0, the action of K in second order allows scattering 

and interaction among these states but it introduces no self mass term involving 

only quarks all at the same lattice site. Hence our effective Hamiltonian for the 

low lying gauge invariant states of “bare colorless hadrons” corresponds to a 

theory of bare massless strongly interacting particles. Our starting point is a 

strong coupling theory with the full chiral SU(3) xSU(3) symmetry if we choose a 
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fundamental quark triplet. Instead of having to drive the pion mass down to zero 

to insure PCAC we have a zero mass starting point and must solve the problem 

of generating the hadronic masses either by a dynamical breakdown mechanism 

yet to be explored-or by explicitly introducing chiral breaking interactions into 

H ab initio. 

The real work of solving for the hadronic spectra and interactions still 

remains to be done. What we have formulated here is a starting point in terms 

of a chirally invariant gauge theory (of color) which reduces in the strong 

coupling region to a system of interacting “bare” particles with hadronic quantum 

numbers . In the gauge invariant sector the quark and gluon degrees of freedom 

are frozen out since such states with excited flux links are pushed up to very 

high energy above =giA>A. This is a very different starting point from earlier 

formulations that destroy local chiral invariance by splitting fermion field com- 

ponents onto different lattice sites. 

In conclusion we make some general observations: 

1) According to (5.4) K acting on a fluxless gauge invariant state moves 

a quark or an antiquark, creating the associated flux link. To second order it 

can either move a quark (or antiquark) from an initial site to an intermediate 

one, and then move it back again to where it started, thereby cancelling the flux 

link, since U(j,-j,) U(j,-j,) = 1; or it can move both a quark and an antiquark 

from site j, to j, without creating flux links in the final state. This is illustrated 

in Figs. 3a and b. This amounts to a kinetic energy term as we saw in the 

analysis of the Thirring and Schwinger models. 

2) If there are two hadrons present on different sites, the second order 

application of K can lead to a quark interchange interaction between them, as 

illustrated in Fig. 4. Starting from color singlet states the hadrons will also 
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end up as individual color singlets if no flux links are created in the final state. 

Howwer, SU(3) quantum numbers can be changed. 

3) A single three-quark baryon can move from one site to another on the 

lattice only as a result of 3rd andhigher order -applicationsof K. This is be- 

cause each order of K can move but one quark at a time. This means that 

baryonic masses are displaced relative to the zero order degenerate eigenvalue 

of H 0 by factors of order l/g: in contrast to the l/g2 shift from second order 0 

application of K to the meson states. The significance of this for hadronic mass 

spectra and for the choice of coupling strengths gi remains to be studied. So 

does the entire question of how our bare massless mesonic states become 

dressed to form the true physical states containing (q{) clouds with which they 

can interact via the quark interchange mechanism. 

4) In the gauge invariant sector, all exotic states of nonzero triality con- 

tain flux links and are therefore pushed very high up in energy above gg. 

Exotic states of the second kind-namely, states such as (q~octet(q~)octet singlet I 
with quarks and antiquarks finally coupled to color singlet configurations, but 

not contained in the normal quark model-do occur. However, whereas the 

vacuum and ordinary qi mesonic states will have their degeneracy split and can 

be pushed down in energy with second order application of K, these exotics of 

the second kind are shifted only in higher order since it takes fourth order appli- 

cation of K to move them on the lattice. Hence, if they were stable, we would 

expect to find them lying higher in the energy spectrum. In fact, it is easy to 

see that such states can decay, in second order, to ordinary separated qc states, 

5) Glue balls-that is states of pure gluon, or flux link, configurations- 

lie very high in energy above our low mass gauge invariant sector since they 

will have the energy of at least four flux links, 2gi A. 
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APPENDIX A 

We have introduced the gradient operator on the lattice in the following way 

(“(j) k 
= C ik eikj/Af(kj (A- 1) 

- 
This definition of the gradient does not satisfy the Leibnitz product rule. As a 

matter of fact we can prove the following theorem. 

Theorem: No definition of a gradient operator on the lattice satisfies 

the Leibnitz product rule. 

Proof: Assume conversely that one can define a derivative operator 

which does satisfy. 

d(fg) = fdg + dfg (A-2) 

In particular Eq. (A. 2) implies (choose f=g=const) 

d (const) = 0 (A, 3) 
. - From Eq. (A. 2) it hollows that for interger n 

,(,idj/A) = n (,i(n-W/A) d(eikj/A) (A. 4) 

where k is one of the allowed momenta on the lattice k = 5 mA. Choosing n=L 

in Eq. (A. 4) and using (A. 3) 

d (,iLkj/A) = d(l)=O=L e ( i(L-l)kj/A) d (eikj/A) (A. 5) 

Hence 

d(e )=0 ikj/A 
(A. 6) 

which cannot be true. 
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Next we would like to derive the correct form of the chain rule with our 

defin&ion of the gradient. By definition 

v(fg) = c ik eikj’* (fg) (k) = c ikeikj’* c e 
-ikj l/A 

L fcit) g(Y) 
k k j 

= c ik .%/A :-ikjt/A c iQljt/A fQl eie2jt/A gQ 

k, jt QlQ2 2 

= c ik eikj/A c e 
-i (k-Ql-Q,) j ‘/A 

k -1 
L f (Q,) g (Q,) 

J 
(A.7) 

QlQ2 

It is clear that, 

+ce -i(k-Q I-Q,) jt/A 

‘1 
= 6gE-Q,-Q,) f s(k-Q,-Q,-2rA) + 6(k-Q1-Q2+2”h) 

J * 

Hence, ) 

v(fg) = c i Ql+Q2) e 
i(Q,+Q,) j/A 

“lQ2 
fQl gQ2 ’ g1 - IQ,+Q, I 

+ QF i(Ql+Q2-2?m)e 
i(Q,+Q,)j/A 

12 

+ c i(Ql+Q2+2rA)e 
i(Q,+Q,)j/A 

llQ2 
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which can be rewritten as, 

?(fg) = c i(Ql+Q2) e 
i (Q,+Q,) j/A 

“lQ2 
f(Q,) g (Q,) 

f(Q,) g(Q2) e(- - I++ 4) 

-Ce 
i (Q,+Q,) j/A 

“lQ2 
f(Q,) g(Q,) 6’(% - I? - 2nl) (A.9) 

Note that in the first term on the right hand side of Eq. (A. 9) the sum over QI 

and Q2 is unrestricted due to the sum of contributions coming from all three 

terms on the right hand side of Eq. (D. 8). It is easy to see that the first term 

in Eq. (D. 9) gives the usual Leibnitz product rule. The other two terms are 

the modification to the usual chain rule. 

VW = f. Vg + Vf- g + c 
j,j, 

WQ17 Q2) f(Ql) g(Q,) 

where 

(A. 10) 

S(j;Q,,Q,)= 2niA 
itQl+Q2)j/A 

_ c eitQl+Q2W~ 

“lQ2 
e(s- lp -2$/ (A. 11) 

It is important to note that the support of S comes from the regions (for large N) 

Ql+Q2>rA and Ql+Q2<-“n. This immediately implies that S does not have a k=O 

component in its fourier decomposition 

S(k=O) = 2 C S(j) = 0 (A, 12) 
j 
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Hence we can define a function I(j;QlQ,) through the relation 

-c, 
VI(j) = S(j) 

In momentum space Eq. (A. 13) implies 

ikI(k) = S(k) . 

Thus, 

,ikj/A ,&j/A 
I(j;QlQ2) = c ik S(k; Ql,Q2) = c 7 + c emikjtiA S(j;Ql,Q,) 

k k J * *t 

= ~ $ c. ,ik(;;Y/A 
*t Stj; Q1, Q2) 
J 

and so 

(A. 13) 

- c W;Q,,Q,) f(n,) 
“lQ2 

as desired. 
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APPENDIX B 

T&z object of this appendix is to find the spectrum, t(k), of the second order 

Thirring Hamiltonian in the sector Q5 = 2S3 = -L-l-Z, and compute the L - M limit 

of the expression for E(k). Recapitulating, we have (3.13) - 

H eff = f jF2 (W1-j2))2 [Is,(j,)S,(j,) - S+tj,PJj,) - +] P. 1) 

and 

Ho = -ALg 11 = -Agx(nb(j) + n,(j) - 1)2 . (33.2) 

If we let I$,> be the state of all spins down, so that 

S-(j) I#,> = 0 (B-3) 

for all ‘jr, then we can define L= (2N+l) linearly independent states 

(B.4) 

which span the subspace Q5 = -L+2. 

It remains to show the l+(k)> s are eigenstates of Heff. To do this, evaluate 

$ T eike’A S+(Qjl I$,> 

zz A -- c. ,ike bt(jl-j2))2 [sjlQs+@ S’2Qs+(jlg I$‘,> 
g Q,j,,l, & 

P-5) 

The proof is completed if we then observe the following two facts; 

@(Q-j,))2 = J 

j2 

-$ k -;2 ei(kI+k2)(Q-j2)‘A = $ zk2 

‘2’ 1’ 2 

and 

xm$ @t(jl-Q))2 = e 
ikj,/A 

X(k) 
& 

(B.6) 

P. 7) 
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where, for L --r~, X(k) takes the form 

(B. 8) 
Before proving (B. 7) and (B. 8) we see that direct substitution of (B. 6) and (B. 7) 

into (B. 5) yields 

Heff l+(k)> = - $ ck2 + x(-k) 1 IQtk)> 

which, agrees with (3.15) if you add back the common energy of -gLA coming 

from Ho. 

The proof of (B. 7) procedes as follows: 

. - 
y St(jl-Q) 2 = > 

klk2 iOrl+k2Hj1-Q)h e+ik!!/A 

Q Q, kl> k2 
-yTe 

P. 9) 
= k% ---$p - klk2 *p@+kl-k2) e ioC l+k2) j ,/A 

12 

where 6 (k -t-k -k) is the periodic &function defined to be zero unless k=kl+k2 -+ 
P 1 2 

multiple of 27rA. Since kl+k2=k + (2nA)r, Eq. (B. 9) becomes 

,iM /A 
ikj 1 

c- 
Q & ?\ 

y (St(jl-Q))2 = e X&i) 
a 

where 

x(-k)+ c 
ks k2 

- klk2 6p(k1+k2-k) . 
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To evaluate the explicit form of X(k) we observe that due to the periodic 6- 

fun&i-on there are three regions which contribute to the double sum, namely: 

k2 = k-k1 e(n- k-k1 I) , 

.k2 = k-kl-2r e(k-kl-r) , - 

and k, = k-k,+2n e (-T- (k-k+ ) . 

Hence, 

4 .I. 

c kb(k/c kl-7r) e(k)-e(-r-(k-kl)) 0(-k) 
I1 

- klk2 dp(k-kl-k2) = $ c q2+ 2 
4 

and so as L-cm this becomes: 

1 
I 

T 2 1 

!fG -r I q dq+5 ~-~ / 
k-n 

I 

qdq e(k) - irkqdq 8(-k) = % + i(k2-2kr) 

1 

2 

=;( Ikl-r)2 -; . 
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APPENDIX C 

Iqthis appendix we formulate the problem of diagonalizing the effective 

second order Thirring Hamiltonian in the sector Q, = 2S3 = -L+4. As before, 

since Ho = -LAg I- for all of the Q5-sectors we will measure.all energies wrt. 

E. = -LgA and so .we want to solve the equation 

H effI$>= El+ (C. 1) 

for 

H eff = i jl”J, (Wl-j,))2 (s3ci,) S,(j,) -S+U,) SJj,) - +) . (C. 2) 
, 

It is clear that the most general state with Q5 = -L+4 can be represented as 

W = C dn m S+(n) S+(m) IQ,> 
n,m , 
n#m 

. - where I$,> is the unique state of Q5 = 2S3 = -L. As in Appendix’ B we evaluate 

Heff I+> = E I$> = c AZ 
n, m 

S+(n) S+(m) 
nm 1 I$,> . tc- 3) 

nfm 
Using the usual commutation relations for spin matrices we obtain 

SJj,), S+(n) -2 S+tj,) S+(m) dn m “j 

, 2 
n 

+ S+(j,) S+(m) ‘j n+S+tjl) S+tn) “j m I$,> tcs4) 

2 2 I 

and 

1) S3 (j,), S+(n) S+(m) 1 I$,9 = 
[ 

S+(n) ‘+frn) ‘nj 
( 

“nj +6 * “mj 
1 2 “Jl 2 

+6 6 +6 6 nj nj l 6 +6 +a +6 1 2 mj, mj, ) ( -5 nj, nj, mj, mj, iI I?+)> 
(C. 5) 
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Substituting (C. 4) and (C. 5) into (C. 3) and equating coefficients of S+(Q) S+(p) we 
- 

obtain 
-cI 

(E-2c)dQ p = $ 2 
6’(Q-P) “lap - g A c (6t(Q-n))2dn p-$ c(6t(p-m))2dQ m 

n 7 m , 

where 

If we think of 4 
Q,P 

as a two variable quasi-particle wave function (C. 6) describes 

a scattering problem in a potential fl g (6’ (Q-P))” . Going to momentum space 

dQ p E c (C.8) 7 
klk2 

a(k,, k2) Iklk2>(Q p) z c a’l k2) eiklQeikZP 
7 

and Eq. (C. 6) becomes 

. - 
x!$ +Xq 

I 
a($ kn) 

= c V(ktkT;k;k2 a(k;, k? 
k’k’ t.7-r 

where 

kt = kl+k2 

k{ = ki+ki 

and 

(Va)(k&l =& c 6 (k -k’) 
g k’ kt P t t 

t’ 7r 

(C. 9) 

kT= kl-k2 

ka= ki-k~ 
(C. 10) 

64p2) 7 6p (ql+ q2 + 4 (ka- 

Hence the center of mass motion separates, up to an umklapp, and one is left 

with a nontrivial quasi-particles scattering problem. 
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TABLE CAPTIONS 

I. A+ist of the eigenstates of Ho defined in (2.26) and their corresponding 

eigenvalues as well as their Q and Q5 eigenvalues. 

II. The eigenstates of V. defined (3.5)) their corresponding eigenenergies, and 

eigenvalues of Q and Q5. 

III. The eigenstates of V defined (3.5) for the special case of a three site lattice. 

The states are labeled according to the notation of (3.10) and lists the 

eigenenergies as well as the Qel and Q5 eigenvalues for each state. 
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TABLE I - 

-State 
(Per Site) 

Q Q5 Energy <HO> 

I 09 

b+b;d+d; I o> 

bfb; I O> 2 

d;d= I O> -2 

b;IO> 

bflO> 

d=lO> 

o> 

o> 

0 

0 

+1 

+1 

-1 

-1 

+1 

+1 

-1 

-1 

-2 

+2 

0 

0 

-1 -2 goA 

-1 -2 goA 

-1 -2 g(p 

-1 -2 goA 

+1 -2 !?()A 

+1 -2 qp 

+1 -2 q-p 

+1 -2 goA 

-8 !?()A 

0 

0 

0 

-4 &?()A 

-4 goA 

0 

0 



I 
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TABLE III 

States for 3 sites E strong ‘1 ‘2 ‘el Q5 

- 3Ag 0 0 0 

(;$;) -3Ag 1 1 0 - 1: 

- 3Ag 3 3 0 +3 
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FIGURE CAPTIONS 

1. Energy-momentum dispersion relation for a free Dirac particle with the 

gradient replaced on a lattice by the difference operator. 

2. Low lying states of the Thirring model for weak coupling. 
- 

3. Motion of a q{ state on a lattice to second order l/g2 . (a) q (or ?I) moves 

to a different lattice site exciting the intervening flux links and then returns; 

(b) q moves to a new site and is then followed by the i. 

4. Quark interchange interaction between mesons. 
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