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From a theoretical point of view, the nd system is in a privileged position 
as compared to other n-nuclei systems, as the Faddeev equations provide the 
basis for an exact formulation of three body problems. As we have heard in 
the report by A. Thomas, efforts have been made to solve Faddeev equations 
for the nd system, and the success obtained with these first results is stim- 
ulating. Unfortunately, the attempts to obtain solutions of Faddeev equations 
face limitations of practical nature, as soon as the energy goes above the 
very low energy limit (let us say 100 MeV), due to the large number of cou- 
pled angular momentum states involved. 

At this point the multiple scattering method comes into play. At en- 
ergies which are not very low, the rather simple multiple scattering calcula- 
tions, without appeal to model-dependent calculations, are able to give a 
fairly good description of the 7rd elastic scattering process. 

. 

Applications of the multiple scattering method to evaluate 7rd scattering 
processes have been made by several authors.1 Technical details of the 
computations are not unifor-mly treated in the several papers, however, 
which makes it difficult to develop a critical feeling for the value and the 
limitations of the method. Some of the effects which are or are not accounted 
for in some of these computations (such as the fermi-motion dependence of 
the amplitudes, presence of D wave component in deuteron wavefunction, nu- 
cleon recoil) may have important consequences in the results ,- such as in 
large angle scattering, Besides, in each application only one or a limited 
range of values of the energy have been considered, and, comparing the re- 
suits, we note that the performance of the calculations varies strongly with 
the energy. 

The existing data are scarce, and of low statistics, and must be used all 
as a whole if one’wishes to learn about the applicability of the method, We 
here discuss results which, although they do not complete the analysis, rep- 
resent an effort in this direction. 2 

We find that special attention must be given to a point which has been 
overlooked in most calculations, which is that of the indetermination in the 
values of the kinematical variables entering in the evaluation of the two par- 
ticLe amplitudes e One deals essentially with off-the-energy shell matrix ele- 
ments of two-body transition operators. In general, these matrix elements 
are not known, and the values to be used have to be guessed, following some 
chosen prescription, from the on-the-energy values which are obtained from 
direct two-body experiments. 

KINEMATICAL AMBIGUITIES. SOME SELECTED PRESCRIPTIONS. 

The kinematical arbitrariness which is characteristic of this calculation 
can lead to very different predictions for the processes studied. We specify 
below three ways that can be taken to solve the indeterminacy. For easy fu- 
ture reference we call them prescriptions A, B, and C. 
i. Prescription A. Faddeev equations and reduction from three body to two 
body operators. The exact three body amplitude for nd scattering given by 
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Faddeev equations can be expanded in terms of the two-body collision opera- 
tors, in the form of a multiple scattering series. In the explicit evaluation 
of the terms of the expansion, care must be taken when expressing the ma- 
trix elements of operators defined in three-particle Hilbert space in terms 
of the usual two-body matrix elements. We can then see that the value of the 
energy parameter to be used becomes uniquely determined. Attention to this 
point has been called by Thomas. 3 

Let the three particles be labeled by the indices 1, 2, and 3 with mo- 
menta F , p’ , < in the lab system of reference. Let us select a pair (2,3), 
and trea t thJpa&icle 1 separately. We define the new momentum variables 

K = Fl + F2 + F3 9 rl = (m3F2 - m2F3)/ (m2 + m3) 

and rl = [(m, + m3Kl - mlF2 + F33)lL(ml + m2 + m3) (1) 

internal momentum 
the momentum of 

Ho = @W1) + Es;/2M,) 

The selected pair of particles can be any of the three possible choices, ana 
new (not independent) sets of variables can be defined for each case. Each 
choice is called a channel. Let us call v1 the potential acting between par- 
ticles 2 and 3, v2 the potential acting between 1 and 3, and so on. An im- 
portant concept is that of the channel Hamiltonian 

ha! = 092~~ ) + (9;/2Ma) + va (3) 

where there appears interaction only between the two particles forming the 
pair in channel Q. The channel resolvent is 

g,(z) = (z - ha)-’ 
Channel operators depend on the relative coordinates of only two particles, 
and their matrix element between three free particle states can be expressed 
in terms of operators defined in the two-body Hilbert space. Let us call 

i! = k;/2pa + v, 

the two-body Hamiltonian in channel CY, and 

i,(z) = (z - ia) -1 

the corresponding two-body resolvent. We can then reduce a three-body 
channel matrix element writing 

(7) 
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The displacement in the value of the argument of the resolvent is very im- 
portant here. 

The three body transition matrix T(z) is written as a sum Trl: +T +T , 
where T , T2, and T3 satisfy the coupled equations T 
and sf?ni arly for T2 and T3. i 

1 = ti + ty& 2 T3? 

three free particles, and 
Here go(z) = (z-Ho)-l is the reso vent for 

(8) 

are channel a! transition operators acting in the three particle Hilbert space, 
and satisfying a reduction relation analogous to Eq. (7). 

The Faddeev version of the multiple scattering series is obtained in an 
obvious way by iterating the coupled integral equations written above. For 
the elastic scattering of particle 1 by the (2,3) bound pair the transition op- 
erator T(z) can be expanded in the form of a multiple scattering series 

T(z) =t,W + t;(Z) -i- t2(zkOWt3(Z) + t3tzkOtW2(z) + . . . (9) 
where the interpretation of the terms is the usual one, and all operators are 
defined in the three-particle Hilbert space. The reduction to matrix elements 
of two body operators is made with the appropriate shift corresponding to the 
energy of the particle which, in each term, does not participate in the pro- 
cess. Let E be the value of the total kinetic energy of the particle-deuteron 
system in the zenter-of-mass system, Fthe nucleon (particle 1) lab mo- 
mentum, and p@p the initial (final) meson (particle 3) momentum in the lab 
sys tern. For the term with particle 2 as spectator, 

<pf,-~,pfIt2(E)IB:-~$ =6(~2<2)6@‘-Ii)ck’:1;2 (10) 

where I?@?) is the total initial (final) momentum of the three particles, F 
(;Ef,) is the initial (final) momentum of the spectator with respect to the c&ter 
of mass, cl pl) is the initial (final) momentum of the meson relative to the 
center of mass of the interacting meson-nucleon system, and M2 is given by 

M2 = mN(mN + mT)/ (2mN + mT) . 
The argument of the two body transition operator i2 then reads 

E - qi/2M2 = E - [(am N i m,)% mNF]2/[2mN(mN + m.,,)(2mN + mT)l (11) 

In the evaluation of the double scattering terms, one introduces complete 
sets of three free particle states between the operators, and the reduction to 
the two-body operators takes place in a manner analogous to that described 
above. . 
ii. Prescription B. The meson collides with an on-shell physical nucleon. 
If fermi-motion effects are taken into account, for each value and each direc- 
tion of the nucleon momentum inside the deuteron, a different value is used 
for the relative energy between the incident particle and the nucleon. 

iii. Prescription C. The spectator nucleon is treated as an on-shell physical 
nucleon. Experiments in which there is a breakup of the deuteron, and where 
an identification can be made between the spectator and the nucleon which was 
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hit by the incident particle, show that the spectator nucleon recoils with a . 
momentum distribution which is, in good approximation, the same as ex- 

., 

petted from the deuteron wavefunction. We are thus led to the assumption - 
that the spectator nucleon behaves from beginning to end as an on-shell par- 
ticR. The nucleon which participates in the collision must then be treated as 
an unphysical particle in the initial and final states. To fulfill energy con- 
servation, the energy of the participant nucleon is equal to the deuteron mass 
md minus the energy mN + P2/2mN carried by the spectator nucleonwhere 
P is the fermi-motion momentum. Thus the’participant nucleon behaves as 
having an effective mass meff such that 

meff + P2/2meff =m -m d N - P2/2mN 

In a certain sense, prescriptions B and C exchange the roles of the spec- 
-tator and the participant nucleons. At zero fermi momentum the two pre- 
scriptions almost coincide, as then m =m -m xm e 

Prescription B has been often use Pi n mudltiple%catteYing calculations of 
7rd pr0cesses.l Presc.ription C was used in the analysis of pion deuteron 
breakup scattering.* 

While prescription B seems to be intuitively more appealing, and pre- 
scription C has some kind of experimental support, prescriptipn A has a 
safer theoretical basis. As off-energy-shell matrix elements are not intu- 
itive quantities, we should rather rely on the more formal approach. The 
nucleons are not free physical particles inside the deuteron, and prescrip- 
tion A tells us how to take partially 
into account the effect in our calcu- 
lation of the presence of two parti- 
cles in the target nucleus. 

In Fig. 1 are shown the values 
of the kinetic energy (excluded rest 
masses) in the center-of-mass sys- 
tem of the two colliding particles, 
as a function of the fermi motion m 
momentum. The relative energy 
depends not only on the magnitude, 
but also on the direction of the fermi 
motion momentum, and the lines 
drawn represent the average value 
over all directions for a fixed mag- 
nitude P of the momentum. In pre- 
scription B, the value plotted for 
the energy does not depend much on 
the value of the fermi momentum, 
and remains almost constant, while 
in cases A and C the variation is 
strong. We can thus expect that 
fermi-motion effects may be 
stronger in cases A and C than in 
case B. These predictions have 
been confirmed by our calculations, 
covering the interval of energies 
from zero up to about 400 MeV. A 

P 2x104 4x10” 
NUCLEON MOMENTUM SQUARE (MeV/c j2 

1941*6 - 

Fig. l--Values of the total kinetic 
energy (rest masses excluded) in the 
?TN c. m. system, according to pre- 
scriptions A, B, and C, against 
fermi-motion momentum squared. 
The energy values are averaged 
over all directions for a given mag- 
nitude of fermi momentum, 
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main observation is that fermi motion effects are extremely important for 
the correct evaluation of large angle scattering, because the strong cancel- 
lations which occur in the evaluation of the cross sections are sensitive to 
the pr%per account of the variation of the values of integrand as a conse- 
quence of these effects. A factor of up to four in the differential cross sec- 
tion can appear in the backward angles as the fermi motion effect is switched 
Off. 

We may expect that in the cases of prescriptions A and- C the calcula- 
tions are more sensitive to changes in the large momentum tail of the deu- 
teron wavefunction than they are in case B. 

OFF THE ENERGY SHELL BEHAVIOR OF AMPLITUDES 

For each partial wave we must evaluate an off-shell amplitude 
<k’If (y) Ik> where k, k’ are the initial and final relative momenta of the 
colli $ ing pair, and y is the energy parameter defined according to each of the 
prescriptions adopted: These three quantities are not related among them- 
selves through the usual on-shell relations. Integration is made over all 
initial and final values of the nucleon momentum and the values of k, k’, and 
y vary ra.ther disconnectedly. We must define the matrix element as a func- 
tion of these variables. 

A simple recipe consists in writing <k’lfe(y) lk> = (kk’) 
i$eY) 

where 6 
-4in 6I (y)e 

@) is the physically measured nN phase shift at energy y.’ We have ’ 
observe % in the evaluation of nd cross section that, due to the smoothing 

iL 
"0 100 200 300 400 500 

n INCIDENT PION KINETIC ENERGY ( MeV,!,., 

Fig. 2--Forward differential cross 
section for 71-d elastic scattering 
with Coulomb interaction switched 
off, comparing results obtained 
with kinematical descriptions A, 
B, C described in the text. 
Curve D shows results obtained 
neglecting fermi-motion effects. 
The peak in Curve A is displaced 
about 6 MeV towards higher en- 
ergies as compared to the other 
curves. 

caused by the integrations over k and k’, 
it makes almost no difference to write 
(kk’)i or simply k in the. equation above. 

Another possible specification for 
the off-shell extrapolation consists in 
defining a separable potential for each 
partial amplitude. 3 

FORWARD SCATTERING 

In forward scattering, as in the 
value of the total cross section, fermi 
motion effects are not so important, un- 
less we are near the dominant and res- 
onant wave. In the case of prd scattering 
near the P33 resonance the influence of 
the fermi motion effect can be about 35% 
in the forward cross section in the case 
of prescription C and 15% in the case of 
prescription B. This behavior can be - 
seen in Fig. 2 where we plot the forward 
differential cross section for 7rd elastic 
scattering as a function of the meson 
incident energy, comparing the three 
different prescriptions and the usual 
calculation without account for fermi 
motion effects (prescriptions B and C 
coincide in this case). Of course the 
Coulomb interaction has not been taken 
into account. 
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We see in Fig. 2 that the position of the peak due to the P33 resonance 
is nearly the same in all cases, with a shift of about 6 MeV towards higher 
values of the energy observed in the case of prescription A. This is an im- 
portax$, although rather obvious, result as we should expect a displacement 
to occur in the position of the peak as a consequence of the shift in the value 
of the energy caused by the reduction from three-body to two-body operators. 
This result, which is shown in Fig. 2 for the nuclear (non-Coulomb) inter- 
action for zero angle scattering, is also true of the total cross section, as 
the elastic Ird scattering is almost completely forward. It is interesting to 
remark that larger shifts are expected to occur in the scattering by heavier 
nuclei. 

We must call attention to the result, shown in the figure, that the values 
of the total and forward cross sections, evaluated with prescription A in the 
resonance region, are remarkably lower than the values obtained in the other 
two cases. 

EXPERIMENTAL RESULTS AND THEORETICAL CALCULATIONS 
It is hoped that the chronic scarcity of data on nd scattering will change 

soon, as already indicated by the recent experiment at 4’7.5 MeV by D. Axen 
et al. ,5 and the expected results of the measurements at 347 MeV/c (234.4 
MeV kinetic energy) and 443 MeV/c (324.9 MeV kinetic energy) performed by 
a collaboration of the 

5 
roups at the University of Virginia and at Los Alamos 

Scientific Laboratory. There are reported experimental results on the 
elastic ad differential cross section for incident pions at 61 MeV, 7 85 MeV ,8 
140 MeV,g*lo 182 MeV,ll 224 MeV,12 256 MeV,13 300 MeV,14 and 330 
MeV. l5 For large angle scattering, between 140 and 180 degrees in the lab- 
oratory sys tern, there are results obtained by Schroeder et al. I6 at 375.7, 
412.4,, and 469.6 MeV. The work of Gabathuler et al. l3 also includes mea- 
surements of the backward cross section at 160 degrees lab scattering angle 
for incident pions of 141, 163, 185, and 208 MeV. 

In Figs. 3, 4, 5, and 6 (see also Ref. 2) we confront those data with re- 
sults of multiple scattering calculations, comparing the different prescrip- 
tions for the kinematical variables used in the evaluation of the two-body 
amplitudes. The calculations include double scattering terms, allowing for 
nucleon recoil, and including both the delta function and the principal value 
parts originated from the pole in the propagator. Corrections to the differ- 
ential cross section arising from the double scattering terms never amount 
to more than 20 percent in the whole range of angles and of energies here 
considered. It is thus unnecessary to include fermi-motion dependence in the 
double scattering terms, which brings an important simplification in the nu- 
merical computations. The comparatively small contribution obtained for the 
double scattering terms makes us confident that higher order terms of the 
series can be neglected. The calculations account for fermi motion effects 
in the single scattering terms, and are made with Moravcsik wavefunction, 
with 7 percent d-wave component. 

As shown in Fig. 3, the experimental results obtained at 47.5 MeV are 
reasonably well fitted by a multiple scattering calculation with the most usual 
treatment of the two-body kinematics, namely, prescription B. Fermi mo- 
tion effects do not seem to contribute substantially to improve the quality of 
this theoretical curve. The other two prescriptions perform badly at this en- 
ergy. However, we must remark that such observations should not be taken 
on their own as a basis of judgment about the method of calculation. In fact, 
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Figs. 3, 4, 5, and 6-- Data on rd elastic scattering and theoretical curves 
representing results of multiple scattering calculations. Labels A (solid), Be 
(dotted), and C (dashed) refer to the kinds of kinematical prescription de- 
scribed in the text. ‘Curve D (dot-dashed) at 47.5 MeV is obtained without ac- 
count for fermi motion. Notice the enlarged scale used for large angles at 
142 and 224 MeV. The solid curves best fit the data, if 47.5 MeV is con- 
sidered too low energy for this kind of theoretical calculation. 
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we can see that the situation becomes very different at slightly higher ener- 
gies. Thus, at 85, 142, 182, 224, and 256 MeV, as exemplified in Figs. 4, 
5, and 6 (see also Ref. 2), prescription A seems to describe the data better. 
From the inspection of the figures, we are led to believe that these 
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theoretical calculations make sense at these energies. The poor results ob- 
tamed with prescription A at 47.5 MeV should thus be taken as demonstrating 
that this energy is too low for a multiple scattering calculation involving only 
sin@ and double scattering terms. Binding corrections, off-the-energy 
shell extrapolations, or complicated three-body mechanisms might play im- 
portant roles at such low energies. 

-- 

Above 230 MeV the experimental cross sections at large scattering 
angles gain a structure which is not reproduced by these theoretical-calcula- 
tions. At small angles up to about 70 degrees in lab system the calculated 
values are reasonable, but at large angles the calculations are wrong by a 
factor of about two. (See also Ref. 2 for the energy behavior of large angle 
cross sections. ) 

We may speculate on what may be the cause of this discrepancy, We no- 
tice that the strong reduction in the large angle experimental cross section, 
as compared to the calculated values, occurs suddenly as the energy goes 
above 230 MeV. At this energy some new dynamical phenomenon may have 
started to play a role. We may think for example that pion production and 
consequent reabsorption by the other nucleon may have started to contribute 
significantly. At these energies, which are above the threshold for pion pro- 
duction, this essentially three-body mechanism could eventually be respon- 
sible for a change in the dynamics of the process. 

Another possible explanation for the observed discrepancy is that we may 
have entered in a range of momentum transfer where the effects of our in- 
sufficient knowledge of the deuteron structure may have started to affect the 
calculations. A change in the large momentum tail in the deuteron wave- 
function may substantially change the value of the integral over internal 
fermi momentum in the expression of the differential cross section. As an 
example, we mention that the introduction of the d wave component in deu- 
teron wavefunction causes an increase by a factor 2 in the calculated cross 
section at large angles in the energies of Schroeder experiment (375.7 MeV 
and over). 

These effects due to changes in the deuteron structure or in meson- 
nucleon interaction might be expected to be small at first sight. However we 
must notice that the value calculated for the nd differential cross section at 
large angles is several orders of magnitude smaller than the forward cross 
section, due to strong cancellations occurring in the integration procedure. 
The results obtained after such cancellations have a delicate and strong de- 
pendence on the quantities in the integrand. 

The extreme sensitivity of the backward rd elastic cross section at large 
angles provides an excellent ground to study the deuteron structure and prop- 
erties of the meson-deuteron and meson-nucleon interaction. 

We find that more and more accurate experiments on rd scattering 
should be performed as soon as possible. The region of energies around and 
above 200 MeV should be carefully studied, as important changes in the pro- 
cess seem to take place in this region. 

On the other hand, it is obvious that the theoretical effort must also be 
increased, both in the calculations with multiple scattering method and in 
direct solutions of Faddeev integral equations. A combination of the two 
methods, joining the nice features of each, may be an interesting and re- 
warding program of investigation. 



-lO- 

REFERENCES 
1. Multiple scattering calculations of ?rd elastic scattering: R. M. Rock- 

more, Phys. Rev. 105, 256 (1957); A. Ramakrishnan, V. Devanathan, 
K;“Venkatesan, NucrPhys. 29, 680 (1962); H. N. Pendleton, Phys, 
Rev. 131, 1833 (1963); C. Ca&on, Phys. Rev. C 2, 1224 (1970); D. S. 
Bederxucl. Phys. B 34, 189 (1971); W. R. Gibbs, Phys. Rev. C 3, 
112’7 (1971); R. L. Lanzu, Nucl. Phys. B 35, 390 (1971); J. M. 
Wallace, Phys. Rev. D 5, 1840 (1972); K. zbathuler and C. Wilkin, 
Nucl. Phys. B 70, 215 (1974); E. .Ferreira, L. P. Rosa, and Z. D. 
Thorn&, Nuovo zmento G, 277 (1974), and Nuovo Cimento Lett. 2, 
707 (1974); M. A. Braun and V. B. Senyushkin, Sov. J. Nucl. Phys. 21, 
147 (1975). 

2. E. M. Ferreira, L. P. Rosa, and Z. D. Thorn;, paper contributed to 
this conference (to be published). 

3. A. W. Thomas, Proc, Int. Conf. on Few Body Problems in Nuclear and 
Particle Physics, Quebec, 27-31 Aug 1974 (Les Presses de L’Universite 
Laval, Quebec, 1975), p. 287. 

4. E. M. Ferreira, L. P. Rosa, and Z. D. Theme, Nuovo Cimento 2&, 
187 (1974). 

5. D. Axen, G. Duesdieker, L. Felawka, Q. Ingram, R. Johnson, G. 
Jones, D. Lepatourel, M. Salomon, W. Westlund, L. Robertson, Nucl. 
Phys. A 256, 387 (1976). 

6. University of Virginia and Los Alamos Scientific Laboratory Collabora- 
. tion - Preliminary Data, Los Alamos Report LA-6156-R, and private 

communication by J. IMcCarthy. 
7. A. M. Sachs, H, Winick, and B. A. Wooten, Phys. Rev.. 109, 1733 

(1958). 
8. K. C. Rogers and L. M. Lederman, Phys. Rev. 105, 247 (1957). 
9. E. Arase, G. Goldhaber, and S. Goldhaber, Phys. Rev. 90, 160 (1953). 

10. E. G. Pewitt , T. H. Fields, G. B. Y odh, J. G. FetkovicE and M. 
Derrick, Phys. Rev. 131, 1826 (1963). 

11. J. H. Norem, Nucl. Ps. B 33, 512 (1971). 
12. J. L. Acioli, Ph.D. thesis, Uxversity of Chicago,. 1968 (unpublished). 
13. K. Gabathuler, C. R. Cox, J. J. Domingo, J. Rohlin, N. W. Tanner, 

C. Wilkin, Nucl. Phys. B 55, 397 (1973). 
14. L. S. Dul’kova, I. B. Sokolova, and M. G. Shafranova, Sov. ‘Phys. - 

JETP 35, 217 (1959). 
15. G. Brunhart, G. S. Faughn, V. P. Kenney, Nuovo Cimento 24 1162 -’ 

(1963). 
16. L. S. Schroeder, D. G. Crabb, R. Keller, J. R. O’Fallon, T. J. 

Richards, R. J. Ott, J. Trischuk, and J. Va’vra, Phys. Rev. Lett. 27, . - 
1813 (1971). i 


