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Multi-objective multi-generation Gaussian process
optimizer for design optimization

Xiaobiao Huang

Abstract—We present a multi-objective optimization algorithm
that uses Gaussian process (GP) regression-based models to
generate or select trial solutions in a multi-generation iterative
procedure. In each generation, a surrogate model is constructed
for each objective function with the sample data. The models
are used to evaluate solutions and to select the ones with a
high potential before they are evaluated on the actual system.
Since the trial solutions selected by the GP models tend to
have better performance than other methods that only rely on
random operations, the new algorithm has much better efficiency
in exploring the parameter space. Simulations with multiple test
cases show that the new algorithm has a substantially higher
convergence speed that the NSGA-II and PSO algorithms.

Index Terms—Gaussian process, optimization, multi-objective

I. INTRODUCTION

THE design of a complex system often requires the search
of the ideal solution among a multi-variable parameter

space. The ideal solution may involve a trade-off of competing
performance requirements. In recent years, multi-objective
stochastic optimization has been widely adopted to discover
the set of solutions with the best performances, i.e., the
Pareto front. These include multi-objective genetic algorithms
(MOGA) [1], [2] and multi-objective particle swarm optimiza-
tion (MOPSO) [3], [4].

In an optimization many trial solutions will be evaluated. In
a design study, typically an evaluation involves the numeric
simulation of the physics processes that affect the system
performance. Such a simulation could be computationally
expensive, especially as the current trend is to build in as
many details into the physics model as possible. Therefore,
the efficiency of the optimization algorithm is very important.

In MOGA and MOPSO algorithms, an iterative process is
executed to update a population of solutions. During each
iteration, which may be referred to as a generation, new trial
solutions are generated and evaluated. Both methods employ
stochastic operations to produce new solutions with existing
good solutions, although the details differ. These operations
are heuristically effective, but are intrinsically inefficient as
the new solutions are not based on any valid prediction.

Both MOGA [5]–[7] and MOPSO [8], [9] algorithms have
found use in the accelerator design studies in recent years.
There is a strong incentive to develop more powerful methods
as the design of future accelerators is becoming more chal-
lenging.
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In this study, we propose to use posterior Gaussian process
(GP) [10]–[15] models to generate or select new trial solutions.
A posterior Gaussian process is a non-parametric, analytic
model derived from a prior Gaussian process and the sample
data, based on the Bayesian inference. It serves as a surrogate
model of the actual physics model that governs the system and
produces the sample data. The GP model can be used to predict
the performance of solutions not yet evaluated, along with
an uncertainty estimate. With the GP model, only solutions
with a high likelihood of producing good performances will
be selected for evaluation. Therefore, the efficiency of the
algorithm will be substantially higher than algorithms that do
not have the prediction ability.

In Section II we gives a brief introduction to the Gaussian
process regression and optimization. The multi-generation GP
optimzier is described in Section III. A test of the new
optimizer with analytic functions is presented in Section IV.
The conclusion is given in Section V.

II. GAUSSIAN PROCESS REGRESSION AND OPTIMIZATION

The Gaussian process regression is a type of Bayesian
inference, in which one combines a prior statistical model
and the observed evidences to deduce knowledge of the actual
statistical model, based on Bayes’ theorem of the conditional
probabilities.

A Gaussian process is a statistical model of the distribution
of a random function over space or time (distribution of a
parameter space is assumed in the present context). The GP
not only gives the probability distribution of the function at
one location, but also its joint distribution with the function
value at any other location. The joint distribution is a normal
distribution. For an unknown function over a parameter space,
a prior Gaussian process can be specified with the prior mean
function m(x) and the kernel function k(x,x′), where x and
x′ are vectors that represent points in the parameter space.
Without any knowledge about the function, the prior mean is
often assumed m(x) = 0. The kernel function represents the
covariance of the function values at two locations. It is often
assumed to take the squared exponential form [14], [15],

k(x,x′) = Σ2
f exp(−1

2
(x− x′)TΘ−2(x− x′)), (1)

where Σf is the estimated variance of the function, Θ =
diag(θ1, θ2, · · · , θn) is a diagonal matrix and the θi parameters
specify the correlation of the function values at two points
separated in space in the direction of xi coordinate.

After a number of sample data points, given as (xi, fi =
f(xi)), i = 1, 2, · · · , t, are taken from the parameter space,



we would like to know the function value at a new point xt+1.
From the prior GP, the joint distribution of the sample data and
the new point is given by a multi-variate normal distribution,

N
(

0,

(
K k
kT k(xt+1,xt+1),

))
(2)

where K is the kernel matrix, whose elements are Kij =
k(xi,xj), and the kernel vector is given by ki = k(xi,xt+1).
The prior joint distribution function, Eq. 2, and the evidence
by the sample data set allow us to calculate the conditional dis-
tribution of the function value at point xt+1, which is a normal
distribution given by its mean and standard deviation [14],

µt+1 = kTK−1ft, (3)
σ2
t+1 = k(xt+1,xt+1)− kTK−1k. (4)

The expected mean, µt+1, is an estimate of the function value
and the standard deviation σt+1 gives the uncertainty.

Eqs. 3-4 are the posterior model of the actual function. It is
worth noting that this is a non-parametric model. The sample
data enter the model directly. The posterior distribution not
only can be used to predict the function values in the parameter
space, but also can be used to optimize the function.

In a GP optimizer, the posterior model is used to choose
the next trial solution. With the posterior GP, an optimization
algorithm is used to look for a point xt+1 that the model
predicts to yield the largest gain, which is then evaluated on
the real system. After that, the new data point enters the sample
data set and the GP model is updated accordingly. The measure
of the gain is represented by the acquisition function, a popular
choice of which is the upper confidence bound (UCB) for a
maximization problem [16]. For a minimization problem, it is
the lower confidence bound (LCB), given by

GP-LCB(x) = µ(x)− κσ(x), (5)

where κ > 0 is a constant. A suitable value of κ is used to
balance the exploitary and the exploratory strategies - a small
κ is exploitary and a large κ is exploratory. Taking a large κ
is to take some risk by going into the less certain area in the
parameter space in exchange for the opportunity to yield a big
gain.

After every new data point is added, the GP model is
updated, which requires the inversion of the kernel matrix.
During the search for the trial solution, many matrix mul-
tiplications are performed. These calculation can be time
consuming if the dimension of the matrix is large. Therefore,
the size of the data set is often limited to the order of hundreds.

III. MULTI-GENERATION GAUSSIAN PROCESS OPTIMIZER

The ability of the posterior GP model to approximate the
actual model and to predict the performance of a new solution
can be very useful in design optimization, where it is common
to evaluate thousands or tens of thousands solutions in the
search for the optimal design. A design study often has multi-
ple objectives. In the following we propose a multi-objective,
multi-generation Gaussian process optimization algorithm that
would be ideal for design optimization.

Presently MOGA and MOPSO algorithms are widely used
in the design optimization of accelerators. A popular MOGA
algorithm is the NSGA-II [2]. It takes an iterative scheme
to update a population of solutions. At each iteration, it
generates new trial solutions based on the existing ones, using
the crossover and mutation operations. In a crossover two
solutions are combined to generate a pair of new solutions
randomly distributed in between, while a mutation operation
modifies a solution with random changes to the parameters.
The new trial solutions are evaluated and compared to the ex-
isting solutions with a non-dominated sorting. Some solutions
replace the existing ones and enter the next generation if they
outperform the latter.

The MOPSO [3], [4] algorithm also manipulates a popu-
lation of solutions iteratively. In this case, each solution is
considered a particle in the parameter space. New solutions are
generated by shifting the existing solutions in the parameter
space by an offset called the velocity. The velocity consists
of contributions from three terms: the previous velocity, a
shift toward the best solution of the history of the particle
(the personal best), and a shift toward a solution in the global
best solutions. The velocity and the personal and global best
solutions are updated at every iteration.

The MOGA and MOPSO algorithms work because the oper-
ations used to generate new solutions tend to produce solutions
toward the direction with better performances, which are then
selected and used for the next generation. However, there is
no guarantee that the crossover and mutation operations or the
shift by the velocity will yield better solutions. No information
is extracted from the previous function evaluations other than
the selection of the best solutions.

When we apply GP regression to model the existing so-
lutions, we would be able to determine which new solutions
have a high probability of yielding good performances. We can
optimize with the posterior GP model to produce promising
trial solutions. Or we can simply generate a large quantity of
potential new solutions, evaluate them with the GP model, and
use the outcome to select the solutions with a potential to yield
a significant improvement. By selecting only these solutions
for the computationally expensive function evaluation, we
could substantially improve the efficiency of the algorithm.

The new algorithm, which may be referred to as the multi-
objective, multi-generation Gaussian process optimizer (MG-
GPO), also works iteratively. The initial population of solu-
tions may be randomly generated, throughout the parameter
space, or within a small region in the parameter space. The
population of solutions, N , is fixed.

At each iteration, N new solutions will be generated and
evaluated. The set of solutions evaluated on iteration n may be
labeled Fn. The set Fn is combined with the N best solutions
from the last iteration, which form a set labeled Gn−1, and the
combined set is sorted with the non-dominated sorting [2],
from which the population of N best solutions is updated.

A GP model is constructed for each objective, which has its
own set of model parameters, Θ(j) and Σ

(j)
f . We also give the

prior GP model a non-zero mean, mj(x) = µ̄(j). The value of
µ̄(j) and Σ

(j)
f are given by the mean and standard deviation
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of the function values of the previous data set, respectively.
With the non-zero mean, Eq. 3 is replaced with

µt+1 = kTK−1(ft − µ̄) + µ̄. (6)

The use of a non-zero mean helps avoid an abrupt change
in the function value when searching in the transition region
between the sampled area and the un-sampled areas. A wrong
mean value could produce a bias that either pull the search
into the unexplored territory or prevent the search into it.

While it is possible to use a multi-objective optimization
algorithm to optimize the surrogate models, produce the Pareto
front, and use the solutions in the Pareto front for the actual
evaluation, we adopt a simple approach to sample the area
around the existing best solutions. New solutions are generated
through the mutation and crossover operations. For each
solution in the previous population of best solutions, Gn−1, m1

new solutions are by mutation and another m2 solutions are by
crossover. Mutation is done by randomly shifting each individ-
ual parameter by up to a certain percentage of the parameter
range. The variation is drawn from a uniform distribution.
Crossover is done by paring the solution and another random
solution in Gn−1 and choosing a random intermediate point
between the two solutions. Obviously, there are better ways
to generate new solutions, for example, by using the gradient
afforded by the posterior GP model. Nonetheless, the present
simple approach is adequate to demonstrate the advantage of
the GP method. Besides, we can always increase the number
of new solutions to improve the sampling of the GP models
as the cost of evaluating the GP models is usually negligible
compared to the actual physics simulation.

The (m1 + m2)N solutions are then evaluated with the
GP models, which give the expected mean and standard
deviation for each objective function. We choose the GP-LCB
acquisition functions as the figure of merit for the solutions. A
small κ value, such as κ = 0.5, was found to work better than
a relatively larger value (such as κ = 2). A non-dominated
sorting is then performed over the (m1 + m2)N solutions,
from which N solutions are selected for the actual design
simulation. These N solutions form the set Fn, which is then
combined with Gn−1 and another non-dominated sorting is
used to updated the N best solutions, yielding Gn.

The GP models are updated at the end of the iteration. The
sample data used for the GP models are the combined set of
Fn and Gn. There will be some redundant data points, as some
solutions in Fn has just entered Gn. The duplicate points can
be eliminated. It can also be left in, as it does not pose a
difficulty.

The MG-GPO algorithm is summarized below
(with Gmax being the maximum number of
generations)
n← 0, Initialize the population, G0
Evaluate all solutions in G0
Construct Gaussian process models, GP0, with G0
while n < Gmax do
n← n+ 1
For each solution in Gn−1, generate m1 solutions with
mutation and m2 solutions with crossover.
Evaluate the (m1 +m2)N solutions with GPn−1

Use non-dominated sorting to select N best solutions,
which forms the set Fn.
Evaluate the solutions in Fn.
Use non-dominated sorting to select N best solutions
from the combined set of GPn−1 and Fn, the result of
which form Gn.
Construct Gaussian process models, GPn, with solutions
in Fn and Gn.

end while

IV. TEST WITH ANALYTIC FUNCTIONS

The MP-GPO algorithm has been implemented with a
framework similar to that of the PSO described in Ref. [9].
Function minimization is assumed. The parameter range is
normalized to [0, 1]. The correlation length can be set in
the normalized coordinates. The GP-LCB acquisition func-
tion with κ = 0.5 is used. The multiplication factors are
m1 = m2 = 20 by default. These algorithm parameters can be
changed for different problems. Mutation of a solution is done
by varying each normalized parameter with a random deviation
drawn from the uniform distribution of [−0.05, 0.05]. The
deviation range can also be changed.

Four test cases have been used to test the performance of
the MG-GPO algorithm in comparison to the NSGA-II and
PSO algorithms. The test cases are taken from Ref. [2]. All
test cases have two objective functions.

The NSGA-II code used in the test was obtained online from
Matlab Central File Exchange [17]. The crossover probability
is set to 90%. The distribution indices for the simulated binary
crossover (SBX) and mutation operations are ηc = 20 and
ηm = 20, respectively [18]. For the PSO algorithm, the weight
factors in the velocity composition are w = 0.4 and r1 = r2 =
1. The PSO algorithm also includes a mutation operation, with
a probability rate of 1/P , where P is the number of variables.

The population size is set to N = 100 for all algorithms and
all test cases. The algorithms are run for 100 generations. In
all test cases, the correlation length parameters of MG-GPO
are set to θ

(i)
j = 0.4 for all parameters and both objective

functions (i = 1, 2).
The initial solutions are randomly distributed, with parame-

ters drawn from a uniform distribution in the parameter range.

A. Test case 1 - FON
The first test case comes from Refs. [2], [19] and is referred

to as FON. There are P = 3 variables. The two objective
functions are defined as

f1(x) = 1− exp(−
3∑

i=1

(xi −
1√
3

)2), (7)

f2(x) = 1− exp(−
3∑

i=1

(xi +
1√
3

)2). (8)

The parameter ranges are [−4, 4] for all three variables, xi,
i = 1, 2, and 3. The optimal solutions are with x1 = x2 =
x3 ∈ [− 1√

3
, 1√

3
].

The evolution of the best solutions are shown in Fig. 1,
where generation 0 represent the initial distribution. At gen-
eration 2, solutions by the MG-GPO algorithm has already
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Fig. 1. The best solutions at a given generation during the optimization of
the first test case (FON) with the NSGA-II, PSO, and MG-GPO algorithms.
Generation 0 (initial distribution), 1, 2, 3, 7, and 20 are shown.

taken the shape of the Pareto front, while its solutions at
generation 3 have converged. The PSO algorithm converges
faster than NSGA-II in this case. But it does not converge
to the Pareto front until generation 7. The solutions of the
NSGA-II algorithms has not yet converged to the Pareto front
at generation 20.

B. Test case 2 - ZDT1

The second test case uses two functions with P = 30
variables, defined by

f1(x) = x1, (9)

f2(x) = g(x)(1−
√
x1/g(x)), (10)

(11)
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Fig. 2. The best solutions at a given generation during the optimization
of the second test case (ZDT1) with the NSGA-II (GA), PSO, and MG-
GPO algorithms. Generation 0 (initial distribution), 3, 10, 20, 50, and 100 are
shown.

with

g(x) = 1 +
9

P − 1
(

P∑
i=2

xi). (12)

This test case is referred to as ZDT1 [20]. The parameter
ranges are [0, 1] for all variables. The optimal solutions are
with xi = 0 for i = 2, 3, · · · , n and x1 ∈ [0, 1].

Figure 2 shows the test results in 100 generations. The MG-
GPO algorithm converges much faster than NSGA-II and the
PSO algorithm. At generation 20, its best solution front is
ahead of the other two algorithms. At generation 50, it has
nearly converged to the Pareto front, while the other two are
still at about the position of GP-MPO at its 20th generation.



C. Test case 3 - ZDT2

The third test case we tried is ZDT2 [20], which is defined
similarly as ZDT1, except that the f2(x) function is redefined
as

f2(x) = g(x)[]1− (x1/g(x))2]. (13)

The number of variables and the ranges of the parameters are
the same as ZDT1.

The test results for ZDT2 are shown in Fig. 3. Here we
find that MG-GPO is in the leading position at generation 3.
Its convergence speed is substantially faster than the other two
algorithms. At generation 50, MG-GPOS has nearly converged
to the Pareto front, while NSGA-II and PSO lags behind by a
large distance.

D. Test case 4 - ZDT3

Test was also done for the case ZDT3 [20]. The definition
is similar to ZDT1, except that the f2(x) function is redefined
as

f2(x) = g(x)(1−
√
x1/g(x)− x1

g(x)
sin 10πx1). (14)

The number of variables and the ranges of the parameters are
the same as ZDT1. The Pareto front of this case consists of
disconnected stripes.

Fig. 4 shows the test results for ZDT3. At generation 10,
the front of the best solutions for the three algorithms almost
overlap in the objective space. There is no one better than
the others at this point. However, at generation 20, MG-GPO
has taken the leading position. The gap between MG-GPO
and NSGA-II, which is in the second place, becomes wider at
generation 50, and later at generation 100. At generation 100,
MG-GPO has nearly converged to the Pareto front.

The front of MG-GPO lost the two stripes at f1 > 0.4
early on in the run as the solutions in the two stripes to the left
produce many good candidates. It would be useful to introduce
some measures in the GP-based selection operation to promote
diversity in the trial solutions.

V. CONCLUSION

We proposed a new multi-objective stochastic optimization
algorithm that is based on Gaussian process regression. The
new algorithm update a population of solutions iteratively.
At each iteration, it constructs a posterior Gaussian process
and uses it as a surrogate model of the actual system to
be optimized. A large number of candidate solutions are
generated and evaluated with the surrogate model and the
results are used to select a small number of promising solutions
to be evaluated on the real system (e.g., by physics simulation).

The new algorithm, referred to as multi-generation Gaussian
process optimizer (MG-GPO), has been tested with analytic
functions. In all test cases, a substantially faster convergence
speed is found than the NSGA-II and PSO algorithms. The
new algorithm would be very useful for design optimization
of large systems where a search for optimal solutions in a
multi-dimensional parameter space is needed.
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Fig. 3. The best solutions at a given generation during the optimization
of the second test case (ZDT2) with the NSGA-II (GA), PSO, and MG-
GPO algorithms. Generation 0 (initial distribution), 3, 10, 20, 50, and 100 are
shown.
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