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Abstract—The use of dielectric microstructures driven by solid
state lasers to accelerate charged particles or to transversely
deflect them is a growing area of scientific interest with an
international collaboration of researchers working to develop
this concept. Many experimental efforts and new designs use
a planar symmetric geometry with sub-micron apertures for the
particle beam. We provide a general theoretical framework for
the electromagnetic fields in this type of geometry, including
derivation of the TE and TM modes supported, and examine
the transverse force components exerted on the beam, which
may be used for focusing or for deflection of the particles.

I. INTRODUCTION

The use of micron-scale photonic structures powered by
solid state lasers to accelerate charged particles is a grow-
ing area of scientific interest with a substantial international
research effort now underway [1]. Although dielectric laser-
driven accelerators (DLAs) have been proposed using a variety
of 1D, 2D and 3D geometries [2], [3], [4], [5] most structure
designs currently under experimental testing are based on a
planar-symmetric geometry that is periodic along the particle
beam propagation direction (here taken to be the z axis) and
invariant in one orthogonal coordinate (x) with a narrow sub-
wavelength vacuum channel in the other transverse dimension
(y). The fields for various specific cases of this sort have
been previously considered (e.g. [2], [6], [7], [13]). Here
we consolidate these results to provide a concise general
derivation of all non-vanishing field components for both
transverse electric (TE) and transverse magnetic (TM) modes
for open and enclosed structures under both single-sided and
dual-driven laser illumination for either in-phase or π out-
of-phase lasers, and the corresponding force equations under
rotation of the electron axis by an arbitary angle. These
relations can be used to identify useful configurations for
laser-driven acceleration or for deflection in either transverse
dimension.

II. FORMULATION OF FIELDS

A. General Field Relations

In the absence of free sources and assuming harmonic time
dependence e−iωt, Maxwell’s equations have the form

∇ · D = ∇ · B = 0 , ∇× E = iκB , ∇×H = −iκD (1)

where κ = ω/c is the free space wavenumber and the field
quantities are assumed to have only a spatial dependence. We

Fig. 1. Schematic of coordinate system and geometry for P and S polarization
for a linear dielectric that is uniform in the x (out of page) coordinate.

TABLE I
POLARIZATIONS AND NONVANISHING FIELD COMPONENTS

Polarization Mode Nonzero E Nonzero B
S TE Ex By,z

P TM Ey,z Bx

consider a dielectric medium in which the magnetic permeabil-
ity µ = 1 everywhere but with a dielectric constant ε̂(r) having
spatial dependence. In this case the electric displacement field
and magnetic induction are given by D = ε̂ E and B = H.
Hence, we can derive from Eqs. (1) the following wave
equation for the electric field

∇2E−∇(∇ · E) = −κ2D (2)

where we have used the identity ∇×∇×A = ∇(∇·A)−∇2A.
Constraining the problem to a system that is translationally
invariant in the x coordinate, two orthogonal polarizations may
then be defined relative to the plane of y and z wherein there is
variation of the fields, as shown in Fig. 1 and Table I. We may
call these S and P or conversely transverse electric (TE) and
transverse magnetic (TM) modes, where the term “transverse”
is used in reference to the electron axis (z). Once a solution
for E is in hand, the magnetic field B may then be immediately
obtained from the third of Eqs. (1).

By the Floquet Theorem, the solutions to Maxwell’s equa-
tions subject to periodic boundary conditions along coordinate
z with periodicity u = λpẑ satisfy E(r + u) = E(r)eiψ and
B(r + u) = B(r)eiψ , where ψ is the phase shift from one cell
to the next. For traveling wave solutions with the fundamental
Bloch wavenumber k0, this implies eik0·u = eiψ or ψ = k0λp.
The electric field can thus be decomposed into a Fourier
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Fig. 2. Case of a periodic open structure occupying the upper half-plane
(y > 0) with laser incident from below.

series with longitudinal wavenumbers kn = k0 + nkp where
k0 = ψ/λp and kp = 2π/λp. If these fields are excited by an
incident plane wave E0 = êE0e

ik0·r−iωt, where k0 = κ
√
εin̂,

then the phase advance ψ per period is given by the projection
of the incident plane wave onto the fundamental periodicity.
Here εi is the dielectric constant in the region from which
the plane wave is incident. Then, k0 = |k0 · u| = κ

√
εi cos θ,

where θ is the incidence angle of the laser (cos θ = n̂ · ẑ). The
phase velocity of the n’th space harmonic, normalized to the
speed of light is thus βn = κ/kn. If we set this to match the
particle velocity β we thus obtain the phase matching relation

βnλ

λp
= 1− β

√
εi cos θ , (3)

which for normal incidence (θ = π/2) assumes the familiar
form λp = βnλ.

B. Fields for Single Drive Laser

We consider first the case where the periodic structure
occupies the half-space y > 0 and is excited by an incident
plane wave propagating from the vacuum region y < 0. This
scenario is depicted in Fig. 2. It is shown in [8] that the
solutions to Eq. (2) in the vacuum region (y < 0) have the
following form for S-polarization

Ex(y, z) = E0

∑
n

[δn,0e
iΛny + rne

−iΛny]eiknz, (4)

and for P-polarization

Ey(y, z) = −E0

∑
n

kn
Λn

[δn,0e
iΛny − rne−iΛny]eiknz,

Ez(y, z) = E0

∑
n

[δn,0e
iΛny + rne

−iΛny]eiknz.
(5)

Here Λn =
√
κ2 − k2

n, δn,m is the Kronecker delta, and rn
is the reflection coefficient of the incident wave for the n’th
harmonic. This form is general, and direct solution for the rn

requires specification of the geometry. The geometry of Fig. 2
(i.e. a rectangular grating) is chosen as an example but other
geometrical configurations (see Fig. 3(b)) are also possible.
We further note that the Kronecker delta term (n = 0) in
Eq. (5) corresponds to the incident plane wave E0 with the
association k0 = Λ0ŷ + k0ẑ.

Now consider the scenario of two such periodic structures
mirrored about the x-z plane and separated by a vacuum gap
of width g, as illustrated in Fig. 3(a). Under excitation by a
single plane wave E0 from below, by extension of the results
of Eqs. (4-5), the fields in the vacuum region will have the
following form for S-polarization (TE)

Ex = E0

∑
n

[ane
Γny + bne

−Γny]eiknz,

By = E0

∑
n

kn
κ

[ane
Γny + bne

−Γny]eiknz,

Bz = iE0

∑
n

Γn
κ

[ane
Γny − bne−Γny]eiknz.

(6)

and for P-polarization (TM)

Ey = −iE0

∑
n

kn
Γn

[ane
Γny − bne−Γny]eiknz,

Ez = E0

∑
n

[ane
Γny + bne

−Γny]eiknz,

Bx = iE0

∑
n

κ

Γn
[ane

Γny − bne−Γny]eiknz.

(7)

where the complex coefficients an and bn account for the accu-
mulated reflections with associated phase shifts for the various
space harmonics within the channel. We also clarify that these
coefficients may have different amplitudes and phases for the
two modes (TE vs. TM). Since we are interested in modes
confined in y and propagating in z we define for convenience a
real-valued transverse decay constant Γn ≡ iΛn. The magnetic
field components are obtained by way of

iκB = ∇× E =


[
∂Ex

∂z ŷ− ∂Ex

∂y ẑ
]

; S(TE)[
∂Ez

∂y −
∂Ey

∂z

]
x̂ ; P (TM)

(8)

and for completeness, we reiterate the following definitions:
kn = k0 + nkp, Γn =

√
k2
n − κ2, kp = 2π/λp, k0 =

κ
√
ε cos θ, and κ = ω/c.

C. Fields for Dual Drive Lasers

If we now allow for a counter-propagating excitation E′0
illuminating the structure from the opposite site (i.e. propagat-
ing from the region y > 0), then we have an additional set of
field components (E′, B′) induced by the counter-propagating
wave. These are of the same form as Eqs. (6,7) but with
corresponding coefficients a′n and b′n and potentially different
amplitudes and wavenumbers (E′0, Λ′n, and k′n). However, if
E′0 has the same magnitude, incidence angle, and polarization
as E0, then by the mirror symmetry of Fig. 3, b′n = an and
a′n = bn. In combining the two solutions we can choose to



Fig. 3. (a) Case of a dual-sided periodic structure (periodicity λp) invariant in
x and with mirror symmetry about the x-z plane. (b) Alternative geometries
that have been considered in recent structure designs.

add or subtract them, corresponding to lasers that are either
perfectly in-phase or π out-of-phase with each other. We thus
obtain the following forms for the case of S-polarization (TE)

Ex = E0

∑
n

c±n

{
cosh (Γny)
sinh (Γny)

}
eiknz

By = E0

∑
n

kn
κ
c±n

{
cosh (Γny)
sinh (Γny)

}
eiknz

Bz = iE0

∑
n

Γn
κ
c±n

{
sinh (Γny)
cosh (Γny)

}
eiknz

(9)

and P-polarization (TM),

Ey = −iE0

∑
n

kn
Γn
c±n

{
sinh (Γny)
cosh (Γny)

}
eiknz

Ez = E0

∑
n

c±n

{
cosh (Γny)
sinh (Γny)

}
eiknz

Bx = iE0

∑
n

κ

Γn
c±n

{
sinh (Γny)
cosh (Γny)

}
eiknz

(10)

where we define c±n ≡ 2(an± bn) and the upper (lower) lines
correspond to in-phase (π out-of-phase) incident fields. Here,
we see that the exponential terms in Eqs. (6,7) give rise to
hypbolic functions (cosh, sinh) depending upon whether they
are added or subtracted. We note that the desired mode for
acceleration is the in-phase TM mode (upper line of Eq. 10).

The hyperbolic cosine dependence can be seen to approach
a transversely uniform field in the limits where either the
vacuum gap is small compared to the transverse exponential
decay term (g � Γ−1

n ) and/or the phase velocity approaches
the speed of light (βn = 1). We can regard this limiting case
by taking the Taylor series of Eqs. (9,10) to zero’th order.
For a single harmonic, which we call n = r assumed to
be synchronous with the desired particle velocity, we thereby
obtain

Ez = −iÊ0e
ikrz

Ey = −Ê0krye
ikrz

Bx = Ê0krβrye
ikrz

(11)

where we have absorbed the constant 2(ar + br) into Ê0 and
multipled by an arbitrary phase constant −i. This linearized
form is useful for simple particle dynamics calculations in
generic planar-symmetric structures.

D. Calculation of Transverse Forces

We can simplify the field equations by defining some
functions that separately represent the spatial and geometrical
dependences. Let the function hyp±(x) ≡ ex ± e−x. Then
define

f±(x) ≡

 hyp±(x)
hyp∓(x)
hyp±(x)

 ; G±n (r) ≡ f± (Γny) eikn·r (12)

Then Eqs. (9,10) can be reduced to the simplified form:

E = E0

∑
n

c±nG±n (r) ◦ EEEn

B = E0

∑
n

c±nG∓n (r) ◦ BBBn
(13)

where ◦ is the Hadamard product, and EEEn and BBBn have the
following forms for the two mode types:

EEETE
n =

 1
0
0

 BBBTE
n =

 0
kn/κ
i Γn/κ


EEETM
n =

 0
−ikn/Γn

1

 BBBTM
n =

 iκ /Γn
0
0

 (14)

The resulting force on a particle of charge q traveling on
the z-axis with velocity v = βc is then given by

F = qE0

∑
n

c±nG±n (r) ◦Qn (15)

where Qn ≡ EnEnEn + βẑ ×BBBn. This gives rise to the following
forms for the Qn vector for the TE and TM cases:

QTE
n =

 1− β
βn

0
0

 , QTM
n =

 0

i knΓn
(ββn − 1)

1

 (16)

These forms demonstrate that in the limit where the particle is
both relativistic and matched to the phase velocity of the wave
(β = βn → 1), the TM mode provides an accelerating force
in z while the transverse force components vanish. Similarly,
for the TE mode, in this limit the corresponding x force
vanishes. Hence there is no synchronous solution for deflection
of relativistic beams.

III. SYNCHRONOUS FORCE IN THE ROTATED FRAME

The solution proposed by Plettner and Byer [9] to achieve
synchronous deflection is to rotate the beam axis about y by
an angle α, as illustrated in Fig. 4. This can be represented
by a rotation matrix

R =

 cosα 0 − sinα
0 1 0

sinα 0 cosα

 . (17)



Fig. 4. Illustration showing (a) original unrotated geometry with beam axis
and (b) after rotation of the coordinates by angle α via the rotation matrix R.

The form for the force F represented in the rotated beam
coordinates (keeping z along the particle direction) is still
given by Eq. (15), except that we make the replacements

Qn → R · EnEnEn + βẑ× R · BBBn , kn → R · kn . (18)

Under the transformation of Eq. (18), the Qn vectors for the
TE and TM modes are found to be

QTE
n =

 cosα− β
βn

−iΓn

κ β sinα
sinα

 ,

QTM
n =

 − sinα

i knΓn
(ββn cosα− 1)

cosα

 .

(19)

The resonant velocity βββn is still in the direction of kn,
which is no longer co-linear with z but now has the form
kn = kn(cosα ẑ− sinα x̂). Phase synchronicity is therefore
accomplished if kn · ẑ = κc. For a normal incidence of the
laser (θ = π/2) this leads to the modified phase matching
condition

λp = βnλ cosα. (20)

Hence as compared with the corresponding form from Eq. 3,
the grating period must be decreased by a factor cosα in order
to remain synchronous with the particle. This is geometrically
obvious since in the rotated frame the apparent spacing be-
tween grating teeth is increased along z. Consequently, unless
the periodicity is reduced, a particle of constant speed cannot
remain in phase with the advancing phase fronts. If Eq. (20)
is satisfied then for the case where the resonant mode is the
fundamental (n = 1) the corresponding phase velocity now
satisfies βn = β cosα. This can be intuitively understood by
noting that β cosα is the component of the particle’s velocity
along the z-axis of the originally unrotated frame.

We note that the c±n coefficients may be different for the
TE and TM modes and are complex-valued so may include a
relative phase offset. For the case of normal incidence (θ =
π/2) and speed-of-light phase matching to the fundamental

space harmonic (n = 1, β = 1, λp = λ cosα) the vectors of
the resonant mode take the forms

QTE
n =

 − sinα tanα
−i sinα tanα

sinα

 ,QTM
n =

 − sinα
−i sinα

cosα

 . (21)

The components of these vectors are plotted in Fig. 5 as
functions of α. By rotating the polarization of the laser, as
shown in Fig. 4(a), we can form an arbitrary linear superposi-
tion of TE and TM modes (QTE

n +ηQTM
n ) where η is a constant.

From the forms of Eq. (21) we see that QTE
n = QTM

n tanα and
hence for the case of a 45 degree rotation (α = π/4), the two
vectors are equal QTE

n = QTM
n and give rise to the simple force

relations

Fx = −qE0
c±n√

2

{
cosh (Γny)
sinh (Γny)

}
eikn·r

Fy = qiE0
c±n√

2

{
sinh (Γny)
cosh (Γny)

}
eikn·r

Fz = qE0
c±n√

2

{
cosh (Γny)
sinh (Γny)

}
eikn·r

(22)

Hence, on the beam axis (y = 0), for incident lasers out-of-
phase by π [lower line of Eqs. (22)], the particle experiences
a transverse deflection in the y coordinate:

Fx = Fz = 0 , Fy = q
iE0√

2
c−n e

iκz (23)

For the case where the lasers are in-phase (upper line), the
deflection is instead in the x direction, but a nonzero axial
longitudinal force arises:

Fx = −q E0√
2
c+n e

iκz , Fy = 0 , Fz = q
E0√

2
c+n e

iκz (24)

We see that the transverse fields no longer vanish in general
for a synchronous speed of light particle except in the case
α = 0 consistent with the previous finding in the unrotated
frame. The forces for the TE case appear to diverge when
α → π/2. However this represents an inherently unphysical
scenario, since the particle is then traveling parallel to the
grating lines and so λp → 0 in accordance with Eq. (20).

IV. DISCUSSION AND CONCLUSION

We’ve presented a consolidated formalism for the electric
and magnetic forces in planar-symmetric structures with mirror
symmetry about the x-z plane and periodic in z as shown in
Fig. 3. The symmetric axial deflecting modes represented in
Eqs. (23,24) may be useful as steering elements for particle
alignment in longer DLA structures, as an ultrafast temporal
beam diagnostic (i.e. an optical transverse deflecting cavity), or
as the basis for a laser-driven undulator [9], [10], [11]. We note
that for both the transverse deflection cases of Eqs. (23,24)
and for longitudinal acceleration [TM case of Eq. (16)], the
sinh terms in Eq. (22) result in a transverse force orthogonal
to the deflection force that is either focusing or defocusing
depending on the particle phase. Since this orthogonal force
is out of phase with the deflection by π/2, it is zero for



Fig. 5. Plots of Qn coordinates in (a) x, (b) y, and (c) z for the case β = βn = 1, θ = π/2 as functions of rotation angle α.

a particle sitting at the phase corresponding to maximum
deflection. Bunches prepared by a previous DLA section or
by an optical microbunching scheme such as that in Ref. [12]
will be bunched at the optical period of the laser and can
therefore in principle be matched to the deflector in this way.

For a resonant accelerating mode, longitudinally stable
motion requires a choice of phase that is also transversely
defocusing. For the case of a particle deflector, this constraint
does not apply and so it should be feasible to phase the
particles for peak deflection. However, since each microbunch
still has a nonzero duration on the order of some fraction of a
laser period, the front and the back of each microbunch will see
strong focusing and defocusing forces. Hence, for a deflection
element or undulator more than of order 1000 optical periods
in length, some compensating force may be needed to improve
transport and confine the beam in the corresponding coordi-
nate. Compatible focusing techniques using the laser field itself
have been proposed based on either alternating phase focus-
ing or nonresonant harmonic focusing [13], [14]. A similar
approach should be capable of compensating for defocusing
forces associated with deflecting modes and should be the
subject of further study. Since the deflection discussed here is
electromagnetic, injection phase and bunching of the particle
beam are critical. More detailed study of the particle dynamics,
the resulting radiation field in a laser driven undulator, and
plans for a demonstration experiment are underway and are
discussed elsewhere in these proceedings [15].
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O. Solgaard, J. Vučković, B. M. Cowan, O. Boine-Frankenheim,
T. Egenolf, U. Niedermayer, and P. Musumeci, “Towards a Fully
Integrated Accelerator on a Chip: Dielectric Laser Acceleration
(DLA) From the Source to Relativistic Electrons,” in Proceedings
of the 8th International Particle Accelerator Conference. Geneva,
Switzerland: JACoW, May 2017, pp. 2520–2525. [Online]. Available:
http://dx.doi.org/10.18429/JACoW-IPAC2017-WEYB1

[2] T. Plettner, P. P. Lu, and R. L. Byer, “Proposed few-optical cycle
laser-driven particle accelerator structure,” Phys. Rev. ST Accel.
Beams, vol. 9, no. 11, p. 111301, Nov. 2006. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevSTAB.9.111301

[3] X. E. Lin, “Photonic band gap fiber accelerator,” Phys. Rev. ST Accel.
Beams, vol. 4, p. 051301, 2001.

[4] B. M. Cowan, “Three-dimensional dielectric photonic crystal structures
for laser-driven acceleration,” Phys. Rev. ST Accel. Beams, vol. 11, p.
011301, 2008.

[5] Z. Wu, R. J. England, E. Peralta, and M. Qi, “Silica rod array for laser
driven particle acceleration,” in Proc. of the 2013 Particle Accelerator
Conference (PAC’13), 2013.

[6] T. Plettner, R. L. Byer, C. McGuinness, and P. Hommelhoff, “Photonic-
based laser driven electron beam deflection and focusing structures,”
Phys. Rev. ST Accel. Beams, vol. 12, p. 101302, 2009.

[7] Z. Chen, K. Koyama, M. Uesaka, M. Yoshida, and R. Zhang, “Resonant
enhancement of accelerating gradient with silicon dual-grating structure
for dielectric laser acceleration of subrelativistic electrons,” Appl. Phys.
Lett., vol. 112, p. 034102, 2018.

[8] L. Pilozzi, A. D’Andrea, and R. D. Sole, “Electromagnetic properties
of a dielectric grating. I. Propagating, evanescent, and guided waves,”
Phys. Rev. B, vol. 54, p. 10751, 1996.

[9] T. Plettner and R. L. Byer, “Proposed dielectric-based microstructure
laser-driven undulator,” Phys. Rev. ST Accel. Beams, vol. 11, p. 030704,
2008.

[10] K. P. Wootton, R. J. England, I. V. Makasyuk, Z. Wu, A. Tafel, R. L.
Byer, and E. A. Peralta, “Design and optimization of dielectric laser
deflecting structures,” in Proc. of the International Particle Accelerator
Conference (IPAC 2015), 2015, p. WEPJ012.

[11] R. J. England and Z. Huang, “Dielectric and other non-plasma acceler-
ator based compact light sources,” in Proc. of the Future Light Source
Workshop (FLS 2018), Shanghai, China, Y. H. Chin and Z. Zhao, Eds.,
2018, p. WEA1PL02.

[12] C. M. S. Sears, E. Colby, R. Ischebeck, C. McGuinness, J. Nelson,
R. Noble, R. H. Siemann, J. Spencer, D. Walz, T. Plettner, and R. L.
Byer, “Production and characterization of attosecond electron bunch
trains,” Phys. Rev. ST Accel. Beams, vol. 11, p. 061301, 2008.

[13] U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, and P. Hommelhoff,
“Alternating phase focusing for dielectric laser acceleration,”
arXiv:1806.07287 [physics.acc-ph], 2018, arXiv: 1806.07287. [Online].
Available: https://arxiv.org/abs/1806.07287

[14] B. Naranjo, A. Valloni, S. Putterman, and J. B. Rosenzweig, “Stable
Charged-Particle Acceleration and Focusing in a Laser Accelerator
Using Spatial Harmonics,” Phys. Rev. Lett., vol. 109, no. 16, p.
164803, Oct. 2012. [Online]. Available: https://link.aps.org/doi/10.1103/
PhysRevLett.109.164803

[15] A. Ody, R. J. England, and Z. Huang, “Simulation of dielectric deflecting
structure for short-wavelength radiation,” in Proc. of the Advanced
Accelerator Concepts Workshop, Breckenridge CO, 2018.

http://dx.doi.org/10.18429/JACoW-IPAC2017-WEYB1
http://link.aps.org/doi/10.1103/PhysRevSTAB.9.111301
https://arxiv.org/abs/1806.07287
https://link.aps.org/doi/10.1103/PhysRevLett.109.164803
https://link.aps.org/doi/10.1103/PhysRevLett.109.164803

	Introduction
	Formulation of Fields
	General Field Relations
	Fields for Single Drive Laser
	Fields for Dual Drive Lasers
	Calculation of Transverse Forces

	Synchronous Force in the Rotated Frame
	Discussion and Conclusion
	References



