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Abstract
The Delta undulator in LCLS has proven to be successful

in the operation to provide full control on the polarization
degree and K value of the device. In LCLS II, the Delta II
undulator will be based on a similar design but with some
differences. In this paper, we will present numerical simula-
tion results that provide guidance to choose the geometric
shape of the magnet poles and define the required tolerance
for assembling the undulator magnets.

INTRODUCTION
The Delta II undulator is ?? meter long with a period

length of 44mm. Unlike the fixed magnet gap of the Delta
undulator[1–3] for LCLS, the K value of the Delta II undula-
tor will be adjusted by varying the gap of the device, which
causes some challenges in controlling mechanical tolerances
and alignment errors. The Delta undulator uses round shape
tips for the magnet blocks. However, if a flat shaped magnet
tip can also meet the field requirement, it can be beneficial
to the development of the new device due to its simplicity
in obtaining high precision of production.To help in deter-
mining the final design of the magnet block of the Delta II
undulator, we compare the K values of the Delta II undulator
using several different magnet tip shapes, including a round
shape, a flat shape, and two triangular shapes, as show in
Fig. 1, where only one of the triangular poles is shown.

In an ideal undulator without row errors, the K parameter
is constant. However, after the tuning process of the orig-
inal LCLS Delta undulator, systematic errors in the radial
position of the magnet arrays along the undulator were ob-
served[4, 5]. we will consider two types of errors on the
placement of the magnet row of Delta II undulator: quadrant
bow and quadrant taper. In the Radia simulation, we add
these errors to the insertion device model for solving the
magnet fields with these effects.

MAGNET TIP GEOMETRY
The magnet blocks are generated in Radia using the built-

in function radObjThckPgn, which creates an extruded poly-
gon block from user defined bounding vertices for a polygon
surface. The magnet blocks then form the full assembly of
four rows of magnet arrays before being solved in the same
code. Two criteria have been used to evaluate the perfor-
mance of the Delta II undulator with different tip shapes of
the magnet block: first, the K value at the minimum gap is re-
quired to be larger than 5.14, determined from the data of the
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Figure 1: Simulation results for circular polarization at the
minimum gap.

LCLS II SXR undulator; second, the position dependence
of K near the beam axis needs to be as small as possible (K
flatness). For studying the second criterion, we calculate the
off axis K along both x and y axis with an offset of 0.03mm,
0.1mm, 0.2mm, 0.3mm, 0.5mm, and 1mm,respectively.

The undulator K is derived from the first derivative of
the Phase Integral(PI), being evaluated from the B fields
along a line parallel to the beam axis at different offsets. For
this study, the undulator model consists of 4 regular peri-
ods and the end pieces,much shorter than the actual device.
Therefore, to overcome the influence of the fields from end
pieces, we adopt a moving window averaging technique in
calculating the PI and the mean of the first derivative of PI,
for only one core period around the center of the device.
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Figure 2: Pole shapes used in simulation: flat pole (left),
triangular pole (middle), and round pole (right).

The results for the circular polarization at minimum gap
are shown in Fig. 2. The legend in Fig. 2(b) can be used
to correlate the results with the shapes of the magnet tips.
Results in all cases exceed the required K value of 5.14. The
device simulated with round tips has the largest K values,
and the design with flat tip possesses the smallest K values,
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while the K values for the two with triangular tips fall in
between. The on axis K for the case of round tips is 5.62
in comparison with the K value of 5.54 for the case of flat
tip, or about 1.4% improvement. Therefore the gain of Keff
is moderate. To compare the flatness of K, in Fig. 2(b)
and(d), we plot the relative difference of K, in percentage,
from the beam axis as a function of the offset. The results
from different tip shapes are very close to each other. On
both x and y axis, the flatness crosses 0.01% at about 150
µm from the origin.
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Figure 3: Simulation results for linear polarization at the
minimum gap.

The simulation results for the linear polarization in Fig.
3 are mostly similar to those for the circular polarization
except that, in Fig. 3(c), K decreases with y in contrast to
the opposite trends in Fig. 2(c). Another thing worth noting
is that the K flatness for the linear polarization is a bit worse
than that for the circular polarization.On both x and y axis,
it exceeds 0.01% with an offset less than 100 µm.

MECHANICAL TOLERANCES

Figure 4: Systematic errors of the magnet poles: (a) Bow
errors; (b) Taper errors.

As shown in Fig. 4, two types of errors on the placement of
the magnet rows are considered: quadrant bow and quadrant

taper. For quadrant bow, assuming that both the two end
blocks have zero radial offsets from the nominal position,
the maximum offset of the magnet pole, rbmax , occurs at the
center of the ID. For quadrant taper, we assume zero offset
for the first upstream block and the maximum offset r tmax at
the downstream end. In the Radia model, we add these errors
for solving the magnet fields with these effects. In a PC with
64GB memory, it was possible to simulate a Delta II model
with 70 core periods, but the computing time is usually more
than 24 hours. Therefore, for the tolerance study, we chose
a model with 50 core periods with shorter computing time
of several hours. To characterize the effects of different
quadrant errors, we evaluated the phase shake, σdφ, the
standard deviation of the phase errors and the undulator
efficiency, χ, which will be defined in the following.

Phase Shake
Besides the core magnet blocks, each magnet row of the

delta II undulator contains field matching magnet blocks
at both ends (7/8 period). In order to evaluate the effects
of quadrant errors with phase errors and phase shake, it is
desirable to exclude the end effects. After examining the on
axis magnetic field, it appears that the magnet field of the
first and last 2-4 core periods is still affected by the end ef-
fects. After comparing the calculated results for phase shake
from simulation with that from the analytical formula[4]
with different number of core periods excluded from both
ends, it showed that, after taking out 4 core periods at each
end, the phase errors derived from numerical simulation are
nearly identical to the analytical results. Therefore, we will
calculate the phase errors after excluding the magnetic field
from the first and last four core periods. We will follow the
same approach for a numerical model with more than 50
core periods.
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Figure 5: Simulation results of the phase shake for Delta II
undulator with bow errors (left) or taper errors (right).

The phase shake is the standard deviation of the phase
errors, therefore, even when the phase errors show opposite
signs, the calculated values of phase shake always have the
same positive sign and are actually roughly equal for these
two particular cases. For the convenience of fitting analysis,
we arbitrarily choose to define the phase shake for the undu-
lator model with negative row errors, i.e rbmax or r tmax<0, to
have negative phase shake. This definition helps in fitting
the data with a straight line. In fact, the linear relationship
between the maximum row errors and the phase shake ap-



plies to all the numerical configuration we set up for the
Delta II undulators.

Simulations results for all scenarios are shown in Fig. 5.
All four rows have the same quadrant errors in each simula-
tion. Several observations can be made from the comparison
of the results in Fig. 5. First, both types of row errors have
larger effects on the phase shake at smaller gap than larger
gap, which is intuitive because the same geometric distor-
tion on the magnet rows should introduce more perturbations
when the field strength is larger. Furthermore, the taper er-
rors introduce more phase shake than the bow errors. For
example, the taper error with maximum amplitude of 40 µm
leads to the phase shake a bit over 8 degree vs less than 6 de-
gree for the bow error with same maximum amplitude for an
ID at 6.6 mm gap. Lastly, one can note that the polarization
of the device plays a negligible role here.

Undulator Efficiency
Delta II undulators will be placed after the micro-

bunching undulators and be operated in after burn mode[3].
As a result, the lasing condition of the Delta II undulator
is dependent on the micro-bunching of the electron beam.
From the operating experience of Delta undulator in LCLS,
the output laser power P appears to be a narrow band reso-
nance with respect to the K parameter of the undulator:

P = Pmaxe
−
(K−Kr )

2

2σ2
K , (1)

where Pmax represnets the laser power at resonance, σK =

0.00982 from LCLS data, and Kr is the resonance undulator
parameter determined by the micro-bunching of the elec-
tron beam. When the undulator K varies with longitudinal
position, we can define the undulator efficiency ,χ, as the
following:

χ =

∫
Pdz∫

Pmaxdz
=

∫
e
−
(K (z)−Kr )

2

2σ2
k dz∫

1 · dz
. (2)

During the operation of the Delta II undulator, the maxi-
mum undulator efficiency can be obtained by adjusting the
undulator gap. In this study, we want to learn, at a fixed
gap, the change of optimum undulator efficiency due to row
errors. For each simulation in Radia, the on axis magnetic
field is sampled at a step size of 84.4 µm, or 535 samples per
undulator period. Therefore, for a given undulator model
with certain row errors, K(z) can be calculated at each grid
point and we can also numerically find the value of Kr that
makes χ maximum. We define the corresponding Kr as
effective undulator parameter Ke f f and the χ as optimum
undulator efficiency χopt for this device. Obviously, for an
ideal undulator with constant K along z, χopt=1, othewise,
χopt<1. However, due to numerical noise and end effects,
the undulator K of a device without row errors still varies
by about 0.08%, which is enough to significantly reduce the
χopt . We believe that the variation of K can be reduced or
eliminated by adopting certain processing techniques. But

one should note that in the actual process of undulator tun-
ing, local perturbation to individual poles may introduce
similar effects on the undulator performance like the numer-
ical noise in the simulations. In this paper, we are trying to
determine the tolerance on bow/taper errors, so we want to
focus on their effects by normalizing the undulator efficiency
of the device with errors to that of the same device without
errors. Hence, we define the relative undulator efficiency:

χr =
χopt

χopt (rbmax = rbmax = 0)
. (3)

The effects of row errors on the relative undulator effi-
ciency χr are shown in Fig. 6. Similar to the results for phase
shake, the reduction of undulator efficiency due to the row
errors depends more on the magnet gap of the device than
the polarization. In order to maintain a high efficiency, one
have to keep a tight control on the row errors. For example,
at minimum gap, it requires to have a tolerance less than
15 µm for an undulator efficiency over 90%. On the other
hand, for a mechanical tolerance of 40 µm, the undulator
efficiency drops to 50-60% depending on the types of row
errors.

0 10 20 30 40

bow error r
max
b ( m)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

r

Linear Pol., gap=6.6mm

Circular Pol. gap=6.6mm

Linear Pol., gap=14.6mm

Circular Pol., gap=14.6mm

0 10 20 30 40

taper error r
max
t ( m)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

r

Linear Pol., gap=6.6mm

Circular Pol. gap=6.6mm

Linear Pol., gap=14.6mm

Circular Pol., gap=14.6mm

Figure 6: Simulation results of the undulator efficiency
for Delta II undulator with bow errors (left) or taper errors
(right).

CONCLUSION
We have developed numerical routines to study the perfor-

mance of the Delta II undulator with different tip geometry
and quadrant row errors. Simulation results suggest that
the flat shape design of the magnet tip should be sufficient
to meet the operational requirement. It also appears that
the quadrant errors have more pronounced effects on the
undulator efficiency than the phase shake.
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