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Next-generation light sources based on the multi-bend achromat concept place great reliance on
the accuracy of beam dynamics modeling. To ensure the success of such light sources, confirmation
of design performance with at least two independent codes is prudent. The APS Upgrade (APS-U)
lattice has been designed using the code elegant, which has existing and new features that are
needed by the design. Corresponding, independent improvements have recently been made to Ac-
celerator Toolbox (AT), in order to permit an independent check of nonlinear dynamics predictions.
The new developments include the modeling of combined-function bending magnets with straight
geometry and improved fringe field effects of quadrupole magnets. Calculations of linear and nonlin-
ear lattice parameters and particle tracking results were compared, showing remarkable agreement
was found between the two independently developed codes. This provides significant confirmation

of the feasibility of the APS-U design.

I. INTRODUCTION

Accurate lattice modeling is of crucial importance in
storage ring lattice designs. The successful operation of
a storage ring requires a large dynamic aperture (DA)
and large local momentum apertures (LMA) throughout
the ring. During the design phase, these nonlinear beam
dynamics measures are obtained through particle track-
ing with a lattice model. Presently a part of the stan-
dard design practice is to optimize the tracked DA and
LMA with multi-objective optimizers using linear lattice
parameters and nonlinear magnets as optimization deci-
sion variables [1-3]. Because the storage ring nonlinear
beam dynamics depends on the linear and nonlinear lat-
tice parameters in complex, subtle ways, small errors in
the lattice model in either linear or nonlinear optics could
potentially cause large errors in the DA and LMA pre-
dictions. Therefore, the validity of the multi-objective
optimization results may strongly depend on the accu-
racy of the lattice model.

The requirement for high accuracy lattice modeling
has increased substantially in recent years as many
labs began pushing for the next generation, multi-bend-
achromat (MBA) based storage ring light sources [4-6].
These new rings utilize much stronger quadrupole mag-
nets to pack many more lattice cells over the circumfer-
ence as compared to a traditional third generation stor-
age ring. Chromaticity correction of such rings requires
much stronger sextupoles, despite the adoption of the
hybrid-MBA cell, a creative lattice configuration that re-
duces the sextupole strengths significantly [4]. The in-
crease of the numbers and strengths of magnets makes
it more important to model the individual magnet accu-
rately since the errors from all magnets could add up to
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large errors in the nonlinear beam dynamics performance
prediction.

The new lattice features of the next generation stor-
age ring light sources, such as longitudinal gradient
dipoles [7-11], combined-function bending magnets with
strong quadrupole components, and negative bend-
ing [12, 13], call for new developments in the lattice codes.
Combined-function bending magnets with straight ge-
ometry have been used in many third generation light
sources. There have been a few studies on the lattice
effects of such magnets [14-16]. But these studies have
not yielded symplectic models that are usable in track-
ing codes. Fringe field effects are a major source of dis-
crepancy between the lattice model and a real machine.
Traditionally quadrupole magnets are often modeled as
hard edge elements in lattice codes, although the impact
of fringe fields to linear and nonlinear optics have been
previously studied theoretically [17-20].

Because the success of next generation storage ring
light source projects, such as the APS-U [5], relies heavily
on lattice modeling, it is important to ensure the lattice
modeling codes are implemented correctly. One way to
check the validity of the codes is to benchmark against
each other with lattice models that include all of the crit-
ical features. About 9 years ago, the storage ring light
source community conducted an exercise to benchmark
the codes that are commonly used for storage ring mod-
eling [21]. A wide spread of results in both linear and
nonlinear lattice parameters was found among the codes.

Recently we have implemented new features for
elegant [22] and the Accelerator Toolbox (AT) [23] in
separate, independent efforts. Afterwards we bench-
marked the two codes using the APS-U lattice model and
found very good agreement. In this paper we describe the
new developments in both codes and the benchmarking
results. We hope our effort will help the community to
converge to a common lattice modeling practice. This
paper is organized as follows. In Section II the new fea-
tures of both codes are described. Section III presents the
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various benchmarking results. The conclusion is given in
Section IV.

II. NEW SINGLE PARTICLE DYNAMICS
FEATURES

Over the years the elegant code has implemented
many single particle dynamics features. To meet the lat-
tice modeling needs for the APS-U project, recently sev-
eral new features were added. The single particle dynam-
ics features to be discussed here include the exact drift
space, the quadrupole fringe field, and the combined-
function dipole magnets with straight geometry. In order
to provide an independent benchmark and provide fur-
ther confidence in modeling of APS-U, the AT code has
been recently updated to add some of these features. The
new single particle dynamics features in elegant and AT
are summarized in Table I.

A. Exact drift space

The Hamiltonian of particle motion in a drift space in
canonical coordinates (z, pz, ¥, py, 2, 0) is given by

H:\/(1+6)2—p%—p§+(1+5). (1)

Correspondingly, the map between the canonical coor-
dinates at the entrance and exit faces of a drift space
should be
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where subscripts 0 and 1 indicate the entrance and exit
faces, respectively, and we have omitted d; = g = 6.
Tracking codes typically implement a simplified model
for the drift space, using the Hamiltonian
2 2
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which is obtained from Eq. (1) by expanding the terms
under the square root. The simplified model does not
need to compute the square roots in the map. But it
loses the higher order effects.

elegant has implemented the exact drift space
through the element type EDRIFT. Elements that use the
drift-kick-drift type symplectic integration in elegant,
such as KQUAD and KSEXT, also implemented the exact
drift space. AT has implemented the exact drift space

with the pass method LaDrift. Its new fourth order sym-
plectic integrator, StrMPoleSymplectic4NPass, uses the
exact drift space, along with other features to be de-
scribed below.

It turns out the conversion to exact drift space does
not make a significant impact to the nonlinear beam dy-
namics behavior in the case of the APS-U lattice. For
example, comparisons were performed using elegant of
DA and LMA using exact and approximate drift-space
implementations for the field-free regions (i.e., regions
external to dipoles, quadrupoles, and sextupoles). No
significant differences were seen.

B. Combined-function bending magnets with
straight geometry

Combined-function dipole-quadrupole magnets are
commonly used in storage ring light sources to save space
and to modify the horizontal damping partition. If the
magnet is built on a curved geometry that follows the ref-
erence trajectory of the ideal particle, it can be modeled
as a sector dipole, with the fields expanded in curvilin-
ear coordinates [24]. The linear motion can be described
with a transfer matrix for which analytical expressions
exist [25]. If higher order multipole components are in-
volved, symplectic integration on the curved reference
system can be performed. For example, in elegant this
is performed using the CSBEND element, which uses the
exact Hamiltonian and a fourth-order symplectic integra-
tor.

However, some combined dipole-quadrupole magnets
are built on a straight geometry, for reasons of mechanical
simplicity and cost. In APS-U, two families of combined-
function reverse bending magnets will have straight ge-
ometry. In this case, the field expansion used for a
curved-pole magnet is incorrect. However, the magnetic
field in the magnets can be given in very simple form
using the Cartesian coordinates (X, Y, Z) by

By = By + B1 X, Bx = BY. (6)
In such a magnet, the reference trajectory is not an arc
of a circle, since the bending field varies along the tra-
jectory. The focusing gradient also varies with the beam
trajectory as the component of the focusing gradient on
the transverse plane will change with the s-coordinate.
Therefore, this type of magnet cannot be described by
the sector dipole model.

Modeling of a straight dipole magnet can be broken
into three parts. First, at the entrance of the magnet,
a coordinate transformation is performed to the Carte-
sian coordinates with one axis parallel to the axis of the
magnet. Second, we must model the body of the magnet,
for which, because of the potentially large values of the
Cartesian coordinates, the exact Hamiltonian must be
used. This is similar in principle to modeling of straight
elements like quadrupoles and sextupoles using the ex-
act Hamiltonian, something that has been standard in



elegant for many years. Third, at the exit face an in-
verse transformation is performed to go back to the usual
coordinates. This is similar to an approach proposed in
Ref. [26] and was recently implemented in elegant [27],
then AT.

While the implementations in elegant and AT are
based on the same concepts, they were performed inde-
pendently. For simplicity, we’ll describe the AT imple-
mentation. We solve the beam motion through symplec-
tic integration in the Cartesian coordinate system, using
canonical coordinates (X, X' = ‘fi—)z{, Y,V = %, As, 9),
where As is path length difference with the reference par-
ticle. At the entrance face, the coordinate transformation
consists of three steps. First, the angle coordinates are
found with
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The particles are then propagated from the xy plane to
the XY plane at the entrance point, which is followed by
a rotation transformation to the Cartesian coordinates.
The last two steps combined can be expressed as

X = CO:(EO% + Xo, (8a)
X' = tan(g + ), (8b)
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where 6 is the bending angle of the magnet, g is assumed
to be the entrance angle, ¢ = tan™! 2/, and X is the X-
coordinate for the reference orbit at the entrance point
(where Z = —%, L is the straight length of the magnet).
At the exit face, a similar transformation is performed.
These transformations were previously used in AT for
the pass method for direct integration of the equation of
motion through arbitrary magnetic fields [15].

In both codes, the integration through the body of the
rectangular magnet is done with the fourth order sym-
plectic integrator, using drift and kick maps. The exact
map for drift spaces has to be used in this case, given
the large angle coordinates in the Cartesian coordinate
system.

Unlike the case of a curvilinear dipole, the reference
trajectory through a straight dipole must be determined
numerically. Because the bending field in the magnet
varies with the X-coordinate, the bending angle of a par-
ticle depends on the entrance point. The entrance point

FIG. 1. Coordinates in a straight geometry combined-
function dipole magnet.

for the reference orbit, X, needs to be found numerically
using the condition that the reference orbit is symmet-
ric with a total bending angle of 8. However, this might
result in a trajectory that is not centered in the magnet
and so does not use the good field region. If in addition
the magnetic field strength is varied (i.e., scaling By and
B; proportionally), the entrance point for the reference
orbit will change. This gives us the freedom to set the ref-
erence orbit through the center of the good field region.
This tuning procedure is implemented automatically in
elegant and AT. When the magnetic field profile is avail-
able, from simulation or measurements, the current set
point of the magnet should be determined according to
the alignment requirement using a similar numeric pro-
cedure [14].

C. Quadrupole fringe field

The magnetic field of a realistic quadrupole magnet
extends beyond the iron core through a smooth transition
curve at both edges, while in lattice models the magnet is
typically described with a hard-edge field model in which
the magnetic field drops to zero abruptly. The hard-
edge model is not physically self-consistent, yet it has
been remarkably successful in the past. For the new type
of rings with more and stronger quadrupoles, the errors
from the hard-edge model need to be properly accounted
for. The linear optics error comes from the difference in
the distribution of the focusing gradient between the real
and the hard-edge profiles. This “soft fringe field” effect
has been studied in Ref. [18] and later in more detail
in Ref. [19]. There are also nonlinear effects from the
quadrupole fringe field. [18, 20].

In AT the fringe field model in Ref. [18] was previously
implemented for the transfer matrix based quadrupole
pass method. Recently the more accurate model of
Ref. [19] that was implemented in elegant was also im-
plemented in AT, both for the transfer matrix based pass
method and the straight element symplectic integrator.
Suppose the difference of the focusing gradient profiles
between the real and the hard-edge models is given by a
function

AK(s) = K(s) — Ki(s), (9)

where K (s) is the actual focusing gradient and Kp(s)
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FIG. 2. Focusing gradient profile K(s) for a realistic

quadrupole magnet (blue) and the hard-edge model (red).
The purple profile is the bilinear profile for testing the fringe
field modeling approach.

is the focusing gradient for the corresponding hard-edge
model. The function Kp(s) is zero for s < —sg or s > sg
and is equal to Ky for —sg < s < sp, where Kj is the
normalized gradient for the quadrupole, sg = %, and L is
the effective length of the magnet. The fringe field model
in Ref. [19] characterize the function AK (s) with a series
of integrals for both the entrance and exit edges.

Fig. 2 shows an example of the focusing gradient pro-
file of a real quadrupole magnet and its hard-edge model.
The gradient of the hard-edge model is equal to the av-
erage gradient around the center of the magnet and the
effective length is chosen to make the integrated gradient
of the hard edge model equal to that of the real magnet.
In both the elegant and AT implementations, the actual
fringe field integrals as defined in Ref. [19] are supplied
as parameters to the quadrupole element. At the en-
trance and exit edges, these integrals are used to modify
the canonical coordinates according to the corresponding
Hamiltonian terms.

The quadrupole fringe field modeling is checked with
a bilinear test fringe field profile. In the test profile the
gradient decreases to zero in two linear slopes, with a
change of slope at the hard edge boundary, as illustrated
in FIG. 2 (purple curve). Defining parameter A as the
distance between the hard edge boundary to the starting
point of the slope in the magnet, the fringe integrals for
the bilinear profile are calculated to be
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The transfer matrix for the quadrupole magnet obtained
with the quadrupole fringe field model can be compared
to the one obtained by slicing the gradient profile into
many pieces and concatenating the hard-edge transfer
matrices of all pieces. In a numerical test, where L =
1.0 m, A = 0.1 m, and Ky = 1.5 m~2, the differences
between the the transfer matrices obtained with the two

methods in the above are

14 —5.8 -
AR, = (_7.2 1.4> x107°, (11a)
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while if using the hard-edge model without the
quadrupole fringe field effect, the differences are

~0.0005 0.0079

ARs = ( 0.0113 —0.0005) ’ (122)
~0.0008 —0.0136

ARy = ( 0.0181 —0.0008) ! (12b)

where AR, ,, are differences for the horizontal and verti-
cal transfer matrices, respectively.

Additional numerical tests were performed with real-
istic fringe profiles and similar agreement between the
fringe field model and the slicing approach was observed.
In one test performed with elegant for one of the dou-
blet magnets in the APS-U lattice, comparison was made
to symplectic tracking through quadrupole fields defined
by a generalized gradient expansion [28] computed from
OPERA-generated field data. Such tracking is available
using the BGGEXP element. Agreement in the linear ma-
trix elements was within 2.5 x 10~7, while agreement with
the second-order matrix elements was within 5.0 x 1074,
In performing this comparison, it was found to be es-
sential to properly define K (s) using the first term from

the generalized gradient expansion, QC;)S) (z). Analysis
based on z-dependent harmonic analysis of the OPERA
data showed much poorer agreement.

The leading terms in the nonlinear quadrupole fringe
field effects for quadrupoles is the hard-edge map studied
in Ref. [20]. The map for a normal quadrupole is not easy
to implement in a tracking code since it is not a kick
map. However, as pointed out in Ref. [20], the hard-edge
nonlinear map of a skew quadrupole, whose generating
function is given by

1 0B,
- Bp Oz’

f= %(w3py +y°pa), @ (13)
is composed of two kick maps. Therefore, the map for a
normal quadrupole can be modeled by first rotating the
transverse coordinates of the particles by 45°, applying
the two kicks, and then rotating backward by 45°. In AT,
this is implemented at both edges of the element for the
updated fourth order symplectic integrator pass method.

For the nonlinear effects, elegant uses the formula-
tion of Lee-Whiting [29], which involves changes to po-
sition and momentum coordinates at the entrance and
exit of the quadrupole. Higher order terms are also in-
cluded [30], but these have a negligible effect on beam
dynamics. As argued by Forest [26], the momentum kicks
and position ”jumps” are of comparable magnitude and
should both be included, or else the map is ” grossly non-
symplectic.” This implementation and the importance of
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FIG. 3. Linear lattice functions for a sector of the APS-U
lattice.

including both kicks and jumps was validated using com-
parison with the BGGEXP element to determine transport
matrices up to third order by performing fits to tracking
data[31]. We found that discrepancies in the third-order
tracking-derived matrix were reduced by three orders of
magnitude by inclusion of these terms. Removal of the
position jumps significantly worsened the agreement.

IIT. COMPARISON BETWEEN THE TWO
CODES WITH APS-U LATTICE

Comparison of the two codes, elegant and AT, was
conducted as a way to validate the implementation of
the modeling methods. We used the APS-U storage ring
lattice as the test model. The APS-U lattice consists of
40 hybrid MBA cells over a circumference of 1103.6 m.
The lattice cell contains 5 families of pure quadrupoles
(QL, Q2, Q3, Q6, and Q7), three families of combined-
function sector dipoles (M3, M4 and Q8), two families
of longitudinal gradient dipoles (M1 and M2), and two
families of straight geometry combined-function dipoles
(Q4 and Q5). Each family of magnets in the above has
two magnets in one cell, which are symmetrically placed
about the cell center, except for sector dipole M4 as it
is located right at the center. There are six sextupoles
in each cell, placed in reflection-symmetric locations of
each cell in the high-dispersion regions. There are no
harmonic sextpoles or powered octupoles, although pro-
vision for octupoles in dispersive and non-dispersive lo-
cations has been made. Instead, MOGA is used to adjust
the sextupole strengths in 12 families, giving two-sector
translational symmetry.

Magnets Q4, Q5, and Q8 provide negative bending,
whereas M1, M2, M3, and M4 provide positive bending.
The negative bending angle is 10.47% of the net bending
angle. The natural emittance of the lattice is 41 pm for
the 6-GeV ring. The beta and dispersion functions of one
cell of the APS-U lattice is shown in Fig. 3.

In the following, the linear lattice parameters calcu-

lated with the two codes are compared first. This is fol-
lowed by the tracking simulation of the dynamic aperture
and the local momentum aperture.

A. Lattice parameters and linear optics

Table II lists a few lattice parameters. The betatron
tunes are different by only —0.0007 and 0.0007 for the
horizontal and vertical planes, respectively, out of the
total tunes of v, = 95.1 and v, = 36.1. This is an in-
dication of the level of agreement in the linear optics
modeling between the two codes. The momentum com-
paction factor and the beam parameters (e.g., emittance,
momentum spread) are all given by the linear topics and
they have similar agreement. FIG. 4 shows the differ-
ences in a few linear optics functions between the two
codes for one sector of the APS-U lattice. The fractional
beta function difference, A3/, between the two codes is
below 2 x 10™* and the difference in dispersion function
is below 1.5 um.

The calculation of chromaticity is an area where sim-
ulation codes tend to disagree [21]. In our study, the
natural chromaticities and the corrected chromaticities
for the horizontal and vertical planes agree very well
between elegant and AT. The natural chromaticities
for the horizontal and vertical planes between AT and
elegant differ by 0.06 and 0.16, out of —133 and —111,
respectively. The small relative differences indicate that
the modeling of energy dependence in focusing elements
is consistent in the two codes. The differences in the
corrected chromaticities are 0.05 and 0.15, respectively,
which are nearly the same as the differences between the
natural chromaticities. This is an indication that the en-
ergy dependence of particle motion in sextupole magnets
is modeled consistently by the two codes, to a high degree
of accuracy.

B. Nonlinear dynamics of the ideal lattice

The ability to reliably predict the nonlinear beam dy-
namics performance by simulation codes is a key require-
ment in the lattice design of next generation synchrotron
light sources. Accurate modeling of nonlinear beam dy-
namics is more challenging than modeling the linear op-
tics because the nonlinear beam motion can be very sen-
sitive to the initial conditions of the particles. It is more
important and relevant to benchmark the nonlinear dy-
namics predictions of the two simulation codes.

Because the betatron tunes differences between the two
codes are very small, it is considered unnecessary to cor-
rect the betatron tunes in AT toward the elegant values
before making comparisons for nonlinear beam dynamics
predictions. It was found that making tune corrections
with the Q1 and Q2 quadrupole families causes larger
beta beats than the case without tune correction.



TABLE I. New single particle dynamics features in elegant and AT. (Note that the KQUAD and KSEXT elements have been

standard in elegant for many years.)

Type elegant AT comments

Drift EDRIFT LaDrift exact drift space

Dipole CCBEND | BndStrMPoleSymplectic4Pass |straight dipole
Quadrupole| KQUAD | StrMPoleSymplectic4NPass |w/ quadrupole fringe field
Sextupole KSEXT | StrMPoleSymplecticdNPass |using exact drift

TABLE II. APS-U lattice parameters calculated with elegant
and AT.

Parameter elegant AT
Horizontal tune, v, 95.0999 | 95.0993
Vertical tune, v 36.0999 | 36.1007
Momentum compaction, x107°%| 4.0406 4.0399
Chromaticity, &, 8.1183 8.1704
Chromaticity, &, 4.7221 4.8739
Natural chrom., £2° -133.6488|-133.5874
Natural chrom., £** -111.6335|-111.4689
Emittance (pm) 41.6612 | 41.6434
Energy loss per turn (MeV) 2.8688 | 2.8700
Momentum spread, o5, x1073 | 1.3499 | 1.3494
Damping partition, J, 2.2497 2.2495
Damping time 7, (ms) 6.8446 6.8424

We first compared the nonlinear dynamics behaviors
predicted by the two codes for the ideal lattice. For this
comparison, physical apertures are removed in the ideal
lattice in order to allow modeling the particle motion at
large oscillation amplitudes. In Fig. 5 the on-energy hor-
izontal and vertical phase space profiles are compared
between the two codes. Particles with an initial horizon-
tal or vertical position offset are launched and tracked
for 1024 turns. All other initial coordinates are set to
zero. The RF cavity is turned off in this simulation.
The phase space profiles traced out by the two codes are
very similar, despite the severe distortion introduced by
nonlinearity at large offsets. The largest horizontal and
vertical contours in Fig. 5 correspond to the extent of
the stable phase space area in the two transverse planes
(while the action in the other plane is zero), respectively.
The beta functions are 8, = 5.20 m and 3, = 2.39 m at
the launching point. The island-like structures in the hor-
izontal phase space plot by elegant indicate horizontal
tune values that are very close to the low-order fraction
numbers. The lack of such structures in the AT plot is
due to the small tune difference of —0.0007.

Figure 6 compares the dynamic aperture (DA) of the
ideal lattice determined by the two codes. Physical aper-
tures, RF cavities, and radiation effects are all absent in
the lattice model for this comparison. DA is determined
by launching particles with initial position offset on the
z-y plane and track for 1024 turns. The initial positions
of the particles are on 19 rays extending from the origin.
The DA boundary on each ray is given by the last sur-
viving particle from the origin outward. The DA found
by the two codes is nearly the same, except for small
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FIG. 4. Differences in linear optics functions between AT and
elegant for a sector of the APS-U lattice. Top: fractional
beta function difference; bottom: dispersion function.

deviations in the upper right corner.

Frequency map analysis (FMA) [32] is also conducted
for the ideal lattice. Particles on a dense grid in the z-
y plane are tracked for 1024 turns. The tune diffusion,
defined as the combined betatron tune shifts with time,

diffusion = logy |/ AvZ + AvZ,

is evaluated by computing the tune changes, Av, and
Avy, between the first and second 512 turns. Fig. 7 shows
the comparison of tune diffusion rate in the tune diagram
between AT and elegant. The tune footprint is nearly
identical between the two codes. The differences in the
diffusion seem to represent real differences between the
two codes.

We also did FMA in the x—% plane. The momentum

(14)
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FIG. 5. Comparison of Hamiltonian contours in the horizontal
phase space by tracking simulation for elegant and AT. 3, =
5.20 m and Sy = 2.39 m at the launching point. RF cavity is
turned off in the model. Top: AT; bottom: elegant.
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FIG. 6. Comparison of DA found by the two codes (elegant
and AT) for the ideal APS-U lattice, without physical aper-
tures, radiation, or RF cavity.

deviation coordinate is varied from —4.5% to 4.5% with
the step size of 0.25%. Tune diffusion over the x—% plane
is plotted in Fig. 8. While again there is some difference
in the evaluation of the tune diffusion, the stability region
in the x—% plane calculated by the two codes is very
similar.

The dependence of betatron tunes over the momentum
deviation is often used to characterize the off-energy dy-
namics performance of a lattice. Betatron tunes vs. mo-
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FIG. 7. Tune diagram for frequency map analysis in the z-y
plane. The color code represents the detuning over 1024 turns,

log,o(y/Av2 + Av2), where Av, and Av, are tune changes
from the first 512 turns to the second 512 turns.

mentum deviation for the APS-U lattice calculated by
both codes are compared in Fig. 9. Within a large range
of momentum errors, the tunes agree between the two
codes to high accuracy. This indicates that the codes
not only model the linear chromaticities in a consistent
manner, but also the high order chromaticities.

Comparison of the nonlinear beam dynamics perfor-
mance for the APS-U upgrade lattice calculated by AT
and elegant shows that the two codes are in very good
agreement in the prediction of both geometric and chro-
matic behaviors within the full stability region of the
lattice.

C. DA and LMA for lattices with linear errors

A workable lattice has to be able to deliver the re-
quired dynamic aperture and momentum aperture when
a certain level of lattice errors is present because a re-
alistic machine always has errors. The robustness of a
lattice is typically checked by generating an ensemble of
perturbed lattices, each with a different set of random er-
rors, and evaluating the variation of DA and LMA among
the ensemble. As a part of the code validation study, we
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FIG. 9. Comparison of betatron tunes as a function of mo-
mentum deviation calculated by AT and elegant.

performed this process for the APS-U lattice with both
AT and elegant.

We generated 25 perturbed lattices by introducing
small random quadrupole and skew quadrupole errors
to the sextupole magnets in the lattice. The level of
quadrupole errors is chosen such that the horizontal and

2 : : : : :
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E 1r
g — AT best/worst
— AT mean
0.57 —— Elegant best/worst ‘
Elegant mean
O 1 1 1 1
-3 -2 -1 0 1 2 3
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FIG. 10. Dynamic apertures with the same 25 error seeds
evaluated by AT and elegant are compared. The think curves
show the average DA of the 25 seeds, while the thin curves
show the best and worst of all seeds. Tracking is done with
physical apertures and radiation effects by bends. RF voltage
is at 4.8 MV.

vertical beta beating (rms) are both on the order of 1%.
The level of skew quadrupole errors give an emittance
ratio of ~ 10% when the horizontal and vertical tunes
are shifted apart by 0.1 (with fractional part of v, and
vy at 0.05 and 0.15, respectively). When the betatron
tunes are restored, the ratio is ~100%.

The DA and LMA are evaluated by particle tracking
simulation in a realistic manner. The 352-MHz main
RF cavities are turned on, with the total RF voltage set
to 4.8 MV. Radiation damping is simulated by losing
a proper amount of energy at each integration step in
the dipole magnets for the particles. All the physical
apertures are in the lattice model. The elliptic aperture
passmethod is implemented in AT. A special aperture
type, the “speed bump” aperture, is also implemented
in AT using the same physics model as in elegant [33];
compared to a simple flat aperture, this method more
accurately simulates the planned collimators in the high-
dispersion region that are used to intercept Touschek-
scattered particles.

The DA is determined by launching particles on 19
rays and tracking for 1024 turns as described earlier. The
average DAs of the 25 lattices found by the two codes are
plotted in FIG. 10 in thick curves. The best and worst
DA among all lattices are shown with thin curves. There
is good agreement except for a small difference at the
upper right corner, which corresponds to the unstable
region around v, = 0.2 and v, = 0.2 in FIG. 7.

The LMA is determined by launching particles with
initial energy errors, ranging from § = —0.06 to 0.06,
with step size of 0.0005 and tracking for 2048 turns from
each location of interest. The locations of interest include
the entrance and exit faces of all dipole magnets and the
entrance points of all magnets in the first sector. FIG. 11
shows the distribution of LMA on the positive and nega-
tive sides over the length of the first sector for AT (top)
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FIG. 11. Local momentum aperture for the first sector of

the APS-U lattice with 25 random error seeds obtained with
particle tracking by AT (top) or elegant (bottom).

and elegant (bottom). The results are remarkably close.

IV. CONCLUSION

In order to accurately model the nonlinear beam dy-
namics performance of next-generation storage ring light
sources, new features were introduced into the lattice
modeling codes elegant and AT in two separate, inde-
pendent efforts. A new development in the codes is the
proper modeling of combined-function quadrupole-bend
magnets on a straight geometry. The linear and nonlinear
effects of quadrupole fringe fields are also included in the
lattice model. Quadrupole fringe field effects were pre-
viously modeled in elegant and AT; but typically they
are not included in initial lattice designs.

We used the APS-U lattice to benchmark the two codes
and found excellent agreement in both linear optics cal-
culations and the prediction of nonlinear beam dynamics
behaviors. The results we present here boost our con-
fidence in making accurate predictions of lattice perfor-
mance with precise modeling codes and encourage further
refinement.
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