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Sub-picosecond magnetisation manipulation via femtosecond optical pumping has 

attracted wide attention ever since its original discovery in 1996. However, the spatial 

evolution of the magnetisation is not yet well understood, in part due to the difficulty in 

experimentally probing such rapid dynamics. Here, we find evidence of rapid magnetic 

order recovery in materials with perpendicular magnetic anisotropy via nonlinear magnon 

processes. We identify both localisation and coalescence regimes, whereby localised 

magnetic textures nucleate and subsequently evolve in accordance with a power law 

formalism. Coalescence is observed for optical excitations both above and below the 

switching threshold. Simulations indicate that the ultrafast generation of noncollinear 

magnetisation via optical pumping establishes exchange-mediated spin currents with an 

equivalent 100% spin polarised charge current density of 108 A/cm2. Such large spin 

currents precipitate rapid recovery of magnetic order after optical pumping. These 

processes suggest an ultrafast optical route for the stabilization of desired meta-stable 

states, e.g., isolated skyrmions. 
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Spin dynamics upon femtosecond optical pumping [1-15] have been intensely studied 

during the last two decades both because of potential applications for information storage and 

because of the need to understand the fundamental physics involved [16]. A variant of these 

dynamics is all-optical switching (AOS). While originally demonstrated for ferrimagnetic alloys 

with perpendicular magnetic anisotropy (PMA) [2], AOS has now been reported to occur in 

ferromagnetic PMA materials either subject to optical pumping [9, 10, 11, 12] or by use of 

ultrafast hot electrons [14, 15]. After ultrafast demagnetisation, the material’s degrees of freedom 

can be considered to be in thermal equilibrium from the perspective of spatially averaged quasi-

equilibrium dynamics, e.g., the three temperature model [1, 17, 18]. Whereas the three 

temperature model has been applied successfully to simulate picosecond magnetisation dynamics 

[1, 3, 4, 17] even to some degree for non-uniform states [5, 6] there is a growing understanding 

of the important role of spatially-varying magnetisation. For example, the chemical 

inhomogeneity of amorphous ferrimagnetic GdFeCo alloys results in picosecond transfer of 

angular momentum that both drives magnetisation switching [8] and influences the equilibrium 

state after pumping with a single laser pulse [13]. More recently, the effective domain size 

during cooling has been identified as a criterion to predict whether macroscopic AOS can occur 

[12]. 

To further investigate the fundamental physics involved in the evolution of spatially varying 

magnetisation after ultrafast optical pumping, and to elucidate which physical mechanisms are 

most important for the recovery of local magnetic order at picosecond timescales, we study the 

space- and time-dependent magnetisation dynamics in ferrimagnetic Gd0.24Fe0.665Co0.095 alloys 

with time-resolved resonant X-ray scattering. We then compare our data with a multiscale model 

that utilizes both atomistic and large-scale micromagnetic components to simulate the time 

evolution of the magnetisation. We identify two distinct dynamic processes: magnon localisation 

and a subsequent magnon coalescence. These processes describe the nucleation and dynamics of 

localised textures that arise from nonlinear magnon interactions in contrast to an average, long-

range magnetic order recovery associated to the thermalised magnon occupation distribution 

cool-down, e.g., as predicted in Ni [19]. 

Magnon localisation is the process by which a paramagnetic state evolves into a collection 

of localised spin textures, also known as magnon drops [20]. Our use of the term “magnon drop” 

in this case is topologically generic insofar as the spin texture in a single magnon drop is of an 

indeterminate winding number. Magnon localisation is characterised by the appearance of a ring 

pattern in the two-dimensional spin-spin correlation function that nucleates at the same length-

scale as the microstructure of the magnetic material [8]. The subsequent magnon coalescence is 

characterized by the emergence of a broad peak in the spin-spin correlation function that is 

centred at low wavenumbers. This peak indicates weak long-range correlations in the spatial spin 

distribution and is a result of the continual nonlinear interaction of magnons that develop into 

randomly located magnon drops. By analysing our numerical simulations, an exchange flow spin 

current (EFSC) [21, 22] that is equivalent to a 100% polarised charge current density on the 

order of 108 A/cm2 is found. We propose that magnon drop perimeter deformations and 

dynamics driven by such spin currents expedites magnon coalescence via their growth, break-up, 

and merger. 

Our study suggests that the picosecond evolution of the spatial magnetisation can be 

understood from a phase kinetics approach [23, 24]. In the case of nearly full demagnetisation 

upon femtosecond optical pumping, the system consists of a non-equilibrium distribution of 
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randomised spins that then undergo rapid quenching of the magnetic order parameter that is 

subject to a possible multiplicity of equilibrium (or quasi-equilibrium) states. In other words, the 

subsequent rapid passage from a paramagnetic to a magnetically ordered state will generally do 

so via pathways of unstable domain growth, i.e., phase-ordering kinetics. Such dynamics contrast 

the critical behaviour expected from an adiabatic evolution through a phase transition [25]. 

Because of the possible degeneracy of the equilibrium, unstable growth necessarily leads to 

pattern formation, examples of which include domains in magnetic materials and metallic alloys 

[23], phase separation in binary fluids and superfluids [26], and optical solitons [27]. In addition, 

rapid quenching of the randomised state can dynamically stabilise topological defects via the 

Kibble-Zurek mechanism [28, 29], as seen in superfluids [26, 30], ferroelectrics [31], magnetic 

vortices [32], and bubble domain lattices [33]. Therefore, the phase kinetics interpretation of the 

magnon processes identified here sheds light onto the microscopic processes that must be 

controlled for macroscopic AOS or to stabilise desired equilibrium states upon ultrafast optical 

pumping. 

The evolution of the spin-spin correlation function, ΔSq
2, is experimentally measured by 

time-resolved, coherent, resonant magnetic soft X-ray scattering, a pump-probe technique 

schematically shown in Figure 1a (see details in Methods). A 0.5 T field is applied perpendicular 

to the film plane during the measurement, such that the magnetisation is reset into the saturated 

state prior to optical pumping. The element-specific spatially-averaged dynamics are 

simultaneously measured by X-ray magnetic circular dichroism (XMCD) of the un-scattered 

beam. The scattering pattern provides information on the magnetisation’s spatial profile. Two 

schematic examples are shown in Figure 1b. A ring in reciprocal space forms when there is a 

labyrinthine domain pattern in real space with a characteristic domain width, or correlation 

length, as shown in the top row. A broad peak centred at q = 0 forms when there are randomly 

located magnon drops, as shown in the bottom row. 

We measured the magnetisation dynamics for both cases where the pump pulse fluence is 

below or above the AOS threshold. Sub-threshold dynamics were obtained with a 30 nm thick 

sample and an absorbed 800 nm pump fluence of 3.91 mJ/cm2. In Figure 1c, the corresponding 

XMCD response for both Gd and Fe is constant between ≈3 ps and the longest delay time of 20 

ps. AOS is obtained with a 20 nm thick sample and an absorbed 800 nm pump fluence of 4.39 

mJ/cm2. After switching, the XMCD data is also constant between 3 ps and 20 ps, as presented in 

Figure 1d. The slow time dependence of the XMCD data for both cases indicates that the 

average magnetisation is essentially constant for 3 ps < t < 20 ps. A critical implication is that the 

quasi-thermal redistribution of magnon occupation caused by either damping or inelastic 

scattering that eventually drives the magnetisation towards a saturated state is not important at 

these timescales. 

The azimuthally averaged spin-spin correlation function for Gd in the case of sub-threshold 

dynamics is shown by contours in Figure 1e. Spin-spin correlation profiles at selected time 

instances are shown in Figure 1f by solid black curves that have been shifted vertically for 

clarity. These lineouts have two spectral features; one centred close to or below the smallest 

resolved wavenumbers and one centred in the range 0.4 nm-1 < q < 0.8 nm-1. Fits to the data 

shown by the dashed red curves are obtained by using a Gaussian line shape for the high-q 

feature (with a peak position indicated by black circles) and a Lorentzian line shape for the low q 

peak. The fitted Gaussian line shape indicates the appearance of a ring and therefore suggests the 

formation of a spatially correlated magnetisation pattern at sub-picosecond timescales. After ≈ 5 
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ps, reliable fits were obtained by use of only a Lorentzian line shape. Because the XMCD data 

remains quenched for the measurement time, we conclude that the Lorentzian feature 

corresponds to randomly located magnon drops [20]. 

For the case where the pump was sufficient to induce AOS, the azimuthally averaged spin-

spin correlation shown in Figure 1g exhibits a peak at low q that appears in a fraction of a 

picosecond. In this measurement, the maximum measured wavenumber of q ≈ 0.46 nm-1 was 

insufficient to determine the appearance of a Gaussian peak at higher wavenumbers. Spin-spin 

correlation profiles at selected time instances are shown in Figure 1h. Again, the curves are 

shifted vertically for the sake of clarity. Reliable fits were obtained solely by use of a Lorentzian 

peak, as shown with the dashed red curves in Figure 1h. As in the sub-threshold case, this 

spectral feature is consistent with that expected for a randomly located collection of magnon 

drops and suggests that macroscopic AOS at equilibrium requires magnon drops to merge into a 

single domain. 

We performed atomistic simulations [34, 35] to understand better the physical mechanisms 

that are most important in driving the evolution of the spin-spin correlation dynamics after 

pumping. The amorphous alloy is modelled as a polycrystalline Gd and Fe-Co thin film with 

elemental inhomogeneity with a characteristic length of 7 nm, guided by recent experimental 

results [8]. The spatially averaged magnetic moments for Gd and Fe obtained with atomistic 

simulations are shown in Figure 2a for the case of sub-threshold dynamics utilising an absorbed 

fluence of 10.7 mJ/cm2 and Figure 2b for the case of AOS utilising a very similar absorbed 

fluence of 11 mJ/cm2. The atomistic simulations assume uniform heating across the thickness, 

and the utilised fluences are tuned to qualitatively reproduce the experimental XMCD data, cf. to 

Figure 1c and d. Snapshots of the simulated spatial magnetisation evolution are shown in Figure 

2c and d for sub-threshold dynamics and AOS. In both cases, the coarsening of the spatially 

varying perpendicular-to-plane magnetisation from a fine-grained randomised state into a 

collection of magnon drops is observed. Such coarsening in the magnetic texture at such short 

time-scales is necessarily the result of non-conservative nonlinear magnon interactions, whereby 

spatial localisation rapidly minimizes magnon energy [20, 36]. This is in contrast to a simple 

picture of the field-driven growth of domains in an applied field, as is expected to be operative 

on much longer timescales greater than hundreds of picoseconds [37]. 

To directly compare with the experimental results, the simulated spin-spin correlation 

function is calculated via Fourier analysis of the spatially-dependent perpendicular-to-plane 

magnetisation. Contours of the azimuthally averaged spin-spin correlation function are shown in 

Figure 3a. Lineouts at selected time instances are shown in Figure 3b in addition to fits by a 

linear combination of a Lorentzian and a Gaussian centred at q > 0 with peak positions indicated 

by black circles. While the appearance of the Gaussian peak is less apparent than in the case for 

the data in Figure 1f, the fitting was unambiguous, as we further demonstrate below. For the case 

of AOS, contours of the azimuthally averaged spin-spin correlation function are shown in Figure 

3c while selected lineouts and Lorentzian fits are shown in Figure 3d by solid black and dashed 

red curves, respectively. Both cases qualitative agree with the experimental data. 

To further identify the role of exchange coupling between the rare earth and transition metal 

lattices, we performed multiscale micromagnetic simulations based on the Landau-Lifshitz (LL) 

equation [38] that consider an effective, homogeneous exchange stiffness. The ferrimagnetic 

GdFeCo is modelled as a single-species ferromagnet, with an initial condition provided by the 
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atomistic simulations at a specified time tc ≥ 3 ps after optical pumping. By use of this multiscale 

approach, we can isolate the role of the atomic-scale exchange interactions, which dominate at 

short times, from the longer-range exchange stiffness. The choice of tc has a negligible effect on 

the qualitative features of the simulation results (see SI). As such, we only show a representative 

example at tc = 3 ps. 

For the sub-threshold case, the azimuthally averaged spin-spin correlation function is shown 

in Figure 3e. The black area indicates the temporal range in which atomistic simulations are used 

to calculate the initial conditions for the micromagnetic simulations. Corresponding lineouts, 

along with fits by the previously described sum of Lorentzian and Gaussian functions, are shown 

in Figure 3f by, respectively, solid black and dashed red curves. A striking feature in the 

micromagnetic simulations is the appearance of an additional Gaussian peak with a centre 

position identified by black circles in Figure 3f. This peak suggests the emergence of a material-

independent natural correlation length in the magnetisation distribution even in the absence of 

chemical inhomogeneity. The general mechanism for the nucleation of such a correlation length 

is modulational instability, whereby magnons are localised by the nonlinear attractive potential 

driven by uniaxial anisotropy [20, 36, 39]. After 10 ps, only the Lorentzian component can be 

reliably fitted to the micromagnetic results. For the case of AOS, the azimuthally averaged spin-

spin correlation function is shown in Figure 3g. Lineouts and corresponding Lorentzian fits are 

shown in Figure 3h. The qualitative agreement to both experimental data and atomistic 

simulations indicates that atomic-scale exchange interactions have a limited influence on the 

dynamics when only a Lorentzian line shape can be fitted. 

To conclusively elucidate the physical mechanisms that drive the magnetisation dynamics 

within 20 ps after the optical pulse, we analyse the fitted parameters obtained from experiments 

and numerical simulations. We first study the Gaussian line shape observed during sub-threshold 

dynamics. The fitted peak position, qmax, and peak width, σq, of the Gaussian feature as a 

function of time are shown in Figure 4a and b, respectively. The blue circles are obtained from 

fits to experiments. For the first ≈ 3 ps, both the central position and the peak width are 

approximately constant at qmax = 0.57 ± 0.014 nm-1 and σq = 0.24 ± 0.002 nm-1, respectively, 

indicating that the perpendicular magnetisation component pattern has a characteristic correlation 

length of 2π / 0.57 nm-1 ≈ 11 nm. Because the peak width is relatively constant, we conclude that 

the pattern is seeded by a static structure in the system, i.e., chemical inhomogeneities. This 

conclusion is in agreement with the ultrafast angular momentum transfer between regions of ≈ 10 

nm average chemical correlation length in similar amorphous GdFeCo alloys [8]. The red circles 

in Figure 4a and b are obtained from the atomistic simulations. The small error bars indicate that 

the fit was unambiguous. The average centre position estimated from the first 2 ps is qmax = 0.88 

± 0.012 nm-1 and it is accompanied by an approximately constant peak width at σq = 0.18 ± 0.04 

nm-1. The corresponding length scale of ≈ 7.1 nm agrees with the modelled correlation length of 

the chemical inhomogeneity. These simulations demonstrate how the chemical nonuniformity of 

the alloy seeds the magnetisation pattern within less than 1 ps. Between ≈ 3 ps and ≈ 4.5 ps the 

centre position from fits to experiments shifts towards q = 0 while fits to atomistic simulations 

are unreliable due to the large error bars. These concurrent observations indicate that the 

magnetic system dissociates from the sample’s chemical inhomogeneity.  

The nucleation of a correlated state with a concomitant diffraction ring and its subsequent 

dissociation evidenced by a transition into a central peak, defines the magnon localisation 

process. 
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The subsequent evolution of a collection of uncorrelated magnon drops is quantified from 

the Lorentzian fits to the central peak. The linewidth of the central peak provides information on 

the magnon drops and consists of four contributions: mean diameter, mean perimeter profile, and 

the statistical distribution of both. The influence of both the perimeter profile and distribution 

can be neglected based on intrinsic scale separation, i.e., the perimeter length scale is inversely 

proportional to the magnon drop diameter [20]. However, it is difficult to disentangle the mean 

magnon drop diameter from its distribution, partly due to the limited statistics that can be 

accumulated at picosecond timescales. Here, we will consider that the central peak full-width at 

half-maximum, Δq, provides a metric for the temporal evolution of magnon drops, calculated as 

a characteristic length scale L(t) = 2π / Δq(t). In other words, an increase in L(t) indicates either 

magnon drop growth, an increased uniformity in the magnon drops’ size distribution, or some 

combination of both. 

The characteristic length scales obtained from experiments, atomistic simulations, and 

micromagnetic simulations in the case of sub-threshold dynamics are shown in Figure 4c, by 

blue, red, and black circles, respectively. The experimental data indicates that the characteristic 

length scale is approximately 10 nm at 4 ps, which then grows to 50 nm at 20 ps. The rate of the 

domain growth closely follows a power law from 8 to 20 ps. Atomistic simulations are in 

quantitative agreement with the experimental results. Micromagnetic simulations exhibit a delay 

in comparison to the data and the atomistic simulations, but the growth rate is proportionally in 

good qualitative agreement with both. We attribute this disagreement to the spatial smoothing 

introduced by the continuum approximation and the different mechanism that drives the 

correlation lengths before 10 ps, i.e., modulational instability as opposed to chemical 

inhomogeneities. 

The regime in which the characteristic length scale grows according to a power law is 

referred to as magnon coalescence. Because micromagnetic simulations exhibit a similar power 

law growth, we conclude that the combination of uniaxial anisotropy and exchange drives the 

process of magnon coalescence. This process is necessarily nonlinear as the balance between 

uniaxial anisotropy and exchange favours magnon drops as dynamical magnon bound states. 

For the case of AOS, power law growth of the characteristic length scale is also obtained, as 

shown in Figure 4d. Before 7 ps, the experimental results exhibit a plateau corresponding to 

correlation length scales of ≈ 80 nm. From the XMCD data in Figure 1d, the magnetic moments 

are dynamically quenched for the first ≈ 3 ps so that the nucleation of magnon drops in this 

temporal range is probably hampered by the lack of any net magnetization to break the 

symmetry. Therefore, the plateau originates from scattering whose physical origin is unclear. In 

contrast, the atomistic simulations exhibit rapid growth between 2 ps and ≈ 5 ps, as indicated in 

the gold-shaded area. However, after this rapid localisation process, there follows much slower 

growth, indicated in the blue-shaded area, that is in good qualitative agreement with the 

experimental results shown by blue circles. Power law growth is also obtained from 

micromagnetic simulations, exhibiting a similar delay as the sub-threshold dynamics.  

Power law fits are shown in Figure 4c and d by colour coded dashed lines that utilise the 

fitting function 𝐿(𝑡) = 𝑏𝑡𝑎  with the resultant fitting parameters listed in Table 1. We find 

exponents in the range 0.57 < a < 1.08 for all cases. Similar analysis from experimental data 

obtained at different fluences for both Gd and Fe return exponents in the same range of values 

(see SI). Taking into account exponents obtained from experiments and simulations, an average 
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exponent of a = 0.85 ± 0.1 is found. For comparison, the Lifshitz-Cahn-Allen theory for the 

power law growth of uniaxial domains predicts an exponent of 1/2 [23, 40, 41]. However, the 

Lifshitz-Cahn-Allen theory assumes locally equilibrated domains, i.e., at long times when the 

magnon drop’s perimeter dynamics is neglected. We conjecture that the faster growth rate 

observed here is the result of the non-equilibrium magnetisation dynamics that are present at 

short times. 

 Dynamical magnon drop perimeter deformations can favour fast magnon drop growth. The 

torque exerted by non-collinear spins in the form of EFSCs [21, 22, 42] can drive perimeter 

deformations of magnon drops. The EFSC density expressed as an equivalent 100% polarised 

charge current density, Js, can be numerically calculated from the magnetisation vector via a 

hydrodynamic representation [21, 43]. The normalised probability distribution for the EFSC 

density magnitude, P(Js), at selected time instances is shown in Figure 4e and f for sub-threshold 

dynamics and AOS, respectively. Current densities on the order of 108 A/cm2 persist well after 

ultrafast pumping. For comparison, current densities of ≈ 107 A/cm2 are typical of those used to 

drive magnetisation switching via spin transfer torque [44]. Such large spin currents spatially 

deform the magnon drops’ perimeters, establishing a multitude of modes that may include 

breathing and rotation [45]. In the dynamics studied here, such modes increase interactions 

between magnon drops that result in both merging and break-up [46]. Examples of magnon drop 

merging and break-up from micromagnetic simulations are shown in Figure 4g. Snapshots 

spanning 2 ps are shown. The magnon drops’ perimeters where the perpendicular-to-plane 

magnetization is zero are shown in solid black areas. The gray and white areas indicate that the 

perpendicular-to-plane magnetisation is parallel or anti-parallel to the applied field. The curves 

represent the flow of EFSCs that transfer perpendicular-to-plane angular momentum, colour 

coded by the current density magnitude. Merging between the leftmost and central magnon drops 

is caused by strong EFSC flows that transfer angular momentum between the magnon drops. 

Break-up is observed at the top of the central magnon drop, where the EFSC flow transfers 

angular momentum away from the magnon drop. We also note that the EFSC flow exhibits 

curved trajectories, which suggests the existence of local magnetic topological defects that may 

eventually annihilate or stabilise long-lived topological textures, e.g., skyrmions. 

Our results suggest that desired magnetisation states may be stabilised by nanopatterning 

magnetic materials to take advantage of both sub-picosecond seeded magnetisation states and 

EFSCs. For example, a close-packed spatially periodic pattern is expected to favour magnon 

coalescence and lead to a fast, macroscopic AOS; while engineered defects may lead to the 

stabilisation of isolated magnetic skyrmions via the Kibble-Zurek mechanism at picosecond 

timescales in materials with Dzyaloshinskii-Moriya interaction. 

 

Methods 

Experiments 

The GdFeCo samples were fabricated on 100 nm thick Si3N4 membranes by magnetron 

sputtering. A 5 nm seed layer of Si3N4 was first grown on the membrane followed by the 

Gd0.24Fe0.665Co0.095 film, which was then capped with 20 nm of Si3N4. X-ray measurements were 

conducted at the SXR hutch of the Linac Coherent Light Source [47]. The X-ray energy was 

selected to be resonant with the Fe L3 resonance edge at 707 eV or the Gd M5 resonance edge at 
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1185 eV with a 0.5 eV bandwidth and a pulse duration of 80 fs. The X-ray pulses were circularly 

polarised at the Fe L3 and Gd M5 edges by using the XMCD in magnetized Fe and GdFe films 

respectively placed upstream of the experiment. A degree of polarization was 85% at the Fe L3 

edge and 79% at the Gd M5 edge. Measurements were made in transmission geometry with X-

rays incident along the sample normal. An in-vacuum electromagnet was used to apply a field of 

0.5 T perpendicular to the GdFeCo film. The diffracted X-rays were collected with a p-n charge-

coupled device (pnCCD) two-dimensional detector placed behind the sample. A hole in the 

centre of the detector allowed the transmitted beam to propagate to a second detector used to 

collect the transmitted X-ray beam. The experiment was conducted in an optical pump – X-ray 

probe geometry. Optical pulses of 1.55 eV and 50 fs duration were incident on the sample in a 

near collinear geometry. The delay between the optical and X-ray pulses was achieved using a 

mechanical delay line, where the delay was continuously varied. X-ray–optical jitter was 

monitored and removed from the experimental data using an upstream cross-correlation arrival 

monitor [48]. 

 

Atomistic simulations 

A model system of a GdFe ferrimagnet was developed to perform numerical simulations of the 

atomistic spin dynamics after femtosecond laser excitation. The inhomogeneous microstructure 

is generated by specifying random seed points representing areas of segregation of the Gd from 

the alloy, leading to 15% to 30% higher local Gd concentration. These regions are interpolated 

using a Gaussian with a standard deviation of 5 nm, representing the scale of the segregation. 

Due to low packing of the seed points, the characteristic length of the spatial variations is 

approximately 7 nm. An atomistic level simulation model is used to properly describe the 

ferrimagnetic ordering of the atomic moments with Heisenberg exchange [34]. The energy of the 

system is described by the spin Hamiltonian 

ℋ = − ∑ 𝐽𝑖𝑗𝑖<𝑗 𝑺𝑖 ∙ 𝑺𝑗 − ∑ 𝑘𝑢(𝑆𝑖
𝑧)2

𝑖 ,           (1) 

where the spin 𝑺𝑖 is a unit vector describing the local spin direction. 𝐽𝑖𝑗 is the exchange integral, 

which we limit to nearest neighbour interactions. ku is the anisotropy constant and 𝜇𝑠 is the local 

(atomic) spin magnetic moment. Time-dependent spin dynamics is governed by the Landau-

Lifshitz-Gilbert (LLG) equation at atomistic level 

𝜕𝑡𝑺𝑖 = −
𝛾

(1+𝛼2)
[𝑺𝑖 × Beff

𝑖 + 𝛼𝑺𝑖 × (𝑺𝑖 × Beff
𝑖 )],       (2) 

where γ is the gyromagnetic ratio and α = 0.01 is the Gilbert damping factor. The on-site 

effective induction can be derived from the spin Hamiltonian with the local field augmented by a 

random field to model the interactions between the spin and the heat bath 

Beff
𝑖 = −

𝜕ℋ

𝜕𝑺𝑖
+ ϛ𝒊,          (3) 

where the second term ϛ𝒊 is a stochastic thermal field due to the interaction of the conduction 

electrons with the local spins. The stochastic thermal field is assumed to have Gaussian statistics 

and satisfies 

⟨ϛ𝑖,𝑎(𝑡)ϛ𝑗,𝑏(𝑡′)⟩ = 𝛿𝑖𝑗𝛿𝑎𝑏(𝑡 − 𝑡′)2𝛼𝑖𝑘𝐵𝑇𝑒𝜇𝑖/𝛾𝑖,   (4) 
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⟨ϛ𝑖,𝑎(𝑡)⟩ = 0,      (5) 

where kB is the Boltzmann constant and T is the temperature. We incorporate the rapid change in 

thermal energy of a system under the influence of a femtosecond laser pulse. The spin system is 

coupled to the electron temperature, Te, which is calculated using the two-temperature model 

[49] with the free electron approximation for the electrons 

𝐶𝑒
𝑑𝑇𝑒

𝑑𝑡
=  −𝐺𝑒𝑙(𝑇𝑙 − 𝑇𝑒) + 𝑃(𝑡),       (6) 

𝐶𝑙
𝑑𝑇𝑙

𝑑𝑡
=  −𝐺𝑒𝑙(𝑇𝑒 − 𝑇𝑙),              (7) 

where 𝐶e = 225 J m-3 K-1, 𝐶l = 3.1 × 106 J m-3 K-1, 𝐺𝑒𝑙 = 2.5 × 1017 W m-3 K-1, and 𝑃(t) 

models the temperature from a single Gaussian pulse into the electronic system. The pulse has a 

width of 50 fs. 

We use Heun numerical integration scheme to integrate the stochastic equation of motion with 

time-varying temperature [35]. We use 𝜇𝐹𝑒
= 1.92𝜇𝐵 as an effective magnetic moment 

containing the contribution of Fe and Co and we set 𝜇𝐺𝑑
= 7.63𝜇𝐵  for the Gd sites. The 

standard parameters of the exchange coupling constants are used: 𝐽Fe-Fe = 4.526 × 10−21 J per 

link, 𝐽Gd-Gd = 1.26 × 10−21 J per link, and 𝐽Fe−Gd = −1.09 × 10−21 J per link. We assume a 

uniaxial anisotropy energy of 8.07246× 10−24 J per atom. The numerical simulations are 

conducted using the VAMPIRE software package [35]. 

 

Multiscale micromagnetic simulations 

Micromagnetic simulations were performed with the graphic processing unit (GPU) package 

MuMax3 [50] that solves the Landau-Lifshitz equation for a ferromagnet 

𝜕𝑡m = −𝛾𝜇0[m × Beff + 𝛼m×m×Beff],    (8) 

where m is the magnetisation vector normalised to the saturation magnetisation and Beff is an 

effective induction that includes the required physical terms to model a ferromagnetic material. 

Here, we included exchange, non-local dipole, uniaxial anisotropy, and external fields. The 

exchange interaction in the micromagnetic approximation takes the form of a Laplacian scaled 

by the exchange length, λex. In MuMax3, the Laplacian is numerically resolved by a 4th order 

central finite difference scheme, i.e., each micromagnetic cell is subject to exchange interaction 

due to itself and two neighbouring cells in each dimension. This approach offers numerical 

stability but also results in the smoothing of the magnetisation in cubic volumes of side length of 

5λex that quickly supresses the short-range spin randomisation that occurs in atomistic 

simulations. This spatial smoothing leads to a temporal delay in the evolution of the spatially 

varying magnetisation. We ran our simulations on NVIDIA GPU units K20M, K40, K80, and 

P100. Due to the coarse resolution of micromagnetic simulations, we utilise approximately cubic 

cells of size 2 nm x 2 nm x δ, where δ = 2ND and the factor N is chosen to take advantage of the 

GPU spectral calculations such that δ < λex ≈ 5 nm and D is the physical thicknesses equal to 30 

nm or 20 nm for the sub-threshold or switching dynamical cases, respectively. Note that the size 

of the cells only impacts the stability and accuracy of the numerical algorithm while the physics 

can only be interpreted in the framework of the continuum Landau-Lifshitz equation, i.e., long-
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wavelength features relative to the exchange length. We set the software to solve equation (8) 

with an adaptive-step, 4th order Runge-Kutta time integration method. Periodic boundary 

conditions (PBCs) were imposed along the film’s plane. For both dynamical behaviours we used 

the equilibrium magnetic parameters: MS = 47170.6 A/m, anisotropy constant ku = 31127.228 

J/m2, exchange constant A = 1 pJ/m, and α = 0.01. The value for A was numerically found to best 

match the atomistic, average perpendicular magnetisation (See SI). 

 

Estimation of the change in the spin-spin correlation function 

Experimentally, the change in the spin-spin correlation function, ΔSq
2, was obtained from the 

scattered intensities measured by circularly polarised light as 

∆𝑆𝑞
2 =

𝐼+(𝑞,𝑡)+𝐼−(𝑞,𝑡)

2
− 〈

𝐼+(𝑞,𝑡<0)+𝐼−(𝑞,𝑡<0)

2
〉,             (9) 

where I+(q,t) and I-(q,t) are the time-dependent scattered intensities obtained with right-handed 

and left-handed circularly polarised light. The background was subtracted by averaging the data 

collected at times before the optical pulse irradiated the sample. 

The spin-spin correlation function for both atomistic and micromagnetic simulations was 

estimated by computing a two-dimensional fast Fourier transform (FFT) on the perpendicular 

magnetisation for each layer as a function of time. To minimise error, the FFTs obtained for each 

layer at a given time were averaged. No window function was used due to the PBCs. 

 

Equilibrium spin currents established by noncollinear magnetisation 

In the dispersive hydrodynamic formulation of magnetisation dynamics [21], the normalised 

magnetisation vector m = (mx, my, mz) in equation (8) can be cast in hydrodynamic variables by 

the canonical transformation 

𝑛 = 𝑚𝑧 , u = −∇arctan[𝑚𝑦 𝑚𝑥⁄ ],          (10) 

where n is the density and u is the fluid velocity. For the case of conservative dynamics, α = 0 in 

equation (8), the dispersive hydrodynamic equations are 

𝜕𝑡n = ∇ ∙ [(1 − 𝑛2)u] ,            (11) 

𝜕𝑡𝑢 = −∇[(1 − |u|2)𝑛] − ∇ [
∆𝑛

1−𝑛2
+

𝑛|∇𝑛|2

(1−𝑛2)2
] − ∇ℎ0 ,        (12) 

expressed in dimensionless space, time, and field scaled by, respectively √|𝐻𝑘 𝑀𝑠⁄ − 1|𝜆ex
−1, 

𝛾𝜇𝑜|𝐻𝑘 − 𝑀𝑠|, and 𝑀𝑠
−1, where the anisotropy field is given by 𝐻𝑘 = 2 𝑘𝑢 (𝜇𝑜𝑀𝑠)⁄ , and h0 is a 

dimensionless field applied normal to the plane. The longitudinal spin density flux in equation 

(4) is identified as the EFSC in hydrodynamic variables. To establish a clear comparison to spin 

currents obtained by charge-to-spin transduction, the EFSC are expressed as a 100% spin 

polarised charge current density in units of A/m2 by [22] 

J𝑠 = −
2𝑒

ℏ
𝜇0𝑀𝑠

2𝜆ex(1 − 𝑛2)u .            (13) 
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We note that the factor (1 − 𝑛2) leads to maximum EFSC for a given u when the magnetisation 

is in the plane. For this reason, the magnon drop perimeters are primarily subject to EFSCs. 
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 Sub-threshold Switching 

a b a b 

Experiment 0.81 ± 0.01 5.24 ± 0.14 0.76 ± 0.083 21.10 ± 4.39 

Atomistic simulations 0.57 ± 0.005 9.89 ± 0.15 0.83 ± 0.02 10.88 ± 0.41 

Micromagnetic simulations 1.08 ± 0.006 1.63 ± 0.03 1.04 ± 0.03 2.18 ± 0.27 

Table 1. Fitted parameters for the power law L(t) = bta. 
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Figure 1. Experimental setup and picosecond evolution of magnetisation dynamics. a 

Schematic of the experimental setup. A femtosecond optical pulse randomises the spin degree of 

freedom and a subsequent circularly polarised X-ray pulse probes the perpendicular 

magnetisation, mz, at a given delay, Δt. For each time delay, the two-dimensional X-ray 

scattering map is obtained, from which the spin-spin correlation function can be extracted. 

Numerical examples of the two-dimensional spin-spin correlation function and its associated 

spatial magnetisation are shown in b. XMCD data is shown in c for sub-threshold dynamics 

obtained in a 30 nm-thick sample subject to an absorbed fluence of 3.91 mJ/cm2 and d for AOS 

obtained in a 20 nm-thick sample subject to an absorbed fluence of 4.39 mJ/cm2. Solid lines are 

guides to the eye. e Contours of the azimuthally averaged spin-spin correlation function, ΔSq2, 

for sub-threshold dynamics. For the time instances indicated by dotted vertical lines, lineouts are 

shown by black curves in f and are vertically shifted for clarity. Fits to the data with both 

Lorentzian and Gaussian components are shown by dashed red curves. The black circles indicate 

the peak position of the Gaussian component. g Contours of the azimuthally averaged spin-spin 

correlation function, ΔSq2, for AOS. For the time instances indicated by dotted vertical lines, 

lineouts are shown by black curves in h and are also vertically shifted for clarity. Fits to the data 

with a Lorentzian lineshape are shown by dashed red curves. 
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Figure 2. Simulated magnetisation dynamics. Normalized Gd and Fe average moments from 

atomistic simulations in the case of a sub-threshold dynamics obtained with a fluence of 10.7 

mJ/cm2, and b AOS obtained with a fluence of 11 mJ/cm2. Snapshots of the perpendicular-to-

plane magnetisation at 1 ps, 10 ps, and 20 ps for the case of c sub-threshold dynamics and d 

AOS. In both cases, the magnetisation exhibits coarsening of textures. 
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Figure 3. Simulated spin-spin correlation functions. a Contours of the azimuthally averaged 

spin-spin correlation function obtained from atomistic simulations. For the time instances 

indicated by dotted vertical lines, lineouts are shown by black curves in b and are vertically 

shifted for clarity. Fits using Lorentzian and Gaussian components are shown by read dashed 

lines. The peak position of the Gaussian component is shown by black circles. Equivalent plots 

for the case of AOS are shown in panels c and d. Fits to the lineouts in this case are obtained by 

using only a Lorentzian lineshape. For micromagnetic simulations seeded with an atomistic input 

at 3 ps, the azimuthally averaged spin-spin correlation function and corresponding lineouts and 

fits are shown in e and f for sub-threshold dynamics; and g and f for AOS.   
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Figure 4. Magnon localisation and coalescence. a Peak position of the Gaussian feature from 

experiments (blue circles) and atomistic simulations (red circles) during magnon localisation. 

The corresponding peak width is shown in b. c Temporal evolution of the characteristic length 

scale in loglog scale for the case of sub-threshold dynamics obtained from Lorentzian fits of the 

experimental (blue circles), atomistic (red circles), and micromagnetic (black circles) data. 

Dotted lines with corresponding colour code are power-law fits. The yellow line indicates the 

Lifshitz-Cahn-Allen power law. The equivalent plot for the case of AOS is shown in d. The 

EFSC density probability distribution expressed as a 100% spin polarised charge current 

magnitude at selected time instances calculated from the micromagnetic simulations is shown in 

e for sub-threshold dynamics and f for AOS. g Example of magnon drop dynamics, including 

merging and break-up. The black areas represent magnon drop perimeters and the white and gray 

areas indicate that the perpendicular-to-plane magnetisation is parallel or antiparallel to the 

applied field. The red-shaded curves represent EFSCs flow with equivalent 100% spin polarised 

charge current magnitudes in the 108 A/cm2. The flow curves represent the streamlines in which 

perpendicular-to-plane angular momentum is transferred.  
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S1. Short-time evolution of Gaussian feature 

A Gaussian feature that corresponds to the magnetisation pattern seeded by the material chemical 

inhomogeneity is observed in the spin-spin correlation function for Gd. In Figure S1a, the data 

obtained for Gd in the sub-threshold case is shown as artificially shifted solid black curves from 

0 ps (bottom lineout) to 4.8 ps (upper lineout). Fits with a Lorentzian and a Gaussian component 

are shown by dashed red curves. The peak position of the Gaussian component in time is shown 

by black circles. Whereas a Gaussian component can be fitted at 0 ps with some accuracy (when 

the sample is at thermal equilibrium), the feature is clearly seen only at the first measured delay 

after the femtosecond pulse. The corresponding evolution of the fitted Gaussian component is 

shown in Figure S1b. It is noteworthy that a Gaussian component appears even while the 

demagnetisation process is operative. Further theoretical work is required to disentangle the 

relative magnitudes between the randomisation of the spin degree of freedom due to coupling to 

the electronic and atomic thermal baths and the recovery of magnetic order mediated by the 

sample microstructure. 

We note that fits obtained by utilising a Lorentzian line shape return similar metrics. An example 

of a Lorentzian line shape fit at t = 0.8 ps is shown in Figure S1c by a dashed blue curve. The fit 

is very similar to that obtained with a Gaussian line shape shown by a dashed red curve. 

However, we find as a general trend, that a Gaussian line shape returns smaller errors in the 

fitted quantities than a Lorentzian line shape. 

 

Figure S1. Short time evolution of Gaussian component in the spin-spin correlation 

function. a Lineouts of the spin-spin correlation function measured for Gd between 0 and 4.8 ps 

at a fluence of 3.91 mJ/cm2 are shown by shifted solid black curves. Fits with Lorentzian and 

Gaussian components are shown by dashed red curves. b Gaussian component of the fitted 

lineouts. The peak position of the Gaussian component is shown by black circles in both panels. 

c Comparison of fits utilising a Lorentzian (dashed blue curve) and a Gaussian (dashed red 

curve) component. 
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S2. Magnon coalescence for sub-threshold dynamics: Gd and Fe 

Sub-threshold dynamics occur in our GdFeCo alloys for a range of fluences. X-ray scattering is 

measured simultaneously for Gd and Fe because of the technique’s element specificity. For both 

elements and the absorbed laser fluences of 3.91 mJ/cm2, 2.79 mJ/cm2, and 1.39 mJ/cm2, the 

contours of the azimuthally averaged spin-spin correlation function shown in the top row of 

Figure S2 exhibit similar qualitative features. The data for Fe has a lower signal-to-noise ratio 

but reliable fits to Lorentzian line shapes are achieved after 5 ps. The calculated characteristic 

length scale for each case is shown in the bottom row of Figure S2. Power-law fits can be 

obtained at long times for all cases, with parameters shown in each panel. The fact that modest 

fluences induce similar features in the spin-spin correlation function as well as evidence for 

growth suggests that the in-plane magnetisation may be highly randomised in all cases. 

 

Figure S2. Experimental data for Gd and Fe at several fluences. Top row: contours of the 

azimuthally averaged spin-spin correlation function for the indicated element and fluence, 

namely, a Gd at 3.91 mJ/cm2, b Fe at 3.91 mJ/cm2, c Gd at 2.79 mJ/cm2, d Fe at 2.79 mJ/cm2, 

and e Gd at 1.39 mJ/cm2. Bottom row: characteristic length scale calculated from Lorentzian fits 

to the azimuthally averaged spin-spin correlation function. 

 

S3. Micromagnetic exchange constant: average atomistic and micromagnetic dynamics 

To obtain a multiscale model, the micromagnetic parameters for the GdFeCo alloy were chosen 

to match atomistic simulations. The saturation magnetisation, anisotropy constant, and damping 

can be directly obtained from atomistic simulations. The exchange constant is challenging to 

obtain because it requires an average on the element and spatially dependent Heisenberg 

exchange. The addition of inhomogeneity adds complexity to the spatial average calculation that 

leads to an imprecise determination of a micromagnetic exchange constant. To circumvent this 

problem, we utilised a numerical approach to estimate the micromagnetic exchange constant 

based on the qualitative behaviour of the perpendicular magnetisation, <mz>. The goal was to 
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choose an exchange constant such that the temporal evolution of <mz> calculated from 

micromagnetic simulations utilising atomistic magnetisation states as inputs at different times 

was both self-consistent, i.e., followed the same qualitative evolution, and consistent with 

atomistic simulations. The results obtained with an exchange constant A = 1 pJ/m are shown in 

Figure S3. Utilising atomistic spatial magnetisation as initial conditions at and after 3 ps, the 

micromagnetic simulations exhibit a slow evolution of <mz> that is qualitatively consistent 

between the different micromagnetic simulations, shown by circles, and agrees with the effective 

perpendicular magnetisation obtained from atomistic simulations, shown by a dashed black 

curve. 

For the atomistic spatial magnetisation at 1 ps and 2 ps, a stark disagreement is observed. This 

occurs because of the predominantly switched average magnetisation at short times after the 

demagnetisation event. Note that while the dynamic behaviour is sub-threshold, the large 

magnetic moment of Gd relative to Fe leads to an average switched magnetisation in the 

multiscale modelling: micromagnetic simulations model a ferromagnet and, consequently, has no 

available physical mechanism to recover the short-range order based on the antiferromagnetic 

Gd-Fe exchange interaction. For the atomistic input magnetisation at 1 ps, the dominantly 

switched magnetisation translates into a large anisotropy energy that strives to relax the 

magnetisation towards the negative pole, i.e., mz = -1. For the atomistic input magnetisation at 2 

ps, the magnetisation is close to zero. While for ferrimagnets this implies average compensated 

moments, in micromagnetic simulations this implies that the saturation magnetisation is 

negligibly small and, consequently, the dynamics are extremely slow. 

We emphasize that the choice of the exchange constant described here is not critical to model the 

qualitative features of magnon coalescence nor impacts the conclusions drawn in the main text.  

 

Figure S3. Average magnetisation evolution from simulations. Micromagnetic evolution of 

the average perpendicular magnetisation utilising atomistic spatial magnetisation as inputs at 1 

ps, 2 ps, 3 ps, 4 ps, and 5 ps, shown by circles. The evolution of the effective perpendicular 

magnetisation from atomistic simulations is shown by a dashed black curve. 

 

 



25 
 

S4. Multiscale simulations for sub-threshold dynamics as a function of tc 

The micromagnetic characteristic length scale growth presented in the main text was obtained by 

initialising the micromagnetic simulations with the atomistic spatial magnetisation at 3 ps. 

However, as shown in Figure S3, micromagnetic simulations exhibits a self-consistent behaviour 

utilising atomistic magnetisation states as inputs after 3 ps. The characteristic length scale growth 

calculated from Lorentzian fits to the azimuthally averaged spin-spin correlation function from 

micromagnetic simulations initialised with atomistic magnetisation states at times 3 ps, 4 ps, and 

5 ps is shown in Figure S4. Despite a quantitative difference at short timescales (between 10 and 

12 ps), the characteristic length scale growth converges, indicating that the multiscale 

simulations are accurately resolved. 

 

Figure S4. Multiscale characteristic length scale growth. Characteristic length scale growth 

calculated form Lorentzian fits to the spin-spin correlation function obtained from 

micromagnetic simulations initialised with atomistic magnetisation states at 3 ps (blue circles), 4 

ps (red circles), and 5 ps (black circles). 

 

S5. Fast quench: micromagnetic simulations 

Upon femtosecond heating, we have demonstrated that the magnetisation dynamics undergo 

localisation of magnons whereby the magnetisation rapidly forms a microscopic pattern 

mediated by the sample microstructure. This microscopic mechanism is resolved by atomistic 

simulations that accurately model the spin dynamics. However, it can be argued that the 

localisation of magnons is not a necessary process to develop localised textures. In fact, 

modulational instability provides a mechanism for magnons to localise in an ideal magnetic 

material with perpendicular magnetic anisotropy (PMA). Consequently, an ideal ferromagnet 

with PMA subject to quench should also exhibit nucleation of localised textures and subsequent 

magnon coalescence. To test this hypothesis, we perform micromagnetic simulations initialised 

with a random magnetisation distribution, i.e., a paramagnetic state, in an otherwise 

homogeneous magnetic system. 
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The resulting azimuthally averaged spin-spin correlation function is shown in Figure S5a. 

Remarkably, we observe the same qualitative features as in atomistic simulations and 

experiments. The main difference lies in the timescales. We emphasize that modulational 

instability expected to play a crucial role in magnon localisation for a homogeneous magnetic 

system is a mechanism that holds for small, long wavelength perturbations about a homogeneous 

state. A theory for modulational instability in the case of a randomised magnetisation is yet to be 

developed. 

Lorentzian fits can be performed with good accuracy from 4 ps, as shown by the small errorbars 

in the Lorentzian peak position shown in Figure S5b. Notably, the peak position shifts but does 

not reaches zero during the simulated time of 40 ps in contrast to atomistic and multiscale 

simulations. The corresponding calculated characteristic length scale growth is shown in Figure 

S5c. A qualitatively similar growth is observed throughout the simulation and quantitatively 

agrees with the multiscale simulation beyond 20 ps. This indicates that the onset of magnon 

coalescence growth is independent of the mechanism that recovers magnetic order at short 

timescales, i.e., magnon localisation that is arguably unique to amorphous ferrimagnetic alloys. 

Instead, it is a feature of magnetic systems whose in-plane magnetisation component is strongly 

randomised. 

 

Figure S5. Micromagnetic simulations starting with a randomised magnetisation. a 

Azimuthally averaged spin-spin correlation. b Peak position and c calculated characteristic 

length scale growth from Lorentzian fits to the azimuthally averaged spin-spin correlation 

function. The power law fit in the coalescence regime is shown by a dashed blue line. 

 




