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Abstract

We suggest an explanation of the observations of the glowing filaments in a
superconducting cavity. We show that the motion of a charged particle in a multi-
cell RF cavity and of a dust particle in a single-cell RF cavity can be stable. The
analysis of stability is illustrated by numerical calculations. This effect may also
explain the possible failure of high gradient tests of superconducting cavities, which
are planned to be used in the linear accelerators for XFEL.

1 Introduction

In this paper, we study the stability of the motion of charged particles and dust particles
in a single-cell and multi-cell RF cavity. The paper is inspired by the observation of light
emitting filaments during the power test of the niobium superconducting cavities [1]. The
glowing filament of light was observed by a CCD camera installed at the end of a single-
cell 1500 MHz cavity when operating the cavity in field emission regime. The cavity
gradients during these filament events were 2-4 MV/m. Similar light emission filaments
were observed at the center of a 5-cell SC cavity at 4.4 MV/m, trapped by RF fields
in closed-orbit trajectories. The filaments appear at the beginning of the field emission,
lasted a few seconds, and then followed by a flash of light and drop of the cavity Q-
factor. After that when the gradient was reduced, and a new run was started no events
were detected and the Q value was at the highest level. The authors conclude that it was
conceivable that filaments are due to charged particles generated by the field emission and
trapped in the RF field. The glow could be due to light emission, or ionization of residual
helium gas. However, at that time it was not obvious that particles can be trapped in RF
fields on the stable closed trajectories that were observed in experiments.
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This phenomenon may also be due to sudden drops of the beam life time at the
Beijing Collider (BEPC). The events had typical features of dust events [7], [8], [9]: they
happened randomly in a wide range of the electron beam current, both in single-bunch
and multi-bunch regimes. They were not reproducible with the same machine parameters
and never happened with a positron beam. It was noticed [10] that the lifetime can be
restored by changing the voltage of cavities. However, the reason for this was not clear.

It is well known that a charged particle can be trapped by electro-magnetic (EM) fields.
The Penning trap used DC EM fields while the Paul trap is based on a combination of
DC and AC fields. The problem of possible potential wells for charged particles in a high
frequency azimuthally symmetric field was analyzed in Ref. [2].

Trapping in an RF cavity was discussed for a rectangular box cavity [3]. We include
discussion of such trapping in the first section of the paper for completeness. An electro-
magnetic field in a cavity is a superposition of the fields of the RF modes, which can be
excited by the beam or external generator. Main mode is usually used for the particle ac-
celeration. Although an accelerating mode of a single-cell RF cavity cannot trap a charged
particle, we emphasize that the trapping is possible in a multi-cell superconducting cavity
used in the accelerating structures of linear accelerators.

However, we believe that the light emitting filaments can be explained not only by
the trapping of the charged particles but also by trapping of dust particles. A small
particle model as a possible explanation of cavity lights was discussed in reference [4] and
reference [5].The conclusion was that spheres of any known material cannot, in this model,
explain the observations. However, we made very careful analysis of the forces acting on
a dust particle and found out that the trajectory of a dust particle can be stable. In the
second part of the paper we show that a dust particle can be stable in a single RF cavity
of a spherical shape. We believe that the dust particles trapped in the RF cavity can
provide also an explanation for Beijing observations because the trajectory of a trapped
particle in our model substantially depends on the cavity voltage. Finally, in conclusion,
we discuss and summarize results.

2 Charged particle in the RF field

Let us study the motion of a charged particle in the RF field of a multi-cell cavity near a
cavity iris. Suppose that the cavity is cylindrically symmetric, and the field corresponds
to the azimuthally symmetrical mode. Using the cylindrical coordinate system (r, φ, z)
with the z axis along the resonator axes (the direction of the beam propagation), we can
expand the nonzero components of the field,

Er(r, z) = −E0{
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Here E0 is the amplitude of the RF accelerating mode with the frequency ω, and the
factor e−iωt implies time dependence. Ez field is equal to zero in the center of the iris
(z = 0) and approaching the value of the accelerating field E0 at the distance a from the
iris center. The characteristic length a is of the order of the radius of the iris. The field
1 satisfies Maxwell equations with the accuracy of the neglected terms.

Assuming that eE0a � mc2(ω
c
a), then the magnetic force can be neglected. The

nonlinear terms are negligible for small r/a� 1, z/a� 1.
The Lorentz force has only (r, z) components, therefore the angular momentum L =

mr2φ̇ is a constant of motion. The remaining equations of motion for a non-relativistic
particle with the charge e and mass m in the linear approximation take the form

mr̈ = fr(r) cos(ωt) +
L2

mr3
, fr(r) = −eE0

r

2a

mz̈ = fz(z), fz(z) = eE0
z

a
cos(ωt) (2)

A solution can be found as the sum of a slow r̄ and small but fast r̃ varying terms,
r = r̄ + r̃, z = z̄ + z̃. The equation for the slow motion is obtained by averaging the fast
oscillating terms. The equation for the radial motion takes the form

m¨̄r =
L2

mr̄3
+ F (r̄) (3)

where the radial ponderomotive force

F (r̄) =
∂

∂r̄
(
fr(r̄)

2mω
)2 (4)

The first term L2/mr̄3 in Eq. (3) describes the centrifugal barrier and, for L 6= 0,
prevents a particle to go to the axes r → 0. One can find similarity of this force with the
Miller force [6]

To have a bounded motion at large r̄, the second term at large r̄ has to be negative.
That is possible for r̄ > rs = (3L2/ω2)1/4. Assuming that r̄ >> rs, we get

F (r̄) =
L2

r̄3
− Ω2

r r̄. (5)

We assume that the field is low, (eE0/mω
2a) << 1. Then, the equilibrium radius is

r4eq = 2(
2Lωa

eE0

)2. (6)

Small oscillations around req are stable and have frequency
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Ωr =
1√
2

(
eE0

maω
). (7)

Similarly, small longitudinal oscillation around the equilibrium point z = 0 has a
frequency

Ωz =
1√
2

(
eE0

mωa
) (8)

equal to the frequency of radial oscillations.
For the low field Ωr << ω, i.e. that frequency of oscillations is slow compared to

the RF frequency. That is also consistent with the assumption that the motion can be
separated into slow and fast parts.

The initial conditions r(0) = req, z(0) = ż(0) = ṙ(0) = 0 correspond to the motion on
the circle req with the azimuthal angular velocity φ̇ = Ωφ,

Ωφ =
L

mr2eq
=

Ωr

2
. (9)

Hence, the frequency of the radial oscillations is two times the azimuthal frequency.
If the amplitude of the radial oscillation around req is δr, the horizontal coordinate of a
particle

x(t) = (req + δr cos(2Ωφt)) cos(Ωφt), (10)

and the trajectory in (x, y) plane is an ellipse.
If the particle starts at the iris wall r ' a with the angular velocity φ̇0, then L = ma2φ̇0

and initial velocity v(0) ' aφ̇0. Then, req < a for a sufficiently large field,

(
eE0

mω
) > v0. (11)

Condition Eq. (11) means that the velocity acquired by a particle in a half of the RF
period is large compared to the initial velocity.

As an example, we choose the TM mode of a pill-box cavity 0 ≤ r ≤ b, 0 ≤ z ≤ l.
The non-zero components of the field are

Er = E0
πb

νl
J1(

νr

b
) sin(

πz

l
) cos(ωt),

Ez = E0 J0(
νr

b
) cos(

πz

l
) cos(ωt),

Hφ = −E0
ωb

νc
J1(

νr

b
) cos(

πz

l
) sin(ωt). (12)

Here, ω/c =
√

(π/l)2 + (ν/b)2 is the mode frequency, ν ' 2.405 is the first root of

J0(ν) = 0, and E0 is the accelerating gradient. The mode has a node at z = l/2.
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Figure 1: Trajectory in (x,y) plane with initial conditions corresponding to the equilibrium
r(0) = req, see text. Parameters λ = 0.05, µ = 1.0 10−3, ωtmax = 500.

As above, the quantity L = mr2φ̇ is a constant of motion. We define the quantity
φ̇(0) by L = ma2φ̇(0) and use notation µ = φ̇(0)/ω. The equilibrium radius in this case
is

req
b

= (
8µ2

(πλ)2
)1/4, (13)

where

λ =
eE0l

mc2(ωl/c)2
. (14)

and we assumed the low field, 2µν2 < πλ << 1.
Small radial and longitudinal oscillations around the equilibrium are stable and have

frequency

Ω =
πλ√

2
. (15)

We compared the estimates with results of numeric integration of exact equations of
motion. Fig. (1) shows the trajectory in (x, y) plane for the initial conditions correspond-
ing to the equilibrium: r(0) = req, z(0)/l = 1/2, ż(0) = ṙ(0) = 0, where req/b = 0.1357 is
given by numeric solution. Small oscillations around a circle are due to higher harmonics
2ω, 3ω.
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2.1 A multi-cell cavity

Usually, the accelerating mode of a single cell cavity does not have nodes and trapping of
a charged particle does not take place. However, in a multi-cell cavity a charged particle
can have a stable trajectory. To verify this possibility, we calculate particle trajectories
in the CEBAF 5-cell cavity [1]. We include all field components in computer simulations.
The geometry of an iris and longitudinal eclectic field distributions at different radial
positions is shown in Fig. 2. The aperture of the structure is 3.5 cm. The fields are
normalized to 4 MeV/m accelerating gradient (including time-flight effect). To calculate
these fields we used a computer code, which is described in the reference [11]. According
to calculations, the electric field on the surface of irises is not much smaller than the field
on the axes, and any local enhancement in the real cavity due to roughness or electron
emission can change the field distribution.
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Figure 2: Geometry of an iris of a CEBAF multi-cell cavity (gray line). Longitudinal
electric field at a different radial position: r = 0 cm (green line), r = 2.5 cm (blue line),
r = 3.45 cm (red line). Fields are normalized to 4 MeV/m accelerating gradient.

We found stable trajectories of charged particles located under the iris. A typical
trajectory is an ellipse, which is rotating in time in azimuthal direction. Fig. 3 shows
the trajectory on x-y plain and z-y plain. In this simulation, we obtained a revolution
frequency of 40 Hz for a mass of a charged particle of 4 · 108 MeV. Each revolution turn
corresponds to 3.5 · 107 periods of the RF field. The initial radial position is 2 cm and the
azimuthal momentum is 2 MeV. With the zero initial conditions r(0) = req, z(0) = zeq,
ṙ(0) = ż(0) = 0, an elliptical shape of trajectories becomes a circular. Trajectory stays
still almost circular even in the case of longitudinal oscillations. Fig. 4 shows this case.
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The initial azimuthal momentum takes the optimum value of 7.5 MeV for the radius of 2
cm, when the initial longitudinal position is offset from the center of an iris to 1 mm.
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Figure 3: Charged particle trajectory. (a) Projection on x-y plane and (b) projection z-y
plane. Red line shows the aperture and shape of an iris.

3 Dust stability

As shown above, a charged particle can be stable in RF field of a multi-cell cavity in
the vicinity of irises. To produce visible light, a particle has to be macroscopic and
radiate thermally or in the collisions with the residual gas. From the study of dust
particles [7], [8], [9], it is known that a dust particle with the radius of the order of 1µm
and the mass M ' 1012 of the proton mass, can be stable for macroscopic time and
acquire charge Qe interacting with the beam up to Q/e ' 108. There is no doubt that a
dust particle in the RF cavity would be charged even without a beam by the field emitted
electrons and can be heated by the flux of the field emitted electrons from the walls of
the cavity or from ohmic heating of the conductive dust particle.

The ponderomotive force for a single-cell cavity does not lead to trapping. Because
the RF field Erf (z) in the center of such a cavity has a maximum, the ponderomotive
force can not provide particle stability. On top of that, the magnitude of the force for a
micron size of a particle is weak for the RF gradient of the order of Erf ' 1MeV/m.
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Figure 4: Almost circular charged particle trajectory in presents of longitudinal oscilla-
tions.

Another force acting on the dust particle is related to the electric and magnetic polar-
izabilities of the particle. Although expressions for polarizabilities of a spherical particle
in a uniform external field are well known, we need to carefully study the effect of the
non-uniformity of the field of the cavity.

We consider here the stability of a round dust particle in a spherical RF cavity with
the conductivity σ and µ = 1. We denote the radii of the cavity and the dust particle by
b and ad respectively. Naturally ad << b. We allow an arbitrary ratio of the skin depth
δ to ad.

The force acting on the dust particle is defined by the integral [13] over the surface of
the dust particle,

Fi =
∫ dS

8π
r̂j[EiDj + DiEj − δi,jE.D + (E,D)→ (H,B)], (16)

where the unit radial vector r̂ is normal to the surface and directed outside of the
particle. The fields are given in terms of the Fourier components E defined as E(t) =
(1/2)(E e−iω0t+ c.c.). The average over time force is given by Eq. (16) where quadratic in
E, H terms should be replaced by (1/4)(EE∗+c.c.). E and H are the Fourier components
of EM fields on the surface of the particle, and D = (k20 + 2i/δ2)E, where δ is the skin
depth at the frequency ω0 = k0c. The magnetic terms are obtained replacing both E and
D by H (assuming µ = 1). The field outside the particle is given by the sum of the RF
field Ecav, Hcav and the field Eind, Hind induced by the particle. The fields inside of the
particle are the induced fields. The RF cavity field itself does not contribute to the force
acting on a dust particle (see Appendix 2).
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The global spherical coordinate system (c.s.) with the origin at the cavity center is
defined by the polar axes ẑ along the beam line and the orthogonal set of unit vectors
(R̂, α̂, φ̂). In this basis, the Fourier harmonics Ecav, Hcav of the lowest accelerating TM
mode of the cavity at the point with the spherical coordinates R, α, φ are

Hcav = −3E0

2
{0, 0, (

cosµ

µ
− sinµ

µ2
) sinα},

Ecav =
−3iE0

2
{2(µ cosµ− sinµ)

µ3
cosα,

µ cosµ+ (µ2 − 1) sinµ

µ3
sinα, 0}, (17)

where µ = k0R and k0 = ω0/c. The mode frequency ω0 is given by µ0 = k0b =
2.74371.., and the accelerating field Ez(0) = E0 at R = 0.

It is convenient to describe the induced field in the local c.s. with the origin at the
center of the dust particle. The local Cartesian c.s. can be defined by the unit orthogonal
vectors ξ, η, ζ oriented along the unit vectors of the global spherical c.s.

ξ̂ = R̂, η̂ = φ̂, ζ̂ = −α̂. (18)

The local unit vectors of the spherical c.s. {r̂, β̂, ψ̂} with the polar axes along ζ̂ is
related to the Cartesian unit vectors ξ̂, η̂, ζ̂ by

r̂ = ξ̂ sin β cosψ + η̂ sin β sinψ + ζ̂ cos β,

β̂ = ξ̂ cos β cosψ + η̂ cos β sinψ − ζ sin β,

ψ̂ = −ξ̂ sinψ + η̂ cosψ. (19)

In particular, ẑ = ξ̂ cosα + ζ̂ sinα, and the unit radius vector ξ̂ in the local spherical
c.s. is

ξ̂ = r̂ sin β cosψ + β̂ cos β cosψ − ψ̂ sinψ. (20)

It is known that the polarizability of a particle and, consequently the force acting on
the particle both are proportional to a3d. Because the surface integral Eq. (D1.1) already
give the factor a2d, it suffices to determine the fields on the surface neglecting terms of the
order of a2d. The cavity fields on the surface of the particle in the lowest order over the
radius r = ad, can be obtained expanding the fields as

Ecav(R+r) = Ecav(R) + (r.∇)Ecav(R), (21)

where ∇ denotes the gradient over R.
The same fields in the local c.s. of the dust particle are given by the sum of the TM

and TE modes in respect with the radius vector r. The magnetic HTM and electric ETM

components of the TM modes are defined [14] by the generating function Φ(r, β, ψ),
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HTM =
1

k0
(∇ΦTM × r), ETM =

ik0
k2

(∇×HTM), (22)

where k2 = k20 + 2i/δ2 and k = k0 inside and outside of the particle, respectively, and
δ(k0) is the skin depth at the frequency ω0. The function ΦTM is the solution of the wave
equation

(∆ + k2)ΦTM(r, β, ψ) = 0. (23)

The TE modes are defined similarly,

ETE =
1

k0
(∇ΦTE × (r)), HTE = − i

k0
(∇× ETE), (24)

where ΦTE is also a solution of Eq. (23).
The RF field of the cavity outside of the dust particle is given as superposition of the

modes with amplitudes cn,m and dn,m for TM and TE modes, respectively,

ΦTM
cav =

∞∑
n=0

n∑
m=−n

cn,mj
(+)[n, k0r]P

m
n (cos β)eimψ,

ΦTE
cav =

∞∑
n=0

n∑
m=−n

dn,mj
(+)[n, k0r]P

m
n (cos β)eimψ. (25)

Here Pm
n are associated Legendre polynomial. The eigen modes inside of the particle

should be finite at r = 0, and are given in terms of j[n, kr] =
√
π/2kr Jn+1/2(kr).

The amplitudes cn,m and dn,m can be determined comparing Eq. (21) with Eqs. (22),
(24). Because the radial components ETE

r of TE modes and the radial components HTM
r

of TM modes are equal to zero, it is convenient for this purpose to compare the radial
components,

E(r)
cav = ETM

r =
i

k0r

∑
n(n+ 1)cn,mj[n, k0r]P

m
n (cos β)eimψ

H(r)
cav = HTE

r = − i

k0r

∑
n(n+ 1)dn,mj[n, k0r]P

m
n (cos β)eimψ. (26)

The explicit form of the coefficients cn,m and dn,m is given in the Appendix 1.
The induced field is given in the same way as superposition of the TM and TE modes.

We denote the amplitudes of the TM and TE modes induced inside of the particle by κin

and qin, respectively,
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ΦTM
ind =

∞∑
n=0

n∑
m=−n

κinn,mj[n, kr]P
m
n (cos β)eimψ,

ΦTE
ind =

∞∑
n=0

n∑
m=−n

qinn,mj[n, kr]P
m
n (cos β)eimψ. (27)

The generating functions of the induced fields outside of the particle have a similar
to Eqs. (27) structure with kinn,m and qinn,m being replaced by the amplitudes koutn,m and
qoutn,m and k instead of k0. The radial functions in the outside region are, generally, a

superposition of the Bessel functions, j[n, kr] =
√
π/(2kr) Jn+1/2(kr) and j(−)[n, kr] =√

π/(2kr) J−n−1/2(kr). The induced modes proportional to j[n, k0r] outside of the particle
redefine the amplitudes of the rf field. If the amplitude is supported by any feedback
system on a constant level, the contribution of such modes is compensated, and the
induced field is given as a superposition of terms proportional to j(−)[n, k0r]. Without
the feedback, the radiative conditions can be used giving negligibly small corrections to
the result obtained below. Note that j(−)[n, k0ad] in the expressions of the fields on the
outside surface of a particle can be replaced by an approximate value because k0ad << 1.

The coefficients κinn,m, κoutn,m and qinn,m, qoutn,m of the induced field inside and outside of
the dust particle can be determined by matching tangential components of the total
Ecav + Eind, Hcav + Hind outside of the particle to the induced field Eind, Hind inside of
the particle at r = ad. In the lowest order over the radius r = a it is suffice to take into
account only n = 1 and n = 2 modes.

The matching can be done for each (n,m) mode and for TM and TE modes separately.
In the approximation of Eq. (21), the matching conditions give

κoutn,m = cn,m(
µ0ε

2
)2n+1 (n+ 1)Γ[−n+ 1/2]

nΓ(n+ 3/2)
, (28)

qoutn,m = dn,m(
µ0ε

2
)2n+1 Γ[−n+ 1/2]

Γ(n+ 3/2)
hn(p), (29)

where

hn(p) =
njn[(1 + i)p]− (1 + i)pj′n[(1 + i)p]

(1 + n)jn[(1 + i)p] + (1 + i)pj′n[(1 + i)p]
, (30)

and the prime denote derivative over the argument.
The amplitudes inside of the dust particle are

κinn,m =
(2n+ 1)

√
π

2nΓ(n+ 3/2)jn[(1 + i)p]
(
µ0ε

2
)n cn,m,

qinn,m =
(2n+ 1)

√
π

2Γ(n+ 3/2)((1 + n)jn[(1 + i)p] + (1 + i)pj′n[(1 + i)p])
(
µ0ε

2
)ndn,m. (31)

11



where we use notations

p =
ad
δ
, ε =

ad
b
, µ0 = k0b. (32)

Calculations of induced fields and force on the dust particle is straightforward, but
tedious. We give here the final results for the longitudinal Fz and transverse Fρ (in respect
to the beam axes) components of the force.

The force is the sum of contributions from the magnetic and electric fields taken on
the inside surface of the dust particle,

FE =
πa2

4π

∫
do{r̂(ErE∗r − EβE∗β − EψE∗ψ) + β̂(EβE

∗
r + c.c.) + ψ̂(EψE

∗
r + c.c.)},(33)

FH =
πa2

4π

∫
do{r̂(HrH

∗
r −HβH

∗
β −HψH

∗
ψ) + β̂(HβH

∗
r + c.c.) + ψ̂(HψH

∗
r + c.c.)}.

Here do = sin βdβdψ and Eq.(19) has to be substituted for the unit vectors r̂, β̂, and
ψ̂ before integration. Expanding over δ/b � 1 and ad/b � 1 and retaining the linear
terms, but allowing the arbitrary ratio p = ad/δ, we get after the integration that F (E) is
of the order of ε2 and can be neglected.

The magnetic field contribution defines the transverse and longitudinal force in respect
to the cavity axes:

Fρ = (R̂.FH) sinα + (α̂.FH) cosα,

Fz = (R̂.FH) cosα− (α̂.FH) sinα. (34)

Calculations give

Fρ = E2
0

a3d
b

[− cρ
µ5d(µ)

cos2(α) +
sρ

µ5d(µ)
sin2(α)] sin(α),

cρ =
27

16
µ0(µcosµ− sinµ)2[4j1((1− i)p)j1((1 + i)p) + 3p(1− i)j1((1 + i)p)j′1((1− i)p) +

3(1 + i)pj1((1− i)p)j′1((1 + i)p) + 4p2j′1((1− i)p)j′1((1 + i)p)],

sρ =
9

16
µ0(µcosµ− sinµ) {2j1((1− i)p)j1((1 + i)p)[6(µcosµ− sinµ) +

8µ2 sinµ] + [(1− i)pj1((1 + i)p)j′1((1− i)p) + c.c.](9(µcosµ− sinµ) + 8µ2 sinµ) +

2j′1((1− i)p)j′1((1 + i)p)(6p2(µcosµ− sinµ) + 4p2µ2 sinµ)],

d(µ) = |(1 + i)j1((1− i)p) + pj′1((1− i)p)|2. (35)

Fz = E2
0

a3d
b

cz
µ5d(µ)

sin2(α) cosα,
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Figure 5: The longitudinal force Fz in units of E2
0a

3
d/b for p = 0.1.

cz =
9

8
µ0(µcosµ− sinµ) {2j1((1− i)p)j1((1 + i)p) [6(µcosµ− sinµ) + 4µ2 sinµ] +

p[(1 + i)j1((1− i)p)j′1((1 + i)p) + c.c.] [9(cosµ− sinµ) +

4µ2 sinµ] + 2p2j′1((1− i)p)j′1((1 + i)p) [6(cosµ− sinµ) + 2µ2 sinµ]}. (36)

Result for Fz in the units of E2
0a

3/b is shown in Fig. (5) for p = 0.1 and (6) for p = 5.0,
respectively, as function of the dimensionless z/b = (R/b) cos(α) and ρ/b = (R/b) sin(α).

The transverse Fρ is focusing. It is shown in Fig. (7) for p = 0.1 and (8) for p = 5.0.
The azimuthal force Fφ = 0.

The dust particle can be stable in both longitudinal and transverse directions. De-
pendence on the ratio of the dust particle radius to the skin depth is illustrated in Fig.
(9). It is worth noting that since small ρ can be suppressed by a centrifugal force at a
nonzero angular momentum ad < δ, then particles are more likely to be trapped.

The force acting on a dust particle is proportional to a3d if ad ' δ. Because the
mass of the particle also scales as a3, the frequency of small particle oscillations around
equilibrium in this case is independent on ad.

The ohmic losses are proportional to the energy flux to the particle

dU

dt
=
πca2

32π

∫
sin βdβdψ{EβH∗ψ − EψH∗β + c.c.}. (37)

Calculations give

dU

dt
= cE2

0

a3d
b

gu
µ4d(µ)

sin2(α),
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Figure 6: The same as in Fig. (5) with p = 5.0 .
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Figure 7: The transverse force Fρ in units of E2
0a

3
d/b for p = 0.1.
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Figure 8: The same as in Fig. (7) with p = 5.0 .
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Figure 9: Dependence of the longitudinal force Fz on the parameter p = ad/δ. Fz is
calculated at z/b = 0.1 The red and blue curves for p = 0.1 and p = 5.0, respectively.
Transverse stability corresponds to Fz < 0.
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gu =
27

64
µ0p (µcosµ− sinµ)2 {(1 + i)j1((1 + i)p)j′1((1− i)p) + c.c.}. (38)

For large p� 1, gu ∝ 1/p.
The energy flux can be compared with the energy loss to radiation dU/dt = σSBT

44πa2,
where σSB = 5.6 10−8 W/(m2K) is the Stefan-Boltzmann constant. The equilibrium
defines the temperature T . Taking b = 3.5 cm, and E0 = 1.5 MV/m, we get T =
281 (a2/δ)1/4K, where ad and δ are in µm. The temperature scales proportional to the
particle radius

√
ad and is larger for large particles with large conductivity. Therefore,

there is a trade-off between the stability of particles and the equilibrium temperature.
Apparently, additional heating by the field emission electrons is essential to achieve high
temperature required for the glowing.

4 Conclusion

The balance of a centrifugal and ponderomotive forces can explain stable motion of a
charged particle in a multi-cell RF cavity. Although the RF trapping may be of interest
by itself, our main motivation is related to the observation of the light emitting filaments
in superconducting RF cavities. Light cannot be caused by the dipole radiation of slow
motion of the charged particles, and the particles cannot be stable in a single-cell cavity.
The dust particle seems to be a much better candidate causing light emitting filaments.

The light radiated by the filament can be the result either of collisions of a trapped
particle with a residual gas or emitted by a hot trapped dust particle. In the experiment [1]
the filament radiation has always been observed with the field emission break downs.
Because there have always been a lot of electrons at such conditions, but the filaments
observations are relatively rare, we believe that the dust, not the electrons, is the source of
radiation. As it is described in the mechanical breakup model, when the force due to the
intense surface field at the sharp tip on the wall exceeds the tensile strength of the metal,
a fragment of the tip may break loose [12]. The angular distribution of the fragments is
very broad and, therefore, a fragment can be ejected with the initial angular moment as it
is required by our model. The question we address here is, mostly, whether a dust particle
can be stable in a single cell RF cavity. We have found that the polarization of the particle
can lead to stable motion both longitudinally and transversely. Small (compared to the
skin depth at RF frequency) particles have a better chance to be trapped. The skin depth
for niobium at 1.5 GHz is of the order of 5µm and 1µm particles can be easily produced
in the breakdown. The ohmic losses can cause heating of a particle balanced by thermal
radiation. Our estimate shows that the equilibrium temperature due to this mechanism,
at least, for small particles, is too low. Bombardment by field emission electrons from the
remaining tip may produce additional heating. The power of the field emission current is
sufficient to heat up (and even vaporize) the micro-particle. It is important that the hot
micro-particle can emit electrons acquiring a large positive charge producing condition for
particle trapping. The charge of a trapped particle is given by the balance of the ionization
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by the field emission electrons from the wall and thermal losses of electrons by the dust
particle. The life time of the dust particle depends whether the temperature exceeds the
melting point and can be quite large. All these processes are not much different from the
processes defining dynamics of the temperature, charge, and lifetime of a dust particles [9].
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6 Appendix 1

The amplitudes of the eigenmodes of the RF field of the cavity at the location R,α are
given by the following expressions (where µ = k0R):

c2,2 =
5 cosα

8µ4
(3µ cosµ− (3− µ2) sinµ),

c2,1 = −5 sinα

12µ4
(µ(−6 + µ2) cosµ+ 3(2− µ2) sinµ),

c2,0 = −5 cosα

2µ4
(3µ cosµ− (3− µ2)sinµ),

c2,−1 =
5 sinα

2µ4
(µ(−6 + µ2) cosµ+ 3(2− µ2) sinµ),

c2,−2 =
15 cosα

µ4
(3µ cosµ+ (−3 + µ2) sinµ),

c1,1 =
3 cosα

2µ3
(µ cosµ− sinµ),

c1,0 =
3 sinα

2µ3
(µ cosµ+ (−1 + µ2) sinµ),

c1,−1 =
3 cosα

µ3
(−µ cosµ+ sinµ). (39)

d2,2 =
5 sinα

24µ3
(3µ cosµ− (3− µ2) sinµ),

d2,1 = d2,0 = d2,−1 = 0

d2,−2 = −5 sinα

µ3
(3µ cosµ+ (−3 + µ2) sinµ),

d1,1 =
3 sinα

4µ2
(µ cosµ− sinµ),
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d1,0 = 0,

d1,−1 =
3 sinα

2µ2
(µ cosµ− sinµ). (40)

Note that c1,m are related to the rf components Eq. (17),

2c1,1 = −c1,−1 = i
ER
cav

E0

, c1,0 = i
Eα
cav

E0

2d1,1 = d1,−1 = −H
φ
cav

E0

. (41)

7 Appendix 2

Here we show that the cavity fields do not contribute to the force acting on the dust
particle. Let us start with Eq. (16)

Fi =
∫ dS

8π
r̂j[EiDj + DiEj − δi,jE.D + (E,D)→ (H,B)], (42)

where the integral is understood as taken over the outer surface of the dust particle
assuming that the fields are the fields of the cavity Eq. (17). Expanding fields around
the center of the particle, we get in the linear approximation over ad

Ej(R0 + adr̂) = Ej(R0) + ad(r̂.∇) Ej(R0), (43)

and similar expressions for H. Here r̂ is the unit radial vector, and ∇ denotes gradient
in the cavity c.s. The surface integral gives

∫
dSr̂i = 0,

∫
dSr̂ir̂j =

4πa2d
3

δi,j. (44)

After substituting Ei = Eie
−iω0t+c.c. and averaging over time the force takes the form

Fi =
a3d
3

[∇j(EiE
∗
j + EjE

∗
i )−∇i(E.E

∗) + (E → H)]. (45)

Using Maxwell equations for the cavity fields ∇j.Ej = 0, ∇ × E = ik0H,∇ × H =
−ik0E, and identity

E∗j (∇jEi −∇iEj) = ik0(H × E∗)i, H∗j (∇jHi −∇iHj) = −ik0(E ×H∗)i, (46)

we get

F =
a3d
6

[ik0(H × E∗)− ik0(E ×H∗) + c.c.] = 0. (47)

Therefore, the force is defined only by the induced fields.
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