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Abstract

We have developed a parameterization of the linear optics in a theoretical minimum emittance

cell with three quadrupoles. It consists of five independent parameters: two phase advances, a

dimensionless horizontal beta function at the center of the dipole, and a bending angle φ and a

length L of the dipole. For the zero chromaticity cell, we again find that the dynamic aperture

in the normalized phase space is scaled according to, Ā ∝ φ
√
L. Moreover, we study nonlinear

dynamics near the third-order coupled resonances in the framework of the resonance normal form.

In particular, we derive the effective Hamiltonians using the Lie algebra method and show that the

periodic orbits in tracking can be interpreted as solutions of the Hamilton’s equations. Surprisingly,

we discover that the scheme is not only applicable to the single resonance but also to the double

resonances.
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I. INTRODUCTION

Historically, the theoretical minimum emittance (TME) cell [1] has played an essential

role in the advance to a lower emittance in the electron storage rings. Teng illustrated how

the equilibrium emittance is scaled according to the beam energy and deflecting angle of the

dipole and perhaps, most importantly, how it can be minimized to reach its theoretical min-

imum without a specific design of the cell. The optimization scheme was further advanced

by Potier and Rivkin [2, 3] who characterized the cell with a set of the detuned parameters,

namely the ratio to the minimum values, relating them to the horizontal phase advance. The

parameterization laid a solid foundation for a systematic approach [4] to the design of the

low-emittance storage rings [5] and the damping rings [6]. The parameterization provides a

strategical guidance for designing a cell, but it still relies on a computer program to find a

periodic solution of the cell. In this sense, the optimization scheme is not yet complete.

In this paper, we will develop a complete parameterization of the TEM cell that consists of

a dipole magnet, three quadrupoles, and three sextupoles. For simplicity, the sextupoles are

set to make the chromaticity zero. The system is chosen to be a good approximation of the

TME lattice and yet simple enough to be studied analytically. For single-particle dynamics,

we will continue the work of the parameterized FODO cell [7] and explore applications

of the Kolmogorov-Arnold-Moser (KAM) theory [8–11] to particle accelerators. To avoid

repetition, our focus will be placed only on the invariant tori near the nonlinearly coupled

resonances. Mostly, the resonance studies [12–14] were carried out in the framework of the

canonical perturbation theory. Here, our investigation will be from a modern viewpoint of

the Lie Algebra [15] with an emphasis on comparisons to direct tracking.

We will introduce a geometrical parameterization of the focusing system based on the

paraxial optics and apply it to a half cell with a reflection symmetry in section II. Continuing

in section III, we will develop the linear optics, derive the emittance, and then compensate

the chromaticities in the periodic cell. Nonlinear aberrations will be given with a brief

outline in section IV using the Lie Algebra method. Most importantly, we will study the

Hamiltonian dynamics in comparison to the tracking in V and VI sections for one and two

resonances respectively. Finally, in section VII, we will make some concluding remarks. A

solution of the cubic equation and the detailed derivation of the effective Hamiltonian [16]

in a vicinity of resonance and normal form [17] will be given in the Appendix.
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II. PARAMETERIZATION

A. Paraxial Optics

The locations of the focusing point relative to its principle plane illustrated in Fig. 1

characterize a conventional optical system. Here, we will apply these well-known properties

to the optics of charged particles in the transverse dimensions, namely the horizontal or

vertical plane.

in plane                            out plane
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f
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F1
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optical
system

FIG. 1. Geometrical parameters in a conventional optical system. F1,2 are the focus points, PP1,2

the principal planes, and f the focus length of the optical system.

Given a 2-by-2 R-matrix [18] of the optical system, we can show,

p =
M22

M21

,

q = −M11

M21

,

f = − 1

M21

, (1)

where M11,M21, and M22 are the elements of the R-matrix. The derivation requires the

symplecticity of the R-matrix and validity of the paraxial approximation, tan θ ≈ θ, where

θ is the angle of the optical ray.

Inversely, given these geometrical parameters in the optical system, we can rewrite its

R-matrix as,

M =

 q
f

1
f
(pq + f 2)

− 1
f

− p
f

 . (2)
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B. Doublet

Let us consider a doublet drawn schematically in Fig. 2. Its R-matrix can be obtained

by multiplying the three R-matrices of the elements. Then applying Eq. (1), we have its

geometrical parameters,

	-f1											f2			

g	

FIG. 2. A schematic layout of a doublet. f1,2 are focus lengths of the defocusing and focusing

quadrupoles respectively. g is the distance between the quadrupoles.

p =
f1(g − f2)

f1 − f2 + g
,

q =
f2(g + f1)

f1 − f2 + g
,

f =
f1f2

f1 − f2 + g
. (3)

Here we have to use the thin lens calculation for the quadrupoles. Sometimes it is useful

to have its inverse,

f1 = −f
2 + pq

f − q
,

f2 =
f 2 + pq

f + p
,

g =
f 2 + pq

f
. (4)

To focus the charged particles in both transverse planes simultaneously, a doublet is often

required because a magnetic quadrupole focuses in one plane while defocuses in the other.
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C. A Half Cell

We now consider a half of a cell with a reflection symmetry as shown in Fig. 3, where the

position s1 is the starting and s2 the reflecting points. Here we represent the doublet with

their geometrical parameters, p, q, and f . And L1, L2 are the distances between the doublet

to s1, s2 respectively.

					(p,q,f)			

s1	 s2	

L1	 L2	

FIG. 3. A schematic layout of a half cell for a cell with a reflection symmetry. p, q, and f are the

geometrical parameters of the doublet. L1, L2 are the distances to the entry and exit of the half cell

respectively.

Using the matrix in Eq. (2) for the doublet and the matrix of drift, we compute the

transfer matrix from s1 to s2 and find,

Ms1→s2 =

 q−L2

f
1
f
[(p+ L1)(q − L2) + f 2]

− 1
f

− (p+L1)
f

 . (5)

Note that the matrix has the same functional form in Eq. (2) with replacements q → q−L2

and p → p + L1. This property is consistent with the interpretation of the geometrical

parameters, p, q, and f . Also, the matrix can be represented by [19],

Ms1→s2 =

 √
β2

β1
cosπν

√
β1β2 sin πν

− 1√
β1β2

sin πν
√

β1

β2
cosπν

 , (6)

where β1, β2 are the beta functions [20] at the positions s1, s2 respectively, ν the betatron

tune of the cell. Here we have used the property of the reflection points, namely α1 = α2 = 0.

Comparing it with the matrix in Eq. (5), we obtain,

p = −L1 − β1 cotπν,

q = L2 + β2 cot πν,

f =
√
β1β2 csc πν. (7)
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Given these geometrical parameters, the focus lengths of the quadrupoles and separation

distance can be calculated. Substituting Eq. (7) into Eq. (4), we have,

f1 =
β1β2 − L1L2 − (L2β1 + L1β2) cotπν

L2 + β2 cotπν −
√
β1β2 csc πν

,

f2 =
L1L2 − β1β2 + (L2β1 + L1β2) cotπν

L1 + β1 cotπν −
√
β1β2 csc πν

,

g =
(β1β2 − L1L2) sinπν − (L2β1 + L1β2) cosπν√

β1β2

. (8)

The formulas in this section are equally applicable to either the horizontal or vertical

plane. In this paper, we choose the horizontal lattice functions to fix the physical parameters

such as the quadrupole strengths since one of our main concerns is the natural emittance, to

which the horizontal tune: ν and the beta function: β2 at the center of the bending dipole

play essential roles [2, 3].

III. PERIODIC CELL

A. Layout

We would like to illustrate how the map works using a periodic TME cell that contains

three quadrupoles as shown in Fig. 4. The cell is chosen because it contains the most essential

ingredients in the common TME cell and yet is analytically solvable. The quadrupoles and

sextupoles are lumped together as a thin multipole with a sector bending dipole in between.

Here ff and fd are the focal lengths of the focusing and de-focusing quadrupoles respectively.

Also φ and L are the bending angle and length of the dipole.

Applying Eq. (8) with a substitution of L1 = 0, L2 = L/2, f1 = 2fd and f2 = ff , we find

the settings of the doublet,

f̄ =

√
β̄1(cotπν − 2β̄2)

2(
√
β̄1 cot πν −

√
β̄2 csc πν)

,

d̄ =
β̄1(2β̄2 − cotπν)

2(1 + 2β̄2 cot πν − 2
√
β̄1β̄2 csc πν)

,

ḡ =

√
β̄1(2β̄2 sin πν − cos πν)

2
√
β̄2

, (9)

where d̄ = fd/L, f̄ = ff/L are the dimensionless focusing lengths of the quadrupoles, nor-

malized by the bend length L. Similarly, we use ”bar” to note the scaling of L for the
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φ	

L	

ff,	κf	-fd,	-κd	 ff,	κf	 -fd,	-κd	

g	 g	

FIG. 4. A periodic theoretical minimum emittance cell with dipole, quadrupole, and sextupole

magnets. φ and L are the bending angle and length of the dipole, ff,d the focus lengths of the

quadrupoles, κf,d the strengths of the sextupoles.

other parameters in the formulas. As we will show later, β̄1,2 can also be represented by a

function of the betatron tunes. As a result, these dimensionless parameters can be plotted

as a function of the betatron tunes as shown in Fig. 5. The figure shows that higher horizon-

tal tune or smaller emittance is essentially achieved by a combination of stronger focusing

quadrupole and larger separation between the quadrupoles. The larger the spacing between

the quadrupoles in the doublet, the smaller the packing factor of the magnets is. This is a

significant drawback in the TME cell at high tunes.
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FIG. 5. Dimensionless parameters of the doublet as a function of the betatron tunes with various

ratios: νy : νx = 1:4, 1:3, and 1:2 represented by blue, red, and black color respectively.
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B. Optics

Given the importance of the dipole in generating the natural emittance, we choose the

reference point in the middle of the dipole. The transfer map Mcell of the cell can be

obtained by initializing an identity map and then concatenating it through the maps of

the elements. Here we use the explicit maps of Eqs. (2.5) and (2.6) in reference [21] for

the bends and kicks respectively. The computation is carried out using Mathematica [22].

Taking the Jacobian of the transfer map for the R-matrix and then comparing it with the

Courant-Synder matrix [20] of a periodical system, we find that the betatron tunes, defined

as the phase advances in units of 2π, are given by,

νx = 1− 1

2π
cos−1{2d̄[f̄ 2 + ḡ − f̄(2ḡ + 1)] + (f̄ − ḡ)[f̄(2ḡ + 1)− ḡ]

2d̄f̄ 2
},

νy =
1

2π
cos−1{2d̄[f̄ 2 + ḡ + f̄(2ḡ + 1)]− (f̄ + ḡ)[f̄(2ḡ + 1) + ḡ]

2d̄f̄ 2
}. (10)

Moreover, we have the beta functions at the center of the dipole,

βx =
[4d̄f̄ − 2d̄+ f̄(2ḡ + 1)− ḡ][f̄(2ḡ + 1)− ḡ]L

4d̄f̄ 2 sin 2πνx
,

βy =
[4d̄f̄ + 2d̄− f̄(2ḡ + 1)− ḡ][f̄(2ḡ + 1) + ḡ]L

4d̄f̄ 2 sin 2πνy
, (11)

and the horizontal dispersion,

ηx =
(8d̄f̄ + 4f̄ ḡ − 2d̄+ f̄ − ḡ)Lφ

8(2d̄− f̄ + ḡ)
. (12)

αx,y = 0 and ηpx = 0 due to the reflection symmetry.

C. Emittance

Substituting the physical parameters in Eq. (9) into Eqs. (10, 11, 12) for the optical

functions in the horizontal plane, we obtain,

νx = ν,

βx = β̄2L,

ηx =
1

8
Lφ(1 + 4β̄2 cotπν) (13)

The first two equations are merely a consistency check of the parameterization introduced

in the previous section. The third equation, namely the relationship between the horizontal
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tune and dispersion, was first derived by Rivkin [3]. Given the beta and dispersion functions,

we evaluate the radiation integrals [23] and derive the form factor,

F =
1 + 10β̄2

2 + 10β̄2 cotπν + 30β̄2
2 cot2 πν

120β̄2

, (14)

which is defined by the natural emittance εx = CqFγ
2φ3 where Cq = 3.8319 × 10−13m and

γ is the Lorentz factor. It can be minimized and reduced to,

F =
1

60
(5 cotπν +

√
10 + 30 cot2 πν), (15)

by setting,

β̄2 =
1√

10 + 30 cot2 πν
. (16)

To minimize the emittance, we alway use this optimal value of β̄2 in this paper.

0.5 0.6 0.7 0.8 0.9 1.0

0.02

0.03

0.04

0.05

0.06

0.07

0.08

νx

F

FIG. 6. The form factor of emittance in Eq. (15) as a function of the horizontal betatron tune.

As shown in Fig. 6, it can be further minimized by selecting: νmin = 1 − 1
π

cot−1
√

5/3

with the well-known minimum: [1] Fmin = 1/12
√

15. The reduction factor of the emittance

from ν = 0.5 to νmin is about 2.45.
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D. Linear Stability

Similarly, we can calculate the optical parameters in the vertical plane. In particular, we

find that the betatron tune is given by,

cos 2πνy =
1

2β̄1β̄2(2β̄2 sin πν − cosπν)
{8
√
β̄1β̄2(β̄1 + 4β̄2)− β̄2(47β̄1 + 16β̄2) cosπν

+ 8

√
β̄1β̄2(β̄1 + 2β̄2) cos 2πν − 3β̄1β̄2 cos 3πν + [30β̄1β̄

2
2 − (β̄1 + 8β̄2)] sinπν

+ 2

√
β̄1β̄2[3− 4(β̄1β̄2 + β̄2

2)] sin 2πν + β̄1(2β̄2
2 − 1) sin 3πν}. (17)

This condition has to be satisfied for a stable cell. Essentially, it defines β̄1 since β̄2 should

be set according to Eq. (16) for a minimal emittance. In fact, β̄1 as a function of νx, νy, β̄2

can be obtained explicitly by solving a cubic equation. The solution is given in Appendix

A. As a result, we have found that five independent parameters, namely νx, νy, β̄2, φ, L, can

characterize a stable TME cell. It is worth noting that the only dimensional parameter

is the length of the dipole L. The dimensionless horizontal beta functions β̄1 and β̄2 as a

function of the betatron tunes are shown in Fig. 7. They depend similarly on the horizontal

tune and hardly any on the vertical tune.
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FIG. 7. The horizontal beta functions at the end (left) and center (right) of the cell as a function

of the betatron tunes with various ratios: νy : νx = 1:4, 1:3, and 1:2 represented by blue, red, and

black color respectively.

We check the parameterization for the TME cell at the minimum emittance against the

computer program MAD [24]. In particular, the lattice functions computed numerically

using MAD, shown in Fig. 8, excellently agree to the analytical calculations. A drawback of
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FIG. 8. Lattice functions of TME cell at the minimum emittance with νx = νmin, νy = νmin/3,

φ = π/64, and L = 5 m.

the cell is that the vertical beta function at the defocusing quadrupole is too large. As we

will see later, that leads to larger nonlinear aberrations in the vertical plane.

E. Chromatic Compensation

The Courant-Synder parameters with δ dependence can be calculated [21] using the

symplectic maps. In particular, by computing the phase advances up to the first-order of δ,

we derive the natural chromaticity,

ξx0 = − [4d̄f̄ + 3ḡ2 − 4f̄ ḡ(ḡ + 1)− 2d̄f̄(2ḡ + 1) + f̄ 2(2ḡ + 1)

2π
√

(f̄ − ḡ)(2d̄− f̄ + ḡ)[f̄(2ḡ + 1)− ḡ + 4d̄f̄ − 2d̄][f̄(2ḡ + 1)− ḡ]
,

ξy0 = − [−4d̄f̄ + 3ḡ2 + 4f̄ ḡ(ḡ + 1)− 2d̄f̄(2ḡ + 1) + f̄ 2(2ḡ + 1)

2π
√

(f̄ + ḡ)(2d̄− f̄ − ḡ)[f̄(2ḡ + 1) + ḡ − 4d̄f̄ − 2d̄][f̄(2ḡ + 1) + ḡ]
. (18)

They are plotted in Fig. 9 as a function of the betatron tunes. The amplitude of horizontal

chromaticity increases rapidly beyond νmin ≈ 0.79. From the viewpoint of the chromaticity

in the vertical plane, the ratio of νy : νx = 1 : 4 or 1 : 3 seems reasonable while 1 : 2 is too

high, largely due to the high vertical beta function at the defocusing quadrupole.

Clearly, we can use the two sextupoles to zero out the natural chromaticity. Solving two
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FIG. 9. The natural chromaticity in the horizontal (left) and vertical (right) planes as a function

of the betatron tunes with various ratios: νy : νx = 1:4, 1:3, and 1:2 represented by blue, red, and

black color respectively.

linear equations, we find the necessary strengths,

κf =
2(2d̄− f̄ + ḡ)

(2d̄+ ḡ)f̄ 2L2φ
,

κd =
(2d̄− f̄ − ḡ)

d̄2f̄L2φ
. (19)

It is worth noting that the settings are identical for the values necessary for the local
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FIG. 10. The settings of focusing (left) and de-focusing (right) sextupoles as a function of the

betatron tunes with various ratios: νy : νx = 1:4, 1:3, and 1:2 represented by blue, red, and black

color respectively.

compensation. As a result, the chromaticities are well corrected. With the formulae, we

plot the strengths of the sextupoles in Fig. 10, which shows that the de-focusing sextupole

is stronger and it can be significantly reduced by lowering the vertical tune.
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IV. NONLINEARITY

For simplicity, we set the values of the sextupoles at the zero chromaticity in the study

of nonlinear dynamics. It is a good approximation in a single cell because typical circu-

lar accelerators contain many cells and each cell shares only little positive chromaticities.

Moreover, the zero chromaticity reduces the impact of the path lengthening.

Given the settings of the sextupoles in Eq. (19), the third-order Lie polynomial can be

derived similarly to the parameterized FODO cell [7] using the Dragt-Finn factorization [25].

Since the chromaticity is well compensated, the chromatic aberration is negligible. The

geometric part consists of five resonance driving terms and is given by,

f3 =
1

φ
√
L
{(C2100J

3/2
x + C1011J

1/2
x Jy) cos(ψx − πνx) + C3000J

3/2
x cos 3(ψx − πνx)

+J1/2
x Jy[C1020 cos(ψx + 2ψy − πνx − 2πνy) + C1002 cos(ψx − 2ψy − πνx + 2πνy)]}, (20)

where Jx,y, ψx,y are the action and angle variables [26] in the horizontal and vertical planes

respectively. It should be emphasized that the only dependence on the bending angle φ and

length L of the dipole is in a combination of φ
√
L in its denominator. This property leads to

the scaling law of the dynamic aperture in the normalized coordinates. Here the coefficients

Cjklm are functions of the remaining parameters: νx,y and β̄2. Their subscripts indicate the

indices of power series in the complex variables.

0.5 0.6 0.7 0.8 0.9 1.0

0

20

40

60

80

νx

C
30
00

0.5 0.6 0.7 0.8 0.9 1.0

-80

-60

-40

-20

νx

C
10
20

FIG. 11. The coefficients of resonance driving terms: 3νx (left) and νx + 2νy (right) as a function

of the betatron tunes with various ratios: νy : νx = 1:4, 1:3, and 1:2 represented by blue, red, and

black color respectively.
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For the horizontal resonances, their coefficients can be written as,

C2100 =
1

F
[

√
β̄1β̄2(1 + 8β̄2

2) cosπνx − β̄2(1 + 4β̄1β̄2 + 4β̄2
2 − 2

√
β̄1β̄2 sin πνx)],

C3000 =
1

3F
[β̄2(1− 4β̄1β̄2 + 4β̄2

2) + 2

√
β̄1β̄2(2β̄2

2 − 1) cosπνx

+ 2β̄2(1− 4β̄2
2) cos 2πνx −

√
β̄1β̄2(1− 4β̄2

2) cos 3πνx

+ 6β̄2

√
β̄1β̄2 sin πνx − 8β̄2

2 sin 2πνx + 4β̄2

√
β̄1β̄2 sin 3πνx], (21)

where F = β̄2
2

√
2β̄1(2β̄2 − cot πνx).

Moreover, we obtain the expressions for the three coupled resonances as well. But the

formulas are too lengthy to write out. Here we choose to plot the coefficients of two reso-

nances: 3νx and νx + 2νy in Fig. 11. Their amplitudes are largely following the pattern of

the natural chromaticity in Fig. 9. This finding agrees with an estimate by Levichev and

Kvardakov [27].

FIG. 12. A tune scan of the dynamic apertures. The color scale represents the averaged dynamic

aperture in the normalized coordinates divided by φ
√
L.

To see the effects of the resonances, we use the formulas in Eq. (9) to construct a cell

with specified betatron tunes and dipole parameters φ = π/64 and L = 5 m. Setting

the sextupoles according to Eq. (19), we scan the dynamic aperture by tracking at various

betatron tunes. The averaged dynamic aperture in the normalized coordinates divided by

φ
√
L is color coded on the map in Fig. 12. The sum resonances: 3νx and νx + 2νy are
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clearly seen and dominant in the tune scan. The dynamic aperture is more than an order

of magnitudes smaller than the one in the parameterized FODO cell [7].

Taking an example of the TME cell with the minimum emittance shown in Fig. 8, 128

cells make an electron storage ring with a circumference of 1210 meter. At an energy of 6

GeV, the natural emittance is 135 pm, which reaches the range of the incoming synchrotron

light sources [28]. Since there are no dispersion-free straights to place the undulators in the

ring, the comparison should be taken only as an estimate. Moreover, the dynamic aperture

at the center of the dipole is 1 mm in the horizontal plane and 2 mm in vertical one, which

is too small for off-axis injection. To increase the dynamic aperture, the phase advances

should be carefully selected for cancellation of the resonance driving terms[4, 29].

V. SINGLE RESONANCE

Near the horizontal resonance 3νx, we obtain similar results as in the study of the pa-

rameterized FODO cell [7]. To avoid repetition, we choose not to write out the finding.

A. Sum Resonance

In the vicinity of the sum resonance: νx+2νy = p+∆ν, where p is an integer, the effective

Hamiltonian can be written as,

H =
2π∆ν

5
(Jx + 2Jy)−

π∆νC1020

φ
√
L sin π(p+ ∆ν)

J1/2
x Jy cos(ψx + 2ψy). (22)

A derivation will be given in Appendix B. Rewriting the Hamiltonian in terms of the

normalized coordinates, we have,

H =
π∆ν

5
[(x̄2 + p̄2

x) + 2(ȳ2 + p̄2
y)] + θ[x̄(ȳ2 − p̄2

y)− 2ȳp̄xp̄y], (23)

where θ is given by,

θ = − π∆νC1020

2φ
√

2L sin π(p+ ∆ν)
. (24)

It is important to know that K = (x̄2 + p̄2
x)− (ȳ2 + p̄2

y)/2 is an invariance in this Hamiltonian

system. The invariance can be checked easily by showing that the Poisson bracket of H and

K is zero.
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1. Invariant Tori

Even with the invariance, the general solution of the Hamilton’s equation is not known.

Here, we would like to find a specific solution,

x̄ = Ax cos(−2µn),

p̄x = −Ax sin(−2µn),

ȳ = Ay cos(µn),

p̄y = −Ay sin(µn), (25)

where n is the turn number as the time variable. Substituting it into the Hamilton’s equation,

we find that it is indeed a solution provided,

4π∆ν + 10Axθ − 5µ = 0,

5A2
yθ + 2Ax(π∆ν + 5µ) = 0. (26)

Together with the constant of motion, K = A2
x−A2

y/2, we solve these equations and obtain,

Ax =
−π∆ν +

√
π2∆ν2 + 12Kθ2

6θ
,

Ay =
1

3

√
π2∆ν2 − 12Kθ2 − π∆ν

√
π2∆ν2 + 12Kθ2

θ2
. (27)

Note that there are other solutions but they are not seen in the tracking.

The solution requires that the condition, π2∆ν2 + 12Kθ2 ≥ 0, is satisfied. Most impor-

tantly, the largest invariant tori is determined by, π2∆ν2 + 12Kθ2 = 0, and we have,

A(max)
x = −π∆ν

6θ
,

A(max)
y =

√
2

3
|π∆ν

θ
|. (28)

The special solution is compared against tracking with the same initial condition in the

vertical plane as shown in Fig. 13. The large amplitudes, the bigger deviation is between

the tracking and analytical solution, indicating strongly the higher order nonlinear effects

in the tracking. The equal increment beyond the largest tori shown in the figure is unstable

in tracking. This is predicted according to the maximal tori in Eq. (28), which is plotted as

the black lines in the figure.

It is worth noting that these invariant tori were first discovered in the Hamiltonian per-

turbation theory by Franchetti and Schmidt [30], who called them “fixed lines” in the 4D

phase space. In fact, they are the periodic orbits.
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FIG. 13. A set of invariant tori in the normalized 4D phase spaces near the sum resonance: νx+2νy

with νx = 0.618 and νy = 0.196. The red dots represent the periodic orbits from tracking with bend

length L = 5 m and angle φ = π/64, the blue lines are the special solutions of the Hamiltonian in

Eq. (23) with ∆ν = 0.01 and θ = −76.73 m−1/2, the black lines are the maximal tori predicted by

the theory.

2. Dynamic Aperture

In the design of storage rings, an adequate dynamic aperture is often required. To

compute the dynamic aperture, we track the particles with different amplitudes as shown in

Fig. 14.

Taking a similar approach for the parameterized FODO cell [7], we would like to examine

contours defined by a constant value of the Hamiltonian in Eq. (23) and find a singular

contour. The difference here is that there is another constant of motion K. This allows us

first to solve p̄x with a fixed value of K and substitute it into the Hamiltonian and then

solve p̄y. We find a singularity at,

ȳ =
1√
2
x̄− π∆ν

2
√

2θ
. (29)
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FIG. 14. Comparison of the dynamic apertures between the theory (blue solid and black dashed

lines) and the tracking (red cross) at a vicinity of the sum resonance: νx + 2νy = 1 + ∆ν with

∆ν = 0.01.

This singularity defines a contour that leads to infinity in the direction of the momentum

p̄y. This line along with an arc with a radius,

√
(A

(max)
x )2 + (A

(max)
y )2 = |π∆ν

2θ
|, are plotted

in Fig. 14 for a comparison to the tracking. The theory gives a reasonably good estimate of

the dynamic aperture.

B. Difference Resonance

The effective Hamiltonian near the vicinity of the difference resonance: νx−2νy = p+∆ν,

where p is an integer, can also be derived similarly to the sum resonance and is given by,

H =
2π∆ν

5
(Jx − 2Jy)−

π∆νC1002

φ
√
L sin π(p+ ∆ν)

J1/2
x Jy cos(ψx − 2ψy). (30)

Here K = (x̄2 + p̄2
x) + (ȳ2 + p̄2

y)/2 is the invariance in the Hamiltonian system. Rewriting

the Hamiltonian in the normalized coordinates, we have,

H =
π∆ν

5
[(x̄2 + p̄2

x)− 2(ȳ2 + p̄2
y)] + θ[x̄(ȳ2 − p̄2

y) + 2ȳp̄xp̄y], (31)

where θ is given by,

θ = − π∆νC1002

2φ
√

2L sin π(p+ ∆ν)
. (32)
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1. Invariant Tori

Again, we would like to find a specific solution,

x̄ = Ax cos(2µn),

p̄x = −Ax sin(2µn),

ȳ = Ay cos(µn),

p̄y = −Ay sin(µn). (33)

Note a different sign in the horizontal oscillation in comparison to the sum resonance. Solving

the Hamilton’s equation, along with the constant of motion, K = A2
x + A2

y/2, we obtain,

Ax =
π∆ν +

√
π2∆ν2 + 12Kθ2

6θ
,

Ay =
1

3

√
−π2∆ν2 + 12Kθ2 − π∆ν

√
π2∆ν2 + 12Kθ2

θ2
. (34)

Unlike the sum resonance, the condition: π2∆ν2+12Kθ2 ≥ 0 is always satisfied and therefore

does not provide any restriction on the stability.

Similarly, the special solution is compared against tracking as shown in Fig. 15. At small

amplitude, we see good agreement between the theory and tracking. As the amplitude grows

large, so does the deviation between the theory and tracking. It strongly reflects the higher

order nonlinear effects.

2. Tune Shifts

It is well known [31] that the most important nonlinear effects in the next order are the

amplitude-dependent tune shifts,

νx(Jx, Jy) = νx + αxxJx + αxyJy,

νy(Jx, Jy) = νy + αxyJx + αyyJx, (35)

where the three coefficients can be computed using the normal form [17] or the Hamiltonian

perturbation theory [26]. As outlined in Appendix C, here we have modified the normal form

to avoid the so-called small denominator near the resonance. For the case being studied,

we numerically evaluate the resonance normal form using differential algebra [32] and find
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FIG. 15. A set of invariant tori in the normalized 4D phase spaces near the difference resonance:

νx− 2νy with νx = 0.618 and νy = 0.314. The red dots represent the orbits from tracking with bend

length L = 5 m and angle φ = π/64 and the blue lines are the special solutions of the Hamiltonian

in Eq. (31) with ∆ν = −0.01 and θ = 72.81 m−1/2.

αxx = 1.23× 103 m−1, αxy = −6.13× 103 m−1 and αyy = 1.30× 104 m−1. These values are

quite large for a single cell, specially in the vertical plane.

Based on the normal form in Eq. (C8), the effective Hamiltonian in Eq. (31) is a function

of the same nonlinear normalized coordinates as the fourth-order Hamiltonian that generates

the tune shifts. Combining them according to the Cambell-Baker-Hausdorf (CBH) theorem,

we derive the fourth-order effective Hamiltonian,

H =
π∆ν

5
[(x̄2 + p̄2

x)− 2(ȳ2 + p̄2
y)] + θ[x̄(ȳ2 − p̄2

y) + 2ȳp̄xp̄y]

+
π

4
[αxx(x̄

2 + p̄2
x)

2 + 2αxy(x̄
2 + p̄2

x)(ȳ
2 + p̄2

y) + αyy(ȳ
2 + p̄2

y)
2]. (36)

The solution in Eq. (33) remains a special solution of the Hamilton’s equation with the

following conditions,

π(αxx − 4αxy + 4αyy)A
3
x − 6θA2

x + 2π[∆ν + (αxy − 2αyy)K]Ax + 2Kθ = 0, (37)
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FIG. 16. A set of invariant tori in the nonlinear normalized 4D phase spaces near the difference

resonance: νx − 2νy with νx = 0.618 and νy = 0.314. The red dots represent the transformed

periodic orbits from tracking and the blue lines are the special solutions of the Hamiltonian in

Eq. (36).

and Ay =
√

2(K − A2
x). The cubic equation can be solved analytically using the third root:

x2 in Appendix A. The special solution is compared again to the tracking in the nonlinear

normalized coordinates with the same K values as shown in Fig. 16. The displayed orbits

have been transformed to the normalized coordinates by a third-order Taylor map obtained

in the normal form procedure as outlined in Appendix C.

VI. DOUBLE RESONANCES

At the vicinity of two resonances: νx + 2νy = p + ∆ν and 3νx = q + δν, where p, q are

integers, the third-order effective Hamiltonian defined by the three-turn map can be derived

similarly to the sum resonance. First, since the Lie operator associated with the integer p

and q is again an identity , we have

e:−3H0: = e:−π[2δνJx+(3∆ν−δν)Jy ]:, (38)
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where, H0 = 2π(νxJx + νyJy), is the free Hamiltonian. Secondly, we go through the same

derivation in Appendix B with the replacements, −6π∆ν
5
J → −π[2δνJx + (3∆ν− δν)Jy] and

µJ → H0. As a result, Eq. (B6) should be replaced by,

−3H = −π[2δνJx + (3∆ν − δν)Jy] +
: −π[2δνJx + (3∆ν − δν)Jy] :

(1− e:H0:)
f

(r)
3 , (39)

where f
(r)
3 cab be read from Eq. (20),

f
(r)
3 =

1

φ
√
L

[C3000J
3/2
x cos 3(ψx − πνx) + C1020J

1/2
x Jy cos(ψx + 2ψy − πνx − 2πνy)]. (40)

Finally, after some lengthy but straightforward algebra, we obtain the effective Hamiltonian,

H =
π

3
[2δνJx + (3∆ν − δν)Jy]−

πδνC3000

φ
√
L sin π(q + δν)

J3/2
x cos 3ψx

− π∆νC1020

φ
√
L sin π(p+ ∆ν)

J1/2
x Jy cos(ψx + 2ψy). (41)

Note that the resonance driving terms are identical to the ones in the case of the single

resonance respectively. Again the small denominator problem is resolved since it does not

become singular when δν or ∆ν approaches to zero.

Adding the tune shifts term, we write the fourth-order effective Hamiltonian in the nor-

malized coordinates,

H =
π

6
[2δν(x̄2 + p̄2

x) + (3∆ν − δν)(ȳ2 + p̄2
y)] + κx̄(x̄2 − 3p̄2

x) + θ[x̄(ȳ2 − p̄2
y)− 2ȳp̄xp̄y]

+
π

4
[αxx(x̄

2 + p̄2
x)

2 + 2αxy(x̄
2 + p̄2

x)(ȳ
2 + p̄2

y) + αyy(ȳ
2 + p̄2

y)
2]. (42)

where,

κ = − πδνC3000

2φ
√

2L sin π(q + δν)
, (43)

and θ is given by Eq. (24).

The numerical solution of the Hamilton’s equation is compared to the tracking in the

nonlinear normalized coordinates with the same initial conditions as shown in Fig. 17. The

displayed tracking orbits have been transformed to the normalized coordinates by a third-

order Taylor map obtained in the normal form procedure. The parameters used in the

numerical integration are tabulated in Table I. The agreement between the tracking and

theory is excellent.

22



-5 0 5

7x=?
p

L #10 -4

-6

-4

-2

0

2

4

6

7p
x
=
?
p

L

#10 -4

-2 -1 0 1 2

7y=?
p

L #10 -3

-2

-1

0

1

2

7p
y
=
?
p

L

#10 -3

-6 -4 -2 0 2 4

7x=?
p

L #10 -4

-2

-1

0

1

2

7y
=
?
p

L

#10 -3

-6 -4 -2 0 2 4

7px=?
p

L #10 -4

-2

-1

0

1

2

7p
y
=?

p
L

#10 -3

FIG. 17. A set of invariant tori in the nonlinear normalized 4D phase spaces on the resonance

3νx and near the sum resonance: νx + 2νy with νx = 2/3 and νy = (1/6) + 0.005. The red dots

represent the transformed periodic orbits from tracking and the blue lines are the numerical solution

in Eq. (42).

TABLE I. Parameters for the Double Resonances.

δν ∆ν θ [m−1/2] κ [m−1/2] αxx [m−1] αxy [m−1] αyy [m−1]

0.00 0.01 -90.2402 -22.9766 -6.6074×102 1.3255×103 2.4174×104

VII. CONCLUSION

We have analytically solved the linear optics in a TME cell with three quadrupoles.

The cell can be completely characterized by five independent parameters: its betatron tunes

νx, νy, the dimensionless horizontal beta function at the center of the dipole β̄2, bending angle

φ, and length L of the dipole. Ideally, β̄2 should be fixed according to a minimum emittance.

Formulas of the lattice functions, emittance, and natural chromaticity are derived. Three
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sextupoles in two families are introduced to zero out the chromaticity.

After the chromatic compensation, we derive the complete third-order Lie factor, includ-

ing chromatic and geometric aberrations. The chromatic aberration has been reduced to a

minimum because of the local compensation and hence neglected. The geometric aberration

contains an explicit overall factor of 1/φ
√
L, leading to a scaling law, Ā ∝ φ

√
L, of the

dynamic aperture in the normalized phase space. We find that the dynamic aperture is

much smaller than that in the FODO cell.

We have studied the third-order coupled resonances in the framework of the resonance

normal form. Near a single sum resonance νx + 2νy, the third-order effective Hamiltonian is

sufficient to explain the dynamics, including the dynamic aperture. It is a strong resonance

resulting in a very small stable region, which is confined by the largest invariant tori.

For the single difference resonance νx − 2νy, again its invariant tori can be described by

the effective Hamiltonian but with the tune-shift terms. More importantly, it is a weak

resonance with a large stable region. The Hamiltonian seems not to define the stability.

Finally, we find that the double resonances 3νx and νx + 2νy can be analyzed similarly to

the single resonance. Its stable region is also similar to the case of the single sum resonance

νx + 2νy.

Our model is greatly simplified in comparison to realistic circular accelerators. Dynamics

of the off-momentum particles can significantly differ from the on-momentum ones. Espe-

cially, we have ignored the high-order terms in energy for the chromaticity or momentum

compaction factor, which can play an important role in full six-dimension tracking with

synchrotron oscillation. To include these effects, the model has to be extended to include a

straight section without any dispersion so that a RF cavity can be placed. A double-bend [33]

or multi-bend [34] achromat could be a good choice for the next investigation.
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APPENDIX

Appendix A: Solution of the Cubic Equation

Setting x =
√
β̄1, the stability condition in Eq. (17) can be rewritten as a cubic equation,

ax3 + bx2 + cx+ d = 0, (A1)

with the coefficients,

a = −8

√
β̄2(1 + cos 2πν − β̄2 sin 2πν),

b = 3β̄2 cos 3πν + β̄2(47− 2 cos 2πνy) cosπν

+ 2[1− 16β̄2
2 + (1− 2β̄2

2) cos 2πν + 2β̄2
2 cos 2πνy] sinπν,

c = 2

√
β̄2[(4β̄2

2 − 3) sin 2πν − 8β̄2(2 + cos 2πν)],

d = 8β̄2(2β̄2 cosπν + sin πν). (A2)

The solution of the cubic equation is well known. One needs to compute first,

∆0 = b2 − 3ac,

∆1 = 2b2 − 9abc+ 27a2d,

Ω =
∆1 +

√
∆2

1 − 4∆3
0

2
(A3)

And then the roots are given by,

xk = − 1

3a
(b+ ξkΩ1/3 +

∆0

ξkΩ1/3
), k ∈ {0, 1, 2}, (A4)

where ξ = −1
2

+ i
2

√
3. In this paper, we use β̄1 = x2

0.

Appendix B: Effective Hamiltonian of the Sum Resonance: νx + 2νy

Near the sum resonance, it is well known in the canonical perturbation theory [35] that

J = Jx + 2Jy is the new action and K = 2Jx − Jy is an invariance. Moreover, the free part

of the Hamiltonian can be written as,

−2πνxJx − 2πνyJy = −2π(νx + 2νy)

5
J − 2π(2νx − νy)

5
K. (B1)
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Since K is a constant of the motion, the second term can be dropped out from an effective

Hamiltonian. To transfer to the rotating frame, we define the effective Hamiltonian by the

three-turn map,

M3 = e:−3H:. (B2)

This treatment is so obvious as in the case of 3νx [16], seeing a slower variation of the

horizontal betatron phase every three-turn in the tracking. Here, we see a similar pattern

in the tracking of the invariant tori, especially in the vertical plane.

Given µ = 2π(νx + 2νy)/5, we compute the three-turn map,

M3 = (e:−µJ :e:f
(r)
3 :)3

= e:−3µJ :e:2µJ :e:f
(r)
3 :e:−2µJ :e:µJ :e:f

(r)
3 :e−:µJ :e:f

(r)
3 :

= e:−3µJ :e:e:2µJ:f
(r)
3 :e:e:µJ:f

(r)
3 :e:f

(r)
3 : (B3)

We start with inserting two identity maps and then apply the similarity transformation

to the Lie operators. Since the Lie operator associated with the integer p is an identity, the

first Lie operator is reduced to,

e:−3µJ : = e:− 6π∆ν
5

J :. (B4)

For the next three, we use the CBH theorem for the approximation up to the first order of

f
(r)
3 and combine them into a single Lie operator,

e:e:2µJ:f
(r)
3 :e:e:µJ:f

(r)
3 :e:f

(r)
3 :

≈ e:(e:2µJ:+e:µJ:+1)f
(r)
3 :

= e
:( 1−e:3µJ:

1−e:µJ: )f
(r)
3 :

= e
:( 1−e:

6π∆ν
5 J:

1−e:µJ: )f
(r)
3 :

(B5)

Applying the second form of the CBH theorem to combine two Lie operators in Eqs. (B4)

and (B5) and using the definition of the effective Hamiltonian, M3=e:−3H:, we have,

−3H ≈ −6π∆ν

5
J +

: −6π∆ν
5
J :

(1− e: 6π∆ν
5

J :)

(1− e: 6π∆ν
5

J :)

(1− e:µJ :)
f

(r)
3

= −6π∆ν

5
J +

: −6π∆ν
5
J :

(1− e:µJ :)
f

(r)
3 . (B6)

In addition, the resonance driving term can be read directly from Eq. (20),

f
(r)
3 =

C1020

φ
√
L
J1/2
x Jy cos(ψx + 2ψy − πνx − 2πνy). (B7)
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After some straightforward algebra of computing the Poisson brackets, we obtain the Hamil-

tonian,

H =
2π∆ν

5
(Jx + 2Jy)−

π∆νC1020

φ
√
L sin π(p+ ∆ν)

J1/2
x Jy cos(ψx + 2ψy). (B8)

It is worth noting that it is consistent with the reflection symmetry and more importantly

well behaved as ∆ν approaches zero.

Appendix C: Normal Form in Vicinity of Single Resonance or Double Resonances

We start from the well-known procedure of the normal form [17]. For a nonlinear Taylor

map M truncated at an order o, we make a following transformation,

R−1AMA−1 = I2, (C1)

whereA−1 is a linear map that transforms to the normalized coordinates,R = e:−2π(νxJx+νyJy):

the rotation maps, and I2 is a nonlinear map near the identity. Its lowest perturbation is

the second order, indicated with its subscript.

Similarly, we would like to make a transformation in the next order of perturbation,

e−:N3(z):R−1e:F3(z):AMA−1e−:F3(z): = I3. (C2)

Here we would like to absorb the second-order terms in I2 to F3 and N3. N3 is the driving

term of a single resonance. Inserting an identity map after e:F3:,

e−:N3(z):R−1e:F3(z):RR−1AMA−1e−:F3(z): = I3. (C3)

and using Eq. (C1), and then performing a similarity transformation of the Lie operator

e:F3:, we obtain,

e−:N3(z):e:F3(R−1z):I2e
−:F3(z): = I3. (C4)

To solve F3 and N3, we could rewrite this equation as,

e−:N3(z):e:F3(R−1z):e:f
(n)
3 (z)+f

(r)
3 (z):e−:F3(z): = Ī3, (C5)

where f
(n)
3 +f

(r)
3 is the Lie operator that generates I2 and applying again the CBH theorem,

we obtain

e−:N3(z)+F3(R−1z)+f
(n)
3 (z)+f

(r)
3 (z)−F3(z): = ¯̄I3. (C6)
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The solution is given by,

F3(z) = f
(n)
3 (

1

1−R−1
z),

N3(z) = f
(r)
3 (z). (C7)

It is clear from the solution that N3 has been introduced to absorb all terms that have

1−R−1 near zero value. Once F3 and N3 are calculated, we can compute I3 using Eq. (C4)

and proceed to the next order of perturbation.

This procedure can be continued until the right-hand side becomes identity due to the

order of the truncation of the map. Inverting the Lie operators and maps, we derive the

normal form presentation of the map,

M = A−1e−:F3(~z):...e−:Fo+1(~z):Re:f
(r)
3 (~z):...e:No+1(~z):e:Fo+1(~z):...e:F3(~z):A. (C8)
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