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Abstract

In the lattice designs for the next generation storage ring light sources, longitu-

dinal gradient bending magnets and anti-bending magnets have been adopted.

A logical question raised by the trend of varying the longitudinal distribution

of dipole strength is: what are the optimal distributions of the dipole and

quadrupole fields in a lattice cell for the purpose of minimizing the natural

emittance? We studied this problem by numerically optimizing the dipole and

quadrupole distributions of the normalized cell optics using the particle swarm

optimization algorithm. The results reveal the features of the longitudinal field

variation of the optimized cell and show that when the quadrupole gradient is

increased enough, the cell tends to split into two identical cells with similar

features.

Keywords: Low emittance, optics, optimization

1. Introduction

Beam emittance is a critical performance parameter for synchrotron light

sources and damping rings. Lower emittance in damping rings leads to higher

luminosity in the associated linear colliders. For synchrotron light sources, lower

emittance leads to higher photon beam brightness. The beam emittance in a5

high energy electron synchrotron is given by the beam energy and the magnetic

lattice as the electron beam reaches an equilibrium distribution quickly through

radiation damping and quantum excitation in the bending magnets. Because
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the ring lattice typically consists of periodic cells, the cell structure determines

the emittance.10

The natural emittance of a storage ring with periodic cells may be expressed

as

εn =
F

12
√

15
Cqγ

2 θ
3
c

Jx
, (1)

where Cq = 3.83 × 10−13 m, γ is the Lorentz energy factor, θc = 2π/Nc is

the bending angle per cell, Nc is the total number of cells, Jx is the horizontal

damping partition, and F is a dimensionless form factor for the cell type.15

Double-bend-achromat (DBA) lattice cells [1] are the building blocks of

most third generation light sources, with a few exceptions that use triple-bend-

achromat (TBA) cells [2]. The conditions for minimal emittances of these cell

types have been analyzed in Ref. [3]. The MAX-IV storage ring started a new

trend of lattice design practice that adopts the multi-bend-achromat (MBA)20

cells [4, 5]. By using high gradient quadrupole magnets, the MBA lattice allows

to focus the dispersion function down between bending magnets in shorter dis-

tances. This allows placing more “focused” bending magnets in a ring, which

reduces dispersion in bending magnets and in turn reduces the emittance. Es-

sentially an MBA cell consists of several smaller cells. If one bending magnet25

is considered as one basic cell, then the MBA lattice substantially increases the

number of cells, which is very effective in reducing the natural emittance as

shown in Eq. (1).

In an MBA cell, the centers of the middle bending magnets are typically

the minima of both the horizontal beta function and the dispersion function.30

Each middle bending magnet and its flanking quadrupoles resemble the theoretic

minimum emittance (TME) cell structure [6]. Traditionally bending magnets

have uniform magnetic field in the longitudinal direction, in which case the

minimal form factor for a TME cell is found to be FTME = 1.

The middle bending magnets are often combined function magnets which35

also serve as defocusing quadrupoles. This saves space, and also reduces the

horizontal emittance by increasing the damping partition. Bending magnets
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with varying dipole fields can be used to further reduce the beam emittance.

The dipole field may be re-distributed to put stronger bending in the region with

lower dispersion invariant and weaker bending elsewhere in order to achieve more40

evenly distributed quantum excitations throughout the magnet, which could in

turn leads to smaller emittance. There have been many studies on the topic [7,

8, 9, 10, 11]. In a recent study, Ref. [11], numeric optimization of the dipole field

distribution for minimum emittance was conducted. Another important recent

development in lattice design is the use of negative bends [12, 13]. The negative45

bends allow a reduction of dispersion function in the main bending magnets,

which further pushes down the emittance.

The use of combined function magnets, longitudinal gradient bending mag-

nets, and anti-bends are essentially a re-distribution of the bending and focusing

functions on the cell length in order to achieve better emittance performance.50

This has inspired us to take a more general approach to investigate the low emit-

tance linear lattice design problem. Suppose the focusing and bending functions

are freely variable, subject to certain constraints, what would be the functions

that minimize the emittance? Specifically for the synchrotron light sources, the

actual performance measure of concern is the photon beam brightness, which55

not only depends on the natural emittance, but also the beta functions at the

insertion devices. Since the beta functions are also lattice parameters, the prob-

lem becomes maximizing the brightness directly with the focusing and bending

functions. In both cases, we have an optimization problem that can be solved

numerically.60

In this study we used the particle swarm optimization (PSO) algorithm

to minimize the emittance or maximize brightness of a periodic storage ring

lattice in the general case with free distributed focusing functions and bending

functions over the length of a cell. Our results showed that the best approach

to reduce emittance is to split the ring into as many identical cells as allowed by65

the constraint of the maximum quadrupole gradient. Within a cell, the bending

function varies along the longitudinal direction, including a small section with

negative bending.
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The paper is organized as follows. We first mathematically formulate the

emittance minimization problem in Section 2. It is followed by a description70

of the numeric optimization setup in Section 3. The optimization results and

discussions are presented in Section 4. The conclusion is given in Section 5.

2. Optimization of emittance and brightness for a normalized lattice

cell

2.1. Normalization of a lattice cell75

Linear lattice functions of a periodic cell, such as beta functions and disper-

sion functions, are determined by the periodic conditions and the distributions

of the quadrupole and dipole fields over the cell. A lattice cell can be scaled in

length while keeping its linear lattice features intact. In fact, we can normalize

the lattice functions using the length of the cell, L, as follows [14].80

Define normalized quantities

ŝ =
s

L
, β̂x,y =

βx,y
L

, ĥ =
hL

θc
, D̂x =

Dx

Lθc
, K̂ = KL2 (2)

where s is the path length measured from the cell entrance, Dx is horizontal

dispersion, βx,y are horizontal and vertical beta functions, h = 1
ρ is the curvature

function, ρ is the bending radius, K = 1
Bρ

∂By

∂x is the focusing gradient, Bρ is

the magnetic rigidity of the electron beam, and θc is the total bending angle of85

the cell. All ·̂ quantities are dimensionless. The differential equations for the

scaled linear lattice functions, β̂x,y and η̂, are

1

2
β̂

′′

x,y + K̂x,y(ŝ)β̂x,y −
1 + α̂2

x,y

β̂x,y
= 0, (3)

D̂
′′

x + K̂x(ŝ)D̂x = ĥ(ŝ), (4)

where α̂x,y = − β̂
′
x,y

2 , K̂x = K̂ + ĥ2θ2c ≈ K̂, K̂y = −K̂, and ′ and ′′ refer to first

and second order derivatives with respect to ŝ, respectively. The approximation

K̂x ≈ K̂ is valid when the deflection angle is small.90
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The total deflection angle of the normalized cell is a constraint of the lattice

cell optimization, which corresponds to the condition∫ 1

0

ĥ(ŝ)dŝ = 1. (5)

The maximum quadrupole gradient is another important parameter that im-

pacts the lattice cell design. High gradient would enable packing more cells

over a given circumference and in turn reduces the emittance. In the optimiza-95

tion it is necessary to specify the upper limit of the quadrupole gradient. This

corresponds to another constraint [14]

|K̂(ŝ)| ≤ K̂max ≡ KmaxL
2. (6)

Dimensionless radiation integrals can be defined using the dimensionless lat-

tice functions

Î2 =

∫ 1

0

ĥ2(ŝ)dŝ (7a)

Î3 =

∫ 1

0

|ĥ|3(ŝ)dŝ (7b)

Î4 =

∫ 1

0

D̂x(ŝ)ĥ(ŝ)(ĥ2(ŝ) + 2K̂(ŝ))dŝ (7c)

Î5 =

∫ 1

0

Ĥ(ŝ)|ĥ(ŝ)|3dŝ (7d)

where Ĥ = β̂xD̂
′2
x +2α̂xD̂D̂

′
x+γ̂xD̂

2
x is the normalized dispersion invariant, α̂x =

αx and γ̂x = γxL are normalized Courant-Snyder parameters. The equilibrium

horizontal emittance and the rms energy spread of an electron storage ring are100

given by

ε = Cqγ
2θ3c

Î5

JxÎ2
, (8)

σ2
δ = Cqγ

2 θc
L

Î3

2Î2 + Î4
(9)

where Cq ≈ 3.83× 10−13 m, Jx = 1− Î4
Î2

, and γ is the relative energy factor.

This problem is then to find the suitable functions K̂(ŝ) and ĥ(ŝ) which

satisfy Eqs. (3)-(6) and minimize the emittance as given by Eq. (8) for any

given set of deflection angle θc and K̂max.105
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2.2. Optimization of the lattice cell

A major goal of lattice cell optimization for storage ring light source is to

achieve high photon beam brightness, B, which is inversely proportional to the

phase space volume of the photon beam [15],

B ∝ 1

σph,xσph,x′σph,yσph,y′
, (10)

where σph,x, σph,y, σph,x′ and σph,y′ are photon beam width or divergence in

both transverse directions. They are related to electron beam dimensions in the

phase space and the radiation distribution of a single electron through

σ2
ph,xy = σ2

e,xy + σ2
λ (11a)

σ2
ph,x′y′ = σ2

e,x′y′ + σ2
λ′ . (11b)

where the σλ and σ′λ are the size and divergence of photon beam at the photon

beam source point. The electron beam sizes, σ2
e,xy and σ2

e,x′y′ , are related to

the beam emittances, energy spread, and the lattice functions,

σe,x =
√
εxβx + (Dxσε)2, σe,y =

√
εyβy, (12a)

σe,x′ =
√
εxγx + (D′xσε)

2, σe,y′ =
√
εyγy. (12b)

In the cell optimization studies, we first used the brightness as the optimiza-110

tion objective. This would automatically include the impact of emittance and

beta functions. However, the actual lattice cell design often uses quadrupole

doublet or triplet at the end of the cell to tailor the beta functions at the loca-

tion of insertion devices. Therefore, the emittance of the cell is not necessarily

tied to the beta functions. For this reason, we also did lattice cell optimization115

to minimize the natural emittance only.

3. Optimization setup

As indicated in Eqs. (3-4), the linear lattice functions of a periodic cell are

completely determined by the focusing function K̂(ŝ) and the curvature func-

tion ĥ(ŝ). With the constraints on the two functions as given by Eqs. (5-6),120

6



we can optimize the lattice cell in a very general manner. The objective of the

optimization can be the brightness of the photon beam, or the equilibrium emit-

tance of the electron beam. The variables for the optimization are parameters

that specify the two functions over the length of the cell. In the following we

will describe the optimization setup in more details.125

3.1. Optimization Parameters and Objectives

Although theoretically the focusing and curvature functions are smooth func-

tions, they can be approximated with function values at a finite number of points

separated by equal intervals. One way to represent the functions would be to

specify the function values at the given control points. However, if the function130

values at these points are independently changed, the constraint in Eq. (5) will

most likely be violated, which requires additional adjustment to the function

values, for example, by scaling, to satisfy the constraint. Another disadvan-

tage of independently specifying function values at various points is that it is

more difficult for the optimization algorithms to develop global patterns, such135

as symmetric patterns in the functions.

We assume the focusing function and the curvature function are both sym-

metric about the center of the cell. The full extent of the cell covers the range

ŝ ∈ [0, 1]. Constrained by the Eq. (5), the curvature function ĥ(ŝ) with arbitrary

distribution, over the half cell of ŝ ∈ [0, 0.5], can be represented through a series140

of basis functions

ĥ(ŝ) =

N∑
n=1

anφn(ŝ), (13)

where N = 2m, m is an integer, and φn(ŝ) are functions of piece-wise constant

values of 1 and −1. The basis functions are orthogonal to each other, i.e.,∫ 1

0

φi(ŝ)φj(ŝ)dŝ = 0, if i 6= j. (14)

The basis functions φn for m = 3 is illustrated in Figure 1 as an example.

Except for φ1(ŝ) = 1 (uniform distribution), all basis functions integrate to zero145

over the zone of [0, 1]. Therefore a1 is the only parameter that changes the
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Figure 1: The dipole field basis functions φn(ŝ) for m = 3 over the half cell in [0, 1
2

]. The

other half is in mirror symmetry about the ŝ = 1
2

point.

total deflecting angle. The final shape of the function ĥ(ŝ) is determined by the

coefficients of the other basis functions.

The focusing function K̂(ŝ) is also represented by piece-wise constants in

the same N slices, but with different basis functions,150

K̂(ŝ) =

N∑
n=1

bnψn(ŝ), (15)

where ψn(ŝ) are

ψi(ŝ) =

1 ŝ ∈ ( i−12N ,
i

2N )

0 ŝ 6∈ ( i−12N ,
i

2N )

, i = 1, 2, 3...N (16)

and the control parameters, bn, are chosen with the constraint of not violating

Eq. (6) in any slice. For a cell with N = 2m slices with mirror symmetry about

the cell center, there are N − 1 control parameters for determining the dipole

field ĥ(ŝ) and the quadrupole field K̂(ŝ).155

Given the curvature function ĥ(ŝ) and focusing function K̂(ŝ), the natural

emittance εn can be evaluated by Eqs. (7-12). For the calculation of photon

brightness B, the vertical emittance εy due to the coupled motion from the

horizontal plane should be considered. The horizontal emittance εx and vertical
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emittance εy can be expressed as

εx =
1

1 + κ
εn, εy =

κ

1 + κ
εn, (17)

where κ is the coupling ratio between the vertical and horizontal planes. Elec-

tron beam beam energy of 2 GeV and photon energy of 10 keV are assumed in

the brightness calculation using Eq. (10-12).

3.2. The Particle Swarm Optimization Algorithm

Optimization algorithms capable of finding the global minimum in a large160

parameter space is needed for the lattice cell optimization problem described

in the above. In such cases, stochastic algorithms could be used. Stochastic

optimization algorithms such as genetic algorithms [16, 17, 18], and particle

swarm optimization (PSO) [19, 20, 21, 22] have been used on various accelerator

problems. In this study, we use the PSO algorithm found in Refs. [21, 22] as165

it was demonstrated to have fast convergence due to the high diversity in the

evaluated new solutions.

In the PSO algorithm, each solution is considered as a moving particle in

the control parameter space. A population of such particles are manipulated by

the algorithm for many iterations. During each iteration, the position of each170

particle is updated by adding an amount called its velocity,

~xt+1
i = ~xti + ~vt+1

i (18)

where ~xti and ~vti are vectors that represent the position and the velocity of the

ith particle at iteration t, respectively. The velocity is calculated as the weighted

sum of three terms,

~vt+1
i = ω~vti + c1(~pti − ~xti) + c2(~gt − ~xti) (19)

where the three terms on the right-hand side, from left to right, represent the175

previous velocity, the distance between the present position and the position

of the best solution in the history of this particle(i.e. personal best, ~pti), and
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the distance between the present position and the global best solution ~gt, re-

spectively. Parameters ω and c1,2 control the behavior of the algorithm and are

given as in Ref. [22]. Mutation operation is also performed to a small fraction180

of randomly selected solutions. After the initial position and velocity distribu-

tions are given, the particles move in the parameters space along trajectories

according to the function evaluations and Eqs. (18-19).

The PSO algorithm applied to the lattice cell optimization problem has good

convergence performance as indicated by the example shown in Figure 2, which185

shows the evolution of the best(lowest) form factor, F , over 700 iterations. There

are 63 control parameters in this setup and 1500 solutions in the population.

0 50 100 150

generations

10-1

100

101

102

103

F
o

rm
 f

a
c
to

r 
F

Figure 2: The evolution of the best (lowest) form factor in a cell emittance minimization

run by the PSO algorithm is shown as an indication of the convergence performance of the

algorithm. The setup includes 63 control parameters for each solution and 1500 solutions in

the population.

4. Optimization results

4.1. Brightness B as the optimization objective

When photon brightness, B, is used as the optimization objective, the elec-190

tron beam energy and photon energy need to be specified. In this study we

assumed a 2 GeV electron beam and a 10 keV photon energy. The undulator

length is assumed L = 2.5 m in the calculation of single photon divergence.
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4.1.1. The impact of coupling ratio

With the beam on or near the linear difference coupling resonance, the195

natural emittance is split between the horizontal and vertical planes through

Eqs. (17). Therefore, the coupling ratio κ could be a key parameter that sig-

nificantly impacts the brightness optimization. We investigated the effect of

the coupling ratio by performing the cell optimization for maximum brightness

with the coupling ratio changed over a large range. The results are summarized200

in Table 1, which lists the natural emittance, the horizontal partition number,

and the horizontal phase advance for the optimized cell for various coupling

ratios. Surprisingly, the resulting optimized cells are almost identical when the

coupling ratio is changed. The only exception is when κ = 0, in which case the

vertical beam emittance is zero and hence the vertical beta function is not in-205

volved in the brightness calculation. For all cases with κ > 0, the optimized cell

has approximately Φx = 163◦ for the horizontal phase advance and Φy = 105◦

for the vertical phase advance. The optimized horizontal partition number is

Jx = 1.28. As will be shown in the next section, these optimized parameters

strongly depend on the maximum quadrupole gradient.

Table 1: The optimized parameters for different coupling ratios in the brightness optimization.

The maximum normalized quadrupole gradient is K̂max = 13. The emittance value is for a

2 GeV beam, with cell length of L = 1.0 m and deflection angle of θc = 1◦. The form factor

can be calculated with F = Jxεn
0.671 [pm]

.

Coupling Emittance Horizontal partition Phase advance

κ εn (pm) Jx Φx/Φy (◦)

0 0.156 1.17 136/97

0.1 0.206 1.28 163/105

0.5 0.206 1.28 163/105

1.0 0.202 1.28 163/105

210

Because the brightness optimization is not sensitive to the coupling ratio, in

the following the coupling ratio is set to a constant value of κ = 1.
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4.1.2. The impact of maximum quadrupole gradient

As discussed earlier, higher quadrupole gradient allows placing more focused

bending magnets in a ring; and this is what enabled the MBA lattice cell to sub-215

stantially reduce the electron beam emittance from the traditional DBA-based

design approach. It is expected that the brightness should be strongly depen-

dent on the quadrupole field distribution, K̂(s). But how would the maximum

quadrupole gradient affect the quadrupole field distribution is not clear before

the numerical optimization is conducted.220

In this section, the effect of the maximum quadrupole gradient on the bright-

ness optimization is investigated. In the optimization study, the cell length is

set to L = 1 m and the cell deflection angle is θ = 1◦. The slice number for the

cell is N = 64. Because of the mirror symmetry about the cell center, there are

31 control parameters for dipole field distribution, ĥ, and 32 control parame-225

ters for quadrupole field distribution, K̂. The normalized maximum quadrupole

gradient, K̂max, is varied from 13 to 208.

Figure 3 shows the optics functions of the optimized cell (left column), the

corresponding dipole field distribution, ĥ(s) (center column), and the quadrupole

field distribution, K̂(s) (right column) for four levels of K̂max. The correspond-230

ing emittance, horizontal partition number, and horizontal phase advances pa-

rameters are listed in Table 2.

The case in Figure 3(a) (K̂max = 13) resembles the general case of one

focused dipole cell. The quadrupole field in the optimized cell naturally groups

into one focusing magnet and one defocusing magnet (if we consider the cell235

ends as the center of the defocusing magnet). The gradients of both magnets

are at the maximum value. There is one minimum and one maximum in the

beta function of each transverse plane. Because the brightness, which is the

objective function to be minimized, is calculated at the ends of the cell, the

minimum of horizontal beta function is at the ends. The dipole field function240

develops an interesting distribution over the cell length, which includes two

important features: the longitudinal dipole gradient and the anti-bends. The
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maximum bending field is at the cell ends, where the normalized curvature is

ĥ ≈ 10, which corresponds to a dipole field of 1.17 T for a cell bending angle of

1◦ on a 1-m long cell and a 2 GeV beam. The negative bending angle is −21.3%245

of the total cell bending angle.

As K̂max is increased to 30, the dipole and quadrupole field distributions on

the cell have developed features of two separate cells. When it is increased to

52, which is 4 times of the case in Figure 3(a), the field distributions are very

similar to two cells scaled from case Figure 3(a). The vertical beta function250

does not look like two identical cells because the vertical beta function affects

the optimization objective function only at the ends and is thus not sufficiently

constrained. When K̂max is increased by another factor of 4, to 208, the field

distributions appear to consist of four cells of the type found in case Figure 3(a).

The horizontal beta and dispersion function do not show ideal periodicity, prob-255

ably because the number of slices is not enough for it to exhibit the full features

of the case (a) cell type.

The optimized field distributions as shown in Figure 3 when the maximum

quadrupole gradient is varied clearly indicate that the cell type found in Fig-

ure 3 (a) is a fundamental building block of low emittance lattice aimed at high260

brightness. When the maximum quadrupole gradient is high enough, the natu-

ral tendency for obtaining high brightness is to split the cell into more cells of

this type.

The quadrupole field distribution in Figure 3 shows that a smooth function

for the gradient does not have any advantage in increasing the brightness. The265

K̂(s) function tends to group in areas with maximum focusing or defocusing

strengths. Therefore, in the following we model the gradient function as discrete

quadrupole magnets, varying only their gradient values and locations.

4.1.3. Transforming one cell into two cells

The splitting of a lattice cell into two basic cell types as we found in the270

previous section is an important and interesting phenomenon. Because dis-

tributed quadrupole fields over the entire cell is not realistic and does not have
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Figure 3: The optimization results in terms of the optics functions (left column), dipole field

distribution (middle column), and quadrupole field distribution (right column) for brightness

optimization with different maximum quadrupole gradients. The four rows represent four

levels of K̂max: (a) K̂max = 13; (b) K̂max = 30; (c) K̂max = 52; (d) K̂max = 208.
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Table 2: Key parameters of the optimized cell in the brightness optimization for different

K̂max. The coupling ratio is set to κ = 1. The emittance value is for a 2 GeV beam, with cell

length of L = 1.0 m and deflection angle of θc = 1◦. The form factor can be calculated with

F = Jxεn
0.671 [pm]

.

Emittance/pm Horizontal partition phase advance

K̂max εn Jx Φx/Φy (◦)

13 0.207 1.28 163/107

30 0.208 1.56 167/68

52 0.042 1.40 307/168

208 0.013 1.50 541/370

any advantage, we decided to further investigate the phenomenon with a model

of discrete quadrupoles.

In this model eight quadrupoles are placed in the cell in a symmetric config-275

uration about the cell center, as shown in Figure 4. All quadrupole lengths are

set to 0.05. The position of quadrupoles K1 and K4 are fixed at the cell end, or

cell center, respectively, while K2 and K3 can be freely moved, up to the edges

of K1 or K4. K2 and K3 cannot overlap or cross each other. The dipole field

distribution is represented in the same manner as in the previous section.280

The brightness optimization is performed for a series of cases when the max-

imum quadrupole gradient is varied from K̂max = 23 to K̂max = 93. The

optics functions and field distribution functions for the cases of K̂max = 23 to

K̂max = 93 are shown in Figure 5. For the case with K̂max = 23, quadrupole

K2 moves to the cell end to join K1, and quadrupole K3 moves to the cell285

center to join K4. The dipole field distribution is similar to case Figure 3 (a) in

the previous section, consisting one basic cell. The horizontal phase advance is

Φx = 164.0◦. For the case with K̂max = 93, however, quadrupole K2 and K3

move toward each other and meet at the ŝ = 0.25 point. In this case, the cell

is split into two basic cells that are similar to the cell type as in the case with290

K̂max = 23. The horizontal phase advance becomes Φx = 309.0◦.

The natural emittance, corresponding to a one-meter cell with bending angle
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θc = 1◦ and beam energy of 2 GeV, and the phase advances as functions of the

maximum gradient are shown in Figure 6. Interestingly, before the maximum

gradient is high enough for the cell to split, the phase advance and the natural295

emittance vary only slightly, despite significant changes to K̂max. This again in-

dicates that the basic cell type as seen in Figure 5 (a) is an efficient fundamental

building block of low emittance lattice cells.

0 0.2 0.4 0.6 0.8 1

s

K

 K1

 K2  K3

 K4

Figure 4: The quadrupole configuration for the study of cell splitting with discrete

quadrupoles, K1, K2, K3, and K4, which are arranged about the cell center with mirror

symmetry.

.

4.2. Using natural emittance as the optimization objective

In the practical lattice design of MBA cells for diffraction limited rings, the300

optics of center bending magnets are connected to the insertion device straight

section through a matching section. The beta functions at the insertion devices

are thus decoupled from the the optics of the center bends, which dominate in the

determination of the cell emittance. Therefore, the emittance minimization with

the optics around the bends can be done separately from the photon brightness305

optimization.

The optics around the center bends may consist of periodic sub-cells. Each

sub-cell (which we will call a cell in the rest of this section) is a alternating-

gradient structure with stable optics. We would like to optimize the dipole field
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K̂max = 93. The length is 0.05 for all quadrupoles.
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Figure 6: Natural emittance (top), for a 2 GeV beam, with cell length of L = 1.0 m and

deflection angle of θc = 1◦, and phase advances (bottom) for optimized cells with various
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distribution and the linear topics on the cell to achieve the minimum emittance.310

In the cell optimization setup the dipole field distribution is represented by the

same scheme as used for the brightness optimization (see Eq. (13)). Two thin

quadrupoles are used for the alternating gradient focusing scheme, one is at the

cell center, the other is split into two and placed at both ends. The integrated

gradients of the two thin quads are used as control parameters. Essentially, we315

are optimizing the optics and the distributed dipole field on a FODO cell.

This part of the study is similar to the numerical optimization of longitudinal-

gradient bends found in Ref. [11], but with a few important differences. First,

in Ref. [11], the beta function and dispersion function values at the center of the

bend are used as control parameters. Matching quadrupoles are required to re-320

alize the optimized beta and dispersion functions. In this study, the quadrupole

strengths are used as control parameters and hence the optics on the cell is com-

pletely determined. Second, in this cell the dipole cell is distributed throughout

the cell, not only inside the dipole magnet. Third, Ref. [11] only considered pos-

itive bending field, while in this study the dipole field can be negative. Although325

the benefits of negative bends have been understood in previous studies [13],

this study could reveal features of the optimal dipole field distribution with both

longitudinal dipole gradient and anti-bends.

4.2.1. Effect of dipole field slice number

As pointed out in Ref. [11], when using the longitudinal dipole field profile330

to minimize the emittance, the dipole field strength tends to diverge to infinity

at the center of the dipole. Therefore, it is necessary to impose a limit on

the maximum dipole field strength for the optimization results to be practical.

This can done by setting the maximum dipole field strength directly to a value

deemed reasonable. In this study, we took a different approach to limit the335

dipole field strength. Instead of setting the maximum dipole field strength,

we set the width of the slice with the maximum dipole field to a finite value.

This is done naturally in our optimization setup as we slice the cell into N

equal pieces with constant field on each slice. The approach of using a finite

18



number of slices with piece-wise constant field is reasonable in practical terms340

as in reality the cell would consist of a series of dipole magnets with constant

field strengths and finite widths. This approach is also convenient as it allows

us to use the normalized parameters defined in Section 2 without the need to

convert an absolute dipole field strength to the normalized parameter under

specific assumptions of beam energy, cell length, and cell bending angle. In this345

sub-section we investigate the dependence of cell emittance optimization on the

number of slices of the dipole field.

For the normalized FODO cell to be stable, the maximum integrated quadrupole

gradient is K̂∆L̂ = 4, when both the horizontal and vertical phase advances on

the cell are 180◦ (in the case when the focal lengths of the QF and QD magnets350

are equal). In the study of the effect of the number of slices, we set the limit of

the integrated quadrupole gradient of the QF and QD magnets to K̂max∆L̂ = 4.

The number of slices was set to N = 2m, with m = 1, 2, · · · , 6. For each

case, there are 2m−1 − 1 control parameters for the dipole field profile and 2

control parameters for the quadrupoles. The optimized dipole field profiles for355

all cases of slice numbers are shown in Figure 7. The corresponding emittance

form factors and some other related parameters are shown in Table 3. Figure 8

shows the dispersion function, the dispersion invariant Ĥ, and the contributions

to the Î2 and Î5 integrals, respectively, for the N = 2, 4, 16, and 64 cases.

For the case of N = 2, the dipole field is constant over the cell length.360

The optimized cell has a horizontal phase advance of Φx = 141◦, which is very

close to the theoretic minimum value of approximately 140◦ [23]. The dipole

field profiles for the N ≥ 4 cases clearly reveals the diverging trend of the

maximum dipole field strength when the cell is divided into more equal slices in

the optimization setup. The emittance reduction is achieved by both reducing365

the Î5 integral and increasing the Î2 integral. The rate of emittance reduction

with the increasing number of slices decreases. For example, from N = 8 to

16, the emittance is reduced by nearly 50%, while from N = 32 to 64, the

reduction is only 33%. However, the Î3 integral, which affects the equilibrium

momentum spread, increases at a steady pace with the doubling of slices. This370
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indicates that increasing the slice number, or equivalently, allowing a higher

maximum dipole field, has only limited applicability in lattice cell performance

improvement, even if it is not limited by the technical difficulty in achieving the

high bending field.

It is noted that anti-bends are present in all cases with N > 2. For N ≥ 4375

cases, the dispersion invariant develops a double-hump distribution which peaks

at about ŝ = 1
3 and 2

3 , where the curvature function ĥ(s) crosses zero. With a

large number of slices in the cell (N ≥ 8), the phase advance tends to the high

end, in order to minimize the emittance.

Additional studies showed that if the maximum dipole field in the slices at380

the cell ends (ŝ = 0 and 1) is given at a fixed value, the optimal dipole field

distribution does not change when more slices are introduced in the rest of the

cell. This confirms that the variation of the optimized distribution with respect

to the number of cells is dominated by the peak dipole field.

Table 3: The optimized emittance form factor, horizontal phase advance, ratio of anti-bends,

and radiation integrals in the cell emittance optimization for various slice numbers.

Slices Form fac. phase adv. anti-bend integral integral integral

N F Φx (◦) θ−/θ Î5 Î2 Î3

2 5.88 141 0 0.1266 1.00 1.00

4 3.00 156 0.133 0.1681 2.60 5.82

8 1.16 165 0.245 0.0872 3.48 10.07

16 0.59 171 0.218 0.0551 4.32 18.39

32 0.36 173 0.184 0.0433 5.56 36.27

64 0.24 176 0.159 0.0379 7.33 73.81

4.2.2. The effect of maximum quadrupole gradient on the optimization385

In the previous subsection, the emittance optimization was done with the

quadrupole gradient limited by FODO cell optics stability requirement. It could

be useful to study how the optimal dipole field distribution depends on the

maximum quadrupole gradient. The cell emittance optimization was repeated
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the emittance optimization.

Figure 8: The distribution of dispersion-related parameters in the optimized cell for N = 2,

4, 16, 64. Top left: dispersion function, Dx; top right: contribution to the Î5 integral per unit

length, dÎ5
dŝ

; bottom left: dispersion invariant; bottom right: contribution to the Î2 integral

per unit length, dÎ2
dŝ

.
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with various maximum integrated quadrupole gradients.390

Figure 9 shows the emittance form factor and the horizontal phase advance

(top) of the optimized cell and the radiation integrals I2 and I5 (bottom) at

various maximum integrated quadrupole strengths. As the maximum gradient is

reduced, the phase advance on the cell decreases, while the minimum emittance

achievable increases.
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Figure 9: Optimized cell parameters in the emittance optimization as the maximum integrated

gradient K̂max∆L is changed. Top: the emittance form factor F (blue squares) and the

horizontal phase advance (red circles); Bottom: radiation integral I2 and I5. The dashed

vertical line indicates a sudden change of dipole field profile between K̂max∆L = 2.4 and 2.55.

395

The optimized dipole field profile varies with the maximum quadrupole gra-

dient. Interestingly, between the integrated gradient of K̂max∆L̂ = 2.4 and

2.55, the dipole field profile drastically changed. At K̂max∆L̂ = 2.4 or be-

low, the dipole field distribution is nearly flat, while at 2.55 or above, there is

large variation of dipole field on the cell and negative bending is present. The400

transition can be clearly seen in the I2 and I5 plot of Figure 9. However, the

emittance form factors for the K̂max∆L̂ = 2.4 and 2.55 cases differ only slightly.

The dipole field profiles and the corresponding dispersion functions for the two

cases are shown in Figure 10.
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5. Conclusion405

We have studied the optimal low emittance lattice cell structure with global

numerical optimization of the general dipole and quadrupole field distributions

over the cell. The normalized cell functions are used in the study, such that

the optimized lattice cell is applicable to rings with different sizes and beam

energies by scaling.410

Optimization is first done using the photon brightness of an insertion device

as the objective while both the quadrupole and dipole field distributions are

varied as control parameters. The maximum strength of the quadrupole gradient

is limited as a main constraint in the optimization. It was found that with a

relatively low quadrupole gradient limit, the linear optics of the optimized cell415

is similar to that of a FODO cell and the dipole field distribution develops a

pattern with longitudinal gradient and negative bending. When the maximum

quadrupole gradient is increased sufficiently (by a factor of 4 of the low gradient

case), the cell structure automatically split into two cells of the same type as

the low quadrupole gradient case. When the maximum quadrupole gradient is420

further increased to a sufficient high level, the two cells further split into four

cells. The cell splitting behavior indicates that the FODO cell type with dipole

field variation is a fundamental cell type for low emittance ring lattices.

We further studied the FODO cell optimization using the natural emit-

23



tance as the objective. The integrated gradients of the focusing and defocusing425

quadrupoles and the dipole field distribution are the control parameters. The

dipole field distribution is allowed to change over the entire cell, but with a

limited number of constant-field slices. The finite number of slices naturally

limits the maximum field strength. The optimized cell structure again shows

longitudinal dipole field variation with negative bending.430
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