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Machine learning-based longitudinal phase space prediction of particle accelerators
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We report on the application of Machine Learning (ML) methods for predicting the Longitudi-
nal Phase Space (LPS) distribution of particle accelerators. Our approach consists of training a
ML-based virtual diagnostic to predict the LPS using only non-destructive linac and e-beam mea-
surements as inputs. We validate this approach with a simulation study for the FACET-II linac
and with an experimental demonstration conducted at LCLS. At LCLS, the e-beam LPS images are
obtained with a transverse deflecting cavity and used as training data for our ML model. In both the
FACET-II and LCLS cases we find good agreement between the predicted and simulated /measured
LPS profiles, an important step towards showing the feasibility of implementing such a virtual

diagnostic on particle accelerators in the future.

PACS numbers: 29.20.Ej, 29.27-a

I. INTRODUCTION

Accurate non-destructive diagnostics of the electron
beam Longitudinal Phase Space (LPS) distribution can
be challenging for high-intensity particle accelerators. As
an example, the FACET-II accelerator is designed to de-
liver beams of unprecedented intensity to a suite of ad-
vanced accelerator experiments. The design parameters
for the beam are 2 nC charge, 10 GeV energy, < 10 pum
normalized transverse emittance and up to 200 kA peak
current [1]. These unique characteristics present many
opportunities for scientific experiments [2], and a three-
fold hurdle from the diagnostic point of view. Firstly, the
high intensity of the beams limits the possibility of utiliz-
ing intercepting diagnostics due to heat-induced surface
damage of the measurement devices. Secondly, the very
short pulse duration for high-current shots (o, ~ 1 pm
for I > 100 kA) is close to the resolution limit of state-of-
the-art longitudinal diagnostics such as Transverse de-
flecting Cavities (TCAVs) [3]. Finally, a drawback of
the aforementioned diagnostics is that they provide a de-
structive measurement of the electron beam properties
and cannot be made in conjunction with experiments
unless they are located downstream of the interaction
region.

In an effort to meet these challenges, we investigate
the possibility of incorporating a Machine Learning (ML)
based virtual diagnostic to provide shot-to-shot non-
destructive measurements of the LPS distribution in
particle accelerators. The virtual diagnostic is a com-
putational tool which creates a mapping between non-
destructive measurements of the linac and e-beam prop-
erties and the 2D LPS distribution of the beam. The
rationale behind choosing an ML-based approach for the
virtual diagnostic is motivated by a number of factors.
Firstly, ML methods have made tremendous progress in
the fields of image recognition and prediction in the past
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few years [4]. This gives us confidence that a virtual diag-
nostic trained on image data, e.g. from TCAV or profile
monitors, can be used to reconstruct desired properties
of the e-beam such as the LPS and/or the current pro-
file. Furthermore, ML techniques are also well suited for
solving problems involving large amounts of data. Large
data sets can be acquired in real time on accelerators
such as FACET-II or LCLS operating at nominal repe-
tition rates of 10 and 120 Hz. ML models can also be
trained offline using simulation data from computation-
ally expensive particle tracking codes and updated with
measurements on the accelerator, as has been recently
demonstrated in Ref. [5]. Finally, there is growing inter-
est due to recent studies which highlight the versatility
of ML methods used in particle accelerators as tools for
prediction, control and optimization of accelerator per-
formance [6-10]. As an example, recent work performed
at Fermilab’s FAST facility has been aimed at train-
ing a virtual diagnostic to predict the e-beam emittance
through a combination of simulation and experimental
studies [5, 11].

With these potential benefits in mind, the first goal
of this work is to show the feasibility of applying ML
techniques to predict the LPS of the FACET-II accelera-
tor. Our approach is to acquire training data for the ML
model from a large number of simulations. These simu-
lations represent the performance of the machine which
changes as a result of several key accelerator parameters
jittering around their design values. The accuracy of this
ML model based on simulation data, as well as its depen-
dence on diagnostic inputs, will inform the measurement
resolution necessary for this to be successful on the ac-
tual machine. Our second goal is to test out a similar
predictive ML model on the Linac Coherent Light Source
(LCLS). For that part of the study we train a ML model
using existing non-destructive diagnostics and images of
the e-beam LPS obtained with the X-band TCAV [3]. In
the following sections we present results from the sim-
ulation study of FACET-II and measurements from the
LCLS, with a discussion of the steps necessary to imple-
ment this diagnostic tool on future particle accelerators.

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, under Contract No. DE-AC02-76SF00515.
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FIG. 1: Schematic of the FACET-II and LCLS electron accelerators and example LPS profiles from particle tracking simulations
(FACET-II), experimental measurements (LCLS) and from the ML-based virtual diagnostic predictions. The figure highlights
the similarities between the two accelerator layouts up to the BC20 chicane in FACET-II which is used to increase the current

from 3-4 kA to 10-200 kA.

II. FACET-II SIMULATION STUDY

A key performance feature for the success of advanced
acceleration experiments is knowledge and control of the
e-beam LPS and current profile [12]. We therefore train
two separate ML models to predict the current profile
and LPS of the bunch using some key non-destructive
diagnostics as input to the models (see Table 1). We con-
sider the nominal operation of the FACET-II accelerator
in single-bunch mode, with the machine set up to deliver
a beam of 10 GeV energy, 25 kA peak current, and < 10

Simulation Parameter Scanned Range
L1 & L2 phase [deg] +0.25
L1 & L2 voltage [%)] +0.1
Bunch Charge [%)] +1
Input to ML model Accuracy
L1 & L2 phase [deg] +0.1
L1 & L2 voltage [%)] + 0.05
Ik at BC (11,14,20) [kA] + (0.25,1,5)
en at BC (11,14) [pm)] +1
Beam centroid BC (11,14) [m)] N/A

TABLE I: Linac and e-beam parameters scanned in the 5°
simulations of the FACET-II accelerator. The ranges are cho-
sen closely based on the jitter parameters from the FACET-II
TDR [1]. The diagnostics fed to the ML model include ran-
dom errors introduced artificially to approximate the mea-
surement accuracy present in the accelerator.

um transverse emittance (see Fig. 1 for a schematic). In
order to capture the performance of the machine we per-
form 5° Lucretia [13] simulations starting from the exit
of the injector, with key linac parameters and the bunch
charge jittering around their nominal values. The simu-
lations include longitudinal space charge and incoherent
and coherent synchrotron radiation. The mean value and
the range for each simulation parameter scanned was set
using the values from the FACET-II Technical Design
Report (TDR) [1]. The output of these simulations is a
6 x 6 x N,, distribution of N, = 2 x 10° macro-particles
which approximates the 6 dimensional phase space of the
e-beam. We artificially simulate measurement error by
inserting random deviations in the diagnostic readings
to approximate the measurement accuracy on the real
accelerator. The value for each shot was set by adding
Gaussian random errors to the mean with the +¢ ranges
shown in Table 1. These values are determined from op-
erational experience on the FACET linac and estimated
performance of diagnostics for FACET-II [1]. Note that
we assume the non-destructive emittance measurements
will be made using a coherent edge radiation diagnos-
tic currently under design. The prediction accuracy of
the ML model is not critically sensitive to these inputs.
We also assume the peak current after BC-20 can be
measured non-destructively either using coherent edge
radiation or coherent undulator radiation [14, 15]. For
all the examples presented we use the open source ML
library scikit-learn, specifically the Multi-Layer Percep-
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FIG. 2: (a) Examples of reconstructed current profiles from a ML model compared to the true data from simulation at the
exit of the FACET-II accelerator. The profiles are taken from a set of 625 test cases which the NN is not trained on. (b)-(e)
Sorted plots of the peak current and full-width half maximum and histograms of the distributions for the ML prediction and
the simulation, showing good agreement between the ML model and simulation data.

tron (MLP) regressor from the library’s Neural Network
(NN) module. Note that in the plots of the current pro-
file or 2D LPS we use the convention that the head of
the beam is on the left.

The results for the current profile prediction are shown
in Fig. 2, where the shots displayed are not used in the
training of the NN and are 625 randomly-selected cases
(20 % of the total data set). The specific NN architec-
ture for the current profile prediction is a three hidden
layer (200,100,50)-neuron fully connected feed-forward
NN with a relu as the activation function for each neu-
ron in the hidden layers. There is very good agreement
between the NN prediction and the current profile from
simulation as shown by the example profiles in Fig. 2a.
A comparison of the peak current and FWHM of the
actual distribution vs. the prediction also shows good
overlap between the two (Fig. 2 b-c). The difference in
charge between the predicted and actual profiles, inte-
grated from the current profile, is below 3 % in all cases.
As shown in Fig. 2 d-e, the distributions of predicted
and simulated peak current and FWHM values are also
very well matched.

We use the same MLP regressor and the same diagnos-
tic inputs as for the current profile to predict the 2D LPS
distribution. The ability to combine the prediction from
both models - one for the current profile and one for the
2D LPS - will provide valuable information for commis-
sioning the accelerator as well as tailoring specific beam
properties for different experiments. It is important to
note that the LPS reconstruction accuracy depends crit-
ically on defining a suitable region of interest for each
image which has to be done in a pre-processing step. For
the cases shown we crop each 2D LPS picture to a 52x42
pixel image with a 2 pm and 10 MeV /pixel resolution in
(z,E) respectively. The resolution values are obtained
from estimates of the FACET-II TCAV performance [1].

A quantitative measure of the accuracy of the prediction
for each shot is given by the score, defined as:

3. ,(xt"l"ue _ p?jedicted)g
— 2 2,7 (%] ij
sore = B =1- 4 (alrue — gruey? (1)
E 1]

where z;; are the pixel values of the i" row and j**
column in the image and & denotes the mean over those
values for each image. In most cases, as shown in Fig. 3,
the 2D LPS reconstruction is quite accurate and pro-
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FIG. 3: (a)-(c) Simulated and predicted 2D LPS distributions
for FACET-II. The predictions are outputs of a NN with 11
scalar valued non-destructive diagnostic inputs (see Table 1).
Case (a) represents an imperfect prediction with noticeable
blurring and some visual artifacts. Cases (b)-(c) represent
average to good predictions and show good agreement with
the LPS distribution. (d) Histogram of the prediction accu-
racy in the test set quantified by the score (R? coefficient of
the LPS prediction). The mean score is 0.68, and 85% of the
shots are above a score of 0.5.
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FIG. 4: (a)-(c) Examples of reconstructed LPS and current profiles from the LCLS accelerator. The measured data is collected
using the XTCAV and the prediction is made using two separate NNs for the LPS and the current profile. The plots show good
agreement in predicting both the LPS and the current profile. For some shots the LPS reconstruction suffers from numerical
artifacts (see (¢)) which lead to an imperfect reconstruction. (d) Measured and predicted values for the peak and FWHM of the
current profile. (e) Correlation between peak current from the XTCAV and the BC2 current monitor highlighting a number
of bad shots (2 % of the total) where the difference between the two values is large and the prediction accuracy is low. (f)
Score for the 2D LPS prediction model trained on 3236 shots and tested on 808 shots randomly selected from the entire data
set (grey). Score for the 2D LPS prediction with model trained on 410 shots from the start of the data set and tested on 200

shots recorded at the end of the data set two hours later (yellow).

vides a good indication of the LPS shape and chirp.
In the worst-performing examples, the reconstruction is
subject to some numerical artifacts and blurring, which
smear out the phase space density. The mean (£ rms)
score for the whole test set is 0.68 £ 0.16. The major-
ity of the shots (85%) have a good reconstruction with
a score above 0.5. It is interesting to note that shots
with worse reconstruction (see Fig. 3a) are mostly fully-
compressed or over-compressed (low energy electrons ar-
rive at the same time as high energy electrons on the
head of the beam). This is due to the fact that there
are fewer shots with these characteristics in the data set
since this configuration is the furthest from the nominal
output LPS distribution (shown in Fig. 3 b-c). These
shots occur due to larger excursions in L1 and L2 phase
(|A®L, ,| = 0.2 —0.25 deg).

We have considered a limited set of diagnostic inputs
in our simulation study of FACET-II as a conservative
approach for determining the feasibility of applying the
ML-based virtual diagnostic on the real machine whilst
retaining satisfactory prediction accuracy. For the di-
agnostics considered, the ML-model is least sensitive to
the emittance and centroid measurements in BC 11-14,
achieving a mean score of 0.53 for the LPS reconstruction
with those diagnostics removed. A more critical input
is the non-destructive peak current measurement after
BC20, without which the model’s mean prediction score
drops to 0.33. We note that a reduction in the mea-
surement error associated with the BC20 current read-
ing (from £+ 5 to + 1 kA) increases the mean score to

0.73. Additional more advanced diagnostics such as cur-
rent profile monitors after each bunch compressor may
also increase the prediction accuracy of the model and
are improvements which will be considered in future op-
timization studies.

III. LCLS EXPERIMENTAL DEMONSTRATION

In order to validate our simulation study of FACET-II,
we apply the same NN approach to predict the LPS at
the exit of the LCLS linac. The linac was set at a nom-
inal operating energy of 13.4 GeV and 180 pC charge.
To collect a data set with a large variety of LPS profiles
we scan the values of the L1S-phase between -27.8 and
-21 degrees and the BC2 peak current between 1-7 kA
generating LPS profiles with multiple different features
(see Fig. 1 and 4). The diagnostics we use as inputs
to the ML model are amplitude and phase readings from
L1s and amplitude readings from the L1x accelerator sec-
tions as well as non-destructive current measurements
(coherent radiation monitors [14]) after BC1 and BC2.
The XTCAV was used to measure the LPS at the exit of
the accelerator with a resolution of ~ 1.2 um and 0.92
MeV /pixel [3]. As for the FACET-II case, the prediction
accuracy is critically sensitive to pre-processing the LPS
image, specifically normalization, centering and cropping
of the distribution, with the cases presented cropped to
100x100 pixels. This kind of pre-processing has to be
done on-the-fly if such a virtual diagnostic is to be ap-



plied to an accelerator during run-times and should be
adapted depending on the expected output LPS distri-
bution.

As shown in Fig. 4 a-c, the reconstruction has high fi-
delity with respect to the current profile and LPS shape.
These examples are not used in the training of the ML
model and are taken from a test set of 808 shots (20 % of
the size of total data set). As in the case for the FACET-
IT simulations, the LPS reconstruction suffers from some
numerical artifacts which for some shots smears out the
phase space (see Fig. 4c). Nonetheless, for a limited set
of input diagnostics (5 scalar inputs) and a data set with
large variations in the LPS and current profile, the NN
is fairly successful in predicting the bunch profile. Note
that the current profiles shown are normalized using an
independent measurement of the beam charge. As shown
in the distribution of peak current vs. FWHM (Fig. 4
d) the measured values and those predicted by the ML
model mostly overlap. The model fails to predict some
current profiles, mostly with high peak current (I>4 kA),
which are furthest away from the nominal LCLS settings
at this energy (I~ 1-4 kA). The low prediction accuracy
for these shots (labeled “bad shots” in Fig. 4e) is cor-
related to the large discrepancy between the BC2 peak
current reading and the peak current measured on the
XTCAV. The result is the ML model predicts a profile
with lower peak current in-line with the BC2 measure-
ment. This is an important point as it underscores the
fact that a diagnostic input error may result in a pre-
diction error for a ML-based virtual diagnostic. One po-
tential way to address this issue would be to have built-
in redundancy in the diagnostic inputs fed to the ML
model. This would facilitate flagging suspect shots for
which there is significant discrepancy between two sepa-
rate measurements of the same quantity.

To ensure the reliabliity of the ML prediction a long
term study of the prediction accuracy under the influ-
ence of linac drifts and long-term parameter variations is
under consideration. Preliminary considerations can be
made by examining changes in the prediction accuracy
by training the ML models using data from the start of
our dataset and making predictions on shots taken at the
end of the data set (2 hours later). For this case, there
is no reduction in performance for the prediction of the
current profile. The 2D LPS reconstruction however does
suffer from a small but noticeable decrease in prediction
accuracy as shown in Fig. 4f. The mean (£ rms) score
for the 2D LPS reconstruction drops from 0.85+ 0.14 to
0.68%+ 0.14 which may in part be due to the smaller size
of the training set (410 shots compared to 3236). A de-
tailed study of the robustness and reliability of the ML
model for longer drift times (1 day, 1 week etc.) and
with larger data sets will be conducted and the results
reported on in future work. Following such long-term
prediction accuracy studies, the ML model could be de-
ployed as a virtual diagnostic for predicting the LPS at
LCLS when the XTCAV is off.

IV. CONCLUSION

Accurate measurement and control of the LPS distri-
bution is often critically important for applications of
high brightness electron beams, ranging from free elec-
tron lasers to beam-driven plasma wakefield accelerators.
We have explored the feasibility of training a ML-based
virtual diagnostic for predicting the LPS distribution of
particle accelerators. The study was divided into two
parts: a first section using particle tracking simulations
of the FACET-II linac as training data for the ML model,
and a second using experimental data from the LCLS
accelerator. The simulation study explored the single
bunch operation mode of FACET-II for which we trained
two separate neural networks to predict the current pro-
file and the 2D LPS image based on the input from
a number of non-intercepting diagnostics (e.g. BPMs,
bunch length monitors, emittance measurements). The
experimental study performed on the LCLS linac used
5 measurements from non-destructive diagnostics as well
as the XTCAV to measure the electron beam LPS and
train the ML models. The results showed close agreement
between the predicted current and 2D LPS profiles and
those obtained from both simulation and experiment.

It is important to note that the accuracy of a predic-
tive virtual diagnostic based on this kind of supervised
learning, in which the neural network generates a map-
ping between input-output pairs of data, depends crit-
ically on the accuracy and resolution of diagnostic in-
puts. In the experimental study for LCLS, the temporal
resolution of the TCAV was ~ 1.2 pm, much smaller
than the typical bunch length which ranged from 6-60
pm. In our FACET-II simulation example, the training
data fed to the ML model assumes a 2 pm resolution
for the LPS images which may present a challenge for
the current FACET-II TCAV design. The ability to re-
solve fine features in the LPS will be challenging, espe-
cially in the longitudinal direction due to the very short
bunches (o, ~ 1 pum) which are at or beyond the reso-
lution limit of the existing TCAV diagnostic. While the
temporal reconstruction may be subject to experimental
challenges, the simulation study gives us confidence in
the ability of the virtual diagnostic to accurately resolve
and predict the energy distribution with ~10 MeV /pix
resolution. We expect that we will be able to obtain
this resolution or better experimentally using the energy
spectrometer downstream of the FACET-II experimental
area [1]. We also note that these methods can be used
to predict transverse phase space properties of e-beams,
such as the emittance, using single shot emittance recon-
struction techniques [16, 17].

As a next step we plan to include the realistic effect
of TCAV measurements in the Lucretia tracking code for
both single and two-bunch operation, and use the sim-
ulated LPS profile on the TCAV rather than the actual
LPS distribution to train the ML model. This, together
with a more accurate simulation of the diagnostic inputs,
will more closely approximate the actual implementation



of the virtual diagnostic in the real accelerator. Sensitiv-
ity studies related to the accuracy of the neural network
prediction based on varying degrees of error for the non-
destructive inputs and LPS outputs are currently under
consideration. Finally, we plan to use this virtual di-
agnostic in tandem with optimization methods such at
Extremum Seeking (ES) [18, 19], to not only predict the
phase space distribution, but to tailor it specifically for
different experimental set-ups. Recent results from LCLS
[9] have shown that applying a neural network inverse
model to predict machine settings based on LPS images

as inputs can improve the convergence and accuracy of
an ES-based feedback for customization of the 2D LPS
distribution.
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