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Abstract

We demonstrate that a nonzero strangeness contribution to the spacelike electromagnetic form factor

of the nucleon is evidence for a strange-antistrange asymmetry in the nucleon’s light-front wave function,

thus implying different nonperturbative contributions to the strange and antistrange quark distribution

functions. A recent lattice QCD calculation of the nucleon strange quark form factor predicts that the

strange quark distribution is more centralized in coordinate space than the antistrange quark distribution,

and thus the strange quark distribution is more spread out in light-front momentum space. We show that

the lattice prediction implies that the difference between the strange and antistrange parton distribution

functions, s(x)− s̄(x), is negative at small-x and positive at large-x. We also evaluate the strange quark form

factor and s(x)− s̄(x) using a baryon-meson fluctuation model and a novel nonperturbative model based on

light-front holographic QCD. This procedure leads to a Veneziano-like expression of the form factor, which

depends exclusively on the twist of the hadron and the properties of the Regge trajectory of the vector

meson which couples to the quark current in the hadron. The holographic structure of the model allows

us to introduce unambiguously quark masses in the form factors and quark distributions preserving the

hard scattering counting rule at large-Q2 and the inclusive counting rule at large-x. Quark masses modify

the Regge intercept which governs the small-x behavior of quark distributions, therefore modifying their

small-x singular behavior. Both nonperturbative approaches provide descriptions of the strange-antistrange

asymmetry and intrinsic strangeness in the nucleon consistent with the lattice QCD result.
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I. INTRODUCTION

The unveiling of nucleon structure in terms of fundamental quark and gluonic degrees of freedom

is a main goal of nuclear and particle physics. The strangeness distribution of the nucleon is of

particular interest since it is a purely sea-quark distribution. The nonperturbative dynamics of

the strange-antistrange quark asymmetry s(x) − s̄(x) poses a challenging theoretical problem.

It has become of major interest in both experimental and phenomenological studies, not only

because of its important role in understanding strong-interaction dynamics but also because the

s(x)−s̄(x) asymmetry is an important input for testing electroweak theory and new physics models.

For example, a precise test of electroweak physics in neutrino and antineutrino-induced dimuon

production depends in detail on the intrinsic strange and antistrange distributions in the nucleon [1].

The intrinsic nonperturbative strangeness distributions and asymmetry also give insight, via the

operator product expansion, into the nonperturbative physics of the intrinsic charm and bottom

contributions to the nucleon structure functions [2–4].

Lattice QCD calculations [5–7], at the physical pion mass and extrapolated to the continuum

and infinite volume limits, have provided estimates of the strangeness contribution to the elec-

tromagnetic (EM) form factors of the nucleon with better accuracy than that available from the

global analyses [8–10] of the experimental data. A direct lattice calculation of s(x)− s̄(x) has not

as yet been achieved [11]. However, we shall show that one can constrain the s(x)− s̄(x) asymme-

try by comparing the lattice QCD results for the strange form factor with predictions based on a

baryon-meson fluctuation model [12]. We will also introduce a new model based on the structural

behavior of the light-front holographic approach to hadron structure [13], form factors and parton

distribution functions [14]. We shall show that the s(x) − s̄(x) asymmetry in the nucleon can be

predicted up to a normalization factor constrained by lattice results.

Parton distribution functions (PDFs) are interpreted, at leading twist, as distributions of quarks

and gluons carrying the light-front momentum fraction x of the nucleon’s momentum at fixed light-

front time τ = t + z/c. The global QCD analysis of PDFs is based on factorization theorems of

physical observables, such as the cross section of deep inelastic lepton-nucleon scattering [15].

Although equal numbers of s and s̄ are required by their nonvalence nature in the nucleon,

〈s− s̄〉 =

∫ 1

0
dx
[
s(x)− s̄(x)

]
= 0, (1)

no fundamental principles prohibit different s(x) and s̄(x) distributions. A nonzero s(x) − s̄(x)

has also been allowed for in global analyses of PDFs [16–18]. Furthermore, the first moment of the

difference of PDFs,

〈S−〉 ≡
〈
x
(
s− s̄

)〉
=

∫ 1

0
dxx

[
s(x)− s̄(x)

]
, (2)

can also be used to quantify the s(x)− s̄(x) asymmetry.

2



The strange-quark sea in the nucleon has both “extrinsic” and “intrinsic” components [2–

4]. The extrinsic one is produced by gluon splitting g → ss̄ triggered by a hard probe, e.g.,

the virtual photon exchanged between the lepton and the nucleon in a deep inelastic scattering

process. Since the QCD coupling αs is small at high momentum scale, the extrinsic strange-sea

derived from the splitting function can be calculated perturbatively. The nonperturbative intrinsic

strange-sea encoded in the nucleon’s nonvalence light-front (LF) Fock state wave function can

in principle be obtained by solving the LF Hamiltonian eigenvalue problem [19]; e.g., by matrix

diagonalization. However, to capture the nonperturbative dynamics in the bound state equations,

one should integrate out all higher Fock states, corresponding to an infinite number of degrees of

freedom, a formidable problem.

The strange-antistrange asymmetry in the nucleon originates in QCD from the difference be-

tween quark-quark versus quark-antiquark interactions. Since the nucleon carries nonzero quark

number—the number of quarks minus the number of antiquarks—the interaction of the strange

quark with the spectators of the nonvalence Fock states is different from that of the antistrange

quark with the remaining quarks, thus leading to different s and s̄ distributions. The extrinsic

strange-antistrange asymmetry in the nucleon PDF arises from perturbative QCD evolution at

high orders due to the difference between quark-to-strange quark splitting function Pqs and quark-

to-antistrange quark splitting function Pqs̄. Since the strange-antistrange pair is generated from

a nonstrange quark at next-to-leading order, and the interaction between the strange/antistrange

quark and the nonstrange quark is mediated by additional gluon exchange, this pQCD effect arises

at the three-loop level. An explicit calculation has been performed in [20].

In addition to PDFs, one can also obtain information on nucleon structure from elastic form

factors, which relate to the transverse coordinate space distributions at fixed LF time via a Fourier

transform [21]. The nucleon spin-preserving amplitude is described by the Dirac form factor, which

can be expressed as:

F1(Q2) =
∑
q

eqF
q
1 (Q2), (3)

where Q2 is the momentum transfer squared, and the flavor form factor F q1 (Q2), with q =

u, d, s, · · · , measures the q-flavor quark contribution minus the q̄-flavor antiquark contribution due

to the opposite charge of the quark and antiquark. Therefore a nonvanishing F s1 (Q2) at Q2 6= 0

indicates a strange-antistrange asymmetry in LF coordinate space. The constraint F s1 (0) = 0 is

fixed by the sum rule (1).

Lattice QCD results for F s1 (Q2), obtained in the continuum limit [5–7], are shown in Fig. 2

with systematic and statistical uncertainties added in quadrature. The lattice QCD analyses are

described in the Appendix A.

There have been a number of phenomenological studies [12, 22–27] of the s(x)−s̄(x) distribution.

In the baryon-meson fluctuation model [12], the nonperturbative strange sea is generated from the
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fluctuation of the nucleon valence state to the lightest mass hadronic state with strangeness; i.e., a

kaon and a hyperon (Λ or Σ). The different distributions of the strange quark in the hyperon and

the antistrange quark in the kaon yield a nonvanishing s(x) − s̄(x) distribution. In this model, a

meson-baryon configuration, e.g., the K+Λ0 state, creates different radially separated distributions

of the s and the s̄ quarks from the center of mass. Since the kaon is lighter than the hyperon, one

expects that the kaon—and thus the s̄ quark—to be at a larger radial distance from the center of

mass than the hyperon and its s quark. This picture leads to F s1 (Q2) > 0 at Q2 > 0, consistent

with the lattice QCD results [5–7].

As we will discuss below, a positive value of F s1 (Q2) at Q2 > 0 indicates that the strange quark

distribution is more centralized in coordinate space than the antistrange quark distribution, and re-

sults in an s(x)− s̄(x) asymmetry in momentum space. A narrower distribution in coordinate space

corresponds to a wider one in momentum space, and therefore the lattice QCD result F s1 (Q2) > 0

implies a negative s(x)− s̄(x) distribution at small-x and a positive distribution at large-x.

We will also examine in this article the behavior of F s1 (Q2) and s(x)− s̄(x) using the nonpertur-

bative structure of light-front holographic QCD (LFHQCD), a semiclassical approach to relativistic

bound state equations which follows from the holographic embedding of light-front dynamics in

a higher dimensional gravity theory, with the constraints imposed by the underlying superconfor-

mal algebraic structure [28–33]. This approach incorporates a nontrivial connection to the hadron

spectrum and therefore to the Regge trajectories predicted by the model.

In Sec. II, we will describe the strange-antistrange asymmetries in coordinate and momentum

spaces in the boost invariant light-front formalism, together with qualitative discussions. We will

perform quantitative calculations of s(x) − s̄(x) and F s1 (Q2) in Sec. III using the baryon-meson

fluctuation model, and in Sec. IV using the structural framework of LFHQCD. We will analyze the

constraints imposed from lattice QCD for these two nonperturbative models. We will also use the

lattice QCD data to quantitatively constrain each model in order to obtain more precise predictions.

The procedures discussed here can be applied to other approaches, e.g., by deriving constraints

on the wave functions predicted by meson cloud and chiral quark models. Final discussions and

conclusions are presented in Sec. V.

II. STRANGE-ANTISTRANGE ASYMMETRY IN THE NUCLEON

Hadrons are eigenstates of the QCD LF Hamiltonian HQCD
LF |Ψ〉 = M2|Ψ〉 [34]. The hadronic

light-front wave functions are the projection of the eigenstate on the basis of free Fock states.

Taking a complete basis of LF Fock states with quarks and gluons as the degrees of freedom, a

nucleon state with four-momentum Pµ = (P+, P−,P⊥) and total spin Sz can be expanded as

|N ;P+,P⊥, S
z〉 =

∑
n,{λi}

∫
[dx][d2k⊥]ψn/N (xi,ki⊥, λi)|n;xiP

+, xiP⊥ + ki⊥, λi〉, (4)
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where

[dx][d2k⊥] = 16π3δ
(

1−
∑
j

xj

)
δ(2)
(∑

j

kj⊥

)∏
i

dxid
2ki⊥

2
√
xi(2π)3

. (5)

The index n = qqq, qqqg, qqqqq̄, · · · , represents the constituents of the Fock state, the internal

LF variables xi, ki⊥, and λi are the longitudinal momentum fraction, the intrinsic transverse

momentum, and the spin carried by the ith constituent, respectively, and ψn/N is the light-front

wave function (LFWF). It gives the probability of the n-particle LF Fock state and represents

the transition amplitude of the on-shell nucleon eigenstate to the quark and gluon Fock states of

the free LF Hamiltonian which are off-shell in invariant mass. All nucleon properties are encoded

in the LFWFs, which in principle could be obtained by solving the LF Hamiltonian eigenvalue

problem. Aiming at a first-principle calculation of the LFWFs, calculational methods based on

matrix diagonalization, such as discretized LF quantization [35], the transverse lattice method [36]

and the basis LF quantization [37], have been proposed.

In this paper, we will focus on the s and s̄ quark contributions to the nucleon nonvalence

LF Fock state wave functions, ψs/N (xs,ks⊥, λs) and ψs̄/N (xs̄,ks̄⊥, λs̄), where the sum over other

degrees of freedom is implied. The s and s̄ quark PDFs expressed in terms of the LFWFs are

s(x) =
∑
λs

∫
d2ks⊥
16π3

|ψs/N (xs,ks⊥, λs)|2, (6)

s̄(x) =
∑
λs̄

∫
d2ks̄⊥
16π3

|ψs̄/N (xs̄,ks̄⊥, λs̄)|2. (7)

The sum rule (1) requires the normalization∑
λs

∫
dxsd

2ks⊥
16π3

|ψs/N (xs,ks⊥, λs)|2 =
∑
λs̄

∫
dxs̄d

2ks̄⊥
16π3

|ψs̄/N (xs̄,ks̄⊥, λs̄)|2 = Is, (8)

where Is gives the number of intrinsic strange/antistrange quarks in the nucleon. Perturbative QCD

evolution needs to be performed to include contributions from the extrinsic sea and to compare

with the PDFs extracted from high energy scattering experiments.

The EM form factors of the nucleon are defined as [38]

〈P ′, S′|Jµ(0)|P, S〉 = ū(P ′, S′)
[
γµF1(Q2) +

iσµνqν
2M

F2(Q2)
]
u(P, S), (9)

where Jµ =
∑

q eqψ̄qγ
µψq is the current operator, M is the nucleon mass, F1(Q2) and F2(Q2) are

the Dirac and Pauli form factors, respectively. Comparing with the decomposition (3), one observes

that F s1 (Q2) and F s2 (Q2) are given by the matrix elements of the current operator Jµs = ψ̄sγ
µψs.

In the LF formalism, F1(Q2) and F2(Q2) can be calculated from the overlap of spin-conserving

and spin-flip matrix elements of the + component of the current, respectively, [39]:〈
P ′, ↑

∣∣∣J+(0)

2P+

∣∣∣P, ↑ 〉 = F1(q2), (10)〈
P ′, ↑

∣∣∣J+(0)

2P+

∣∣∣P, ↓ 〉 = −q1 − iq2

2M
F2(q2), (11)
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with qµ = (q+, q−,q⊥) and transferred momentum squared q2 = t = (P ′ − P )2 = −Q2.

The Drell-Yan-West (DYW) frame [41, 42]

q =
(

0,
q2

2P+
,q⊥

)
, (12)

P =
(
P+,

M2

2P+
,0⊥

)
, (13)

with q2 = −q2
⊥, can be used to avoid off-diagonal contributions n → n′ = n ± 2 from Fock states

with different constituents. Here q⊥ is the Fourier conjugate of the transverse LF coordinate a⊥.

From (10) and the Fock state expansion (4), the Dirac form factor, in terms of the LFWFs, is given

by the DYW expression [41, 42]

F s1 (Q2 = q2
⊥) =

∑
λs

∫
dxsd

2ks⊥
16π3

ψ∗s/N (xs,ks⊥ + (1− xs)q⊥, λs)ψs/N (xs,ks⊥, λs)

−
∑
λs̄

∫
dxs̄d

2ks̄⊥
16π3

ψ∗s̄/N (xs̄,ks̄⊥ + (1− xs̄)q⊥, λs̄)ψs̄/N (xs̄,ks̄⊥, λs̄) (14)

= ρs(q⊥)− ρs̄(q⊥),

where ρs/s̄(q⊥) represents the effective strange/antistrange density. The relative minus sign in (14)

arises from the opposite strange and antistrange charges.

The density ρs/s̄(q⊥) is the inverse Fourier transform of the distribution ρ̃(a⊥),

ρs/s̄(q⊥) =

∫
d2a⊥
(2π)2

eiq⊥·a⊥ ρ̃s/s̄(a⊥). (15)

Following the normalization (8) or the sum rule (1), we require∫
d2a⊥ρ̃s(a⊥) =

∫
d2a⊥ρ̃s̄(a⊥) = Is, (16)

and thus F s1 (0) = 0.

A nonzero F s1 (Q2) is equivalent to an asymmetric distribution ρ̃s(a⊥) 6= ρ̃s(a⊥) based on the

uniqueness of the Fourier transform. As illustrated in Fig. 1 for a simple Gaussian distribution, if

the s (or s̄) quarks are more concentrated at small transverse separation than the s̄ (or s) quarks,

one obtains a positive (or negative) form factor F s1 (Q2) at Q2 > 0. A similar concept based on the

locality defined in the instant form was presented in [43].

The strange-antistrange asymmetries in LF coordinate space and LF momentum space are

correlated. To show this, we express ρs/s̄(q⊥) in terms of the transverse impact variable b⊥ using

the Fourier transform of the k⊥-space LFWFs following Ref. [44],

ρs/s̄(q⊥) =
∑
λs/s̄

∫
dxs/s̄ d

2b⊥ exp
(
i(1− xs/s̄)b⊥ · q⊥

) ∣∣∣ψ̃s/s̄(xs/s̄,b⊥, λs/s̄)∣∣∣2 . (17)

6



−1.0 −0.5 0.0 0.5 1.0
a⊥ (fm)

0.0

0.5

1.0

1.5
ρ̃

(a
⊥

)
(f

m
−

2 )

0.0 0.5 1.0 1.5

Q2 (GeV2)

0.00

0.25

0.50

0.75

1.00

F
1(
Q

2 )

FIG. 1. Nonzero form factor F1(Q2) (right panel) from asymmetric sea quark and antiquark distributions in

transverse LF coordinate space (left panel). The dashed-dotted curves (blue) represent the quark, the dashed

curves (red) represent the antiquark, and the continuous curves (black) represent q− q̄. The quark/antiquark

number is normalized to 1 in this figure.

The coordinate space distribution is then

ρ̃s/s̄(a⊥) =

∫
d2q⊥e

−iq⊥·a⊥ρs/s̄(q⊥)

=
∑
λs/s̄

∫
dxs/s̄(

1− xs/s̄
)2 ∣∣∣∣ψ̃s/s̄(xs/s̄, a⊥

1− xs/s̄
, λs/s̄

)∣∣∣∣2 . (18)

Here, b⊥ is not the usual LF transverse coordinate variable but related according to a⊥ = (1− x)b⊥.

As they are related by a Fourier transform, the strange-antistrange asymmetry in b⊥-space is

equivalent to the asymmetry of the transverse momentum k⊥ distribution. Since there is no priv-

ileged direction for an unpolarized nucleon, one should have a nonvanishing strange-antistrange

asymmetry of the longitudinal momentum distribution if the asymmetry of the transverse mo-

mentum distribution is nonzero. A positive F s1 (Q2) implies that the s quarks in the nucleon sea

are more centralized in coordinate space than the s̄ quarks and are therefore more spread out in

momentum space. This leads to a negative s(x)− s̄(x) distribution at small-x and a positive one

at large-x.

III. THE BARYON-MESON FLUCTUATION MODEL

We first evaluate the s(x)− s̄(x) distribution in the nucleon using the baryon-meson fluctuation

model of Ref. [12]. As in Ref. [45], we shall focus on the fluctuation of the proton to the K+Λ0

state, the lightest kaon-hyperon configuration and thus the state with the minimum off-shellness in

invariant mass. In this nonperturbative approach the momentum distribution of the constituents is

maximal at minimum off-shellness; i.e., at equal rapidity: xi ' m2
⊥i/
∑N

j m
2
⊥j . Thus the mean LF

momentum fraction of each constituent is proportional to its transverse mass: m⊥i =
√

k2
⊥i +m2

i .
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Instead of expanding directly in terms of quarks and gluons as in Eq. (4), the expansion in the

fluctuation model is performed using a two-level convolution approach [45] in which the proton

state is expanded as the valence state plus the baryon-meson state |BM〉. The component baryon

and the meson wave functions are then further expanded into their quark and gluon Fock states.

This LF cluster-decomposition procedure [46] for the baryon LFWF is similar to the expansion in

the meson cloud model [47–50]. Considering only the fluctuation to the |BM〉 = |ΛK〉 state, the

expansion yields

|p〉 =

∫
dxΛd

2kΛ⊥
2
√
xΛ(2π)3

dxKd
2kK⊥

2
√
xK(2π)3

16π3δ(1− xΛ − xK)δ(2)(kΛ⊥ + kK⊥)Ψ(xΛ,kΛ⊥, xK ,kK⊥)|ΛK〉+ · · · ,

(19)

where “· · · ” represents states other than |ΛK〉 in the expansion, xΛ/K is the longitudinal LF

momentum fraction carried by the Λ/K, and kΛ/K⊥ is the intrinsic transverse momentum of the

Λ/K.

The wave function is normalized to the probability of the fluctuation:∫
dxΛd

2kΛ⊥
16π3

∫
dxKd

2kK⊥
16π3

16π3δ(1− xΛ − xK)δ(2)(kΛ⊥ + kK⊥)|Ψ(xΛ,kΛ⊥, xK ,kK⊥)|2 = Is,

(20)

where Is is the intrinsic strange quark number in (8).

The intrinsic distribution s(x) is then expressed as a convolution of the strange distribution

qs/Λ in the Λ and the Λ distribution fΛ/ΛK in the baryon-meson state,

s(x) =

∫ 1

x

dxΛ

xΛ
fΛ/ΛK(xΛ)qs/Λ

( x
xΛ

)
. (21)

Likewise, the intrinsic distribution s̄(x) is

s̄(x) =

∫ 1

x

dxK
xK

fK/ΛK(xK)qs̄/K

( x

xK

)
. (22)

The Λ and K distributions in the baryon-meson state are

fΛ/ΛK(xΛ) =

∫
d2kΛ⊥
16π3

|ψΛK(xΛ,kΛ⊥)|2, (23)

fK/ΛK(xK) =

∫
d2kK⊥
16π3

|ψKΛ(xK ,kK⊥)|2, (24)

where

ψΛK(xΛ,kΛ⊥) =

∫
dxKd

2kK⊥δ(1− xΛ − xK)δ(2)(kΛ⊥ + kK⊥)Ψ(xΛ,kΛ⊥, xK ,kK⊥), (25)

ψKΛ(xK ,kK⊥) =

∫
dxΛd

2kΛ⊥δ(1− xΛ − xK)δ(2)(kΛ⊥ + kK⊥)Ψ(xΛ,kΛ⊥, xK ,kK⊥). (26)

One can observe that

ψΛK(x,k⊥) = ψKΛ(1− x,−k⊥), (27)
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which leads to the relation

fΛ/ΛK(x) = fK/ΛK(1− x). (28)

The equal numbers of strange and antistrange quarks in the nucleon, i.e., Eq. (1), is satisfied by

the sum rules ∫ 1

0
dx qs/Λ(x) = 1, (29)∫ 1

0
dx qs̄/K(x) = 1. (30)

However, the distribution s(x)− s̄(x) remains nontrivial.

We now calculate F s1 (Q2). For definitive predictions we adopt the approach used in Ref. [51], in

which the s quark wave function is evaluated from the strange quark-scalar diquark configuration

|sD〉 of the Λ, and the s̄ quark is evaluated from the antistrange quark-spectator quark configuration

|s̄q〉 of the K. Similar to the expansion (19), the Λ and K states are expressed as

|Λ〉 =

∫
dxsd

2ks⊥

16π3
√
xs(1− xs)

ψsD(xs,ks⊥)|sD〉+ · · · , (31)

|K〉 =

∫
dxs̄d

2ks̄⊥

16π3
√
xs̄(1− xs̄)

ψs̄q(xs̄,ks̄⊥)|s̄q〉+ · · · . (32)

Then F s1 (Q2) can be expressed in terms of the LFWFs as

F s1 (Q2) = Fs/Λ(Q2)FΛ/p(Q
2)−Fs̄/K(Q2)FK/p(Q2), (33)

where

Fs/Λ(Q2) =

∫
dxsd

2ks⊥
16π3

ψ∗sD(xs,ks⊥ + (1− xs)q⊥)ψsD(xs,ks⊥), (34)

FΛ/p(Q
2) =

∫
dxΛd

2kΛ⊥
16π3

ψ∗ΛK(xΛ,kΛ⊥ + (1− xΛ)q⊥)ψΛK(xΛ,kΛ⊥), (35)

Fs̄/K(Q2) =

∫
dxs̄d

2ks̄⊥
16π3

ψ∗s̄q(xs̄,ks̄⊥ + (1− xs̄)q⊥)ψs̄q(xs̄,ks̄⊥), (36)

FK/p(Q2) =

∫
dxKd

2kK⊥
16π3

ψ∗KΛ(xK ,kK⊥ + (1− xK)q⊥)ψKΛ(xK ,kK⊥). (37)

For the phenomenological description of the LFWFs, we choose the Brodsky-Huang-Lepage

prescription [52, 53] as utilized in Ref. [45],

φ(x,k⊥) = N exp
[
− 1

8β2

( k2
⊥

x(1− x)
+M2

12

)]
, (38)

with invariant mass

M2
12 =

m2
1

x
+

m2
2

1− x, (39)
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where m1 and m2 are the masses of the two components. The s(x) − s̄(x) asymmetry has been

calculated with this LFWF in Ref. [12] and reproduced in Ref. [51] with the parameters mq =

0.330 GeV, ms = 0.480 GeV, mD = 0.600 GeV, and the universal momentum scale β = 0.330 GeV.

A determination from the data of extended observables indicates 0.24 < β < 0.37 GeV [54]. For the

masses of Λ and K, we use the values given in Ref. [55]. Alternative LFWFs have been assumed

for the study of the s(x) − s̄(x) asymmetry using the same baryon-meson fluctuation picture in

Ref. [51].

Taking the fluctuation probability Is = 1.27% from Ref. [24], we calculate F s1 (Q2). The results

are shown in Fig. 2 along with the lattice QCD results [5]. This result is consistent with lattice

QCD using the original parameters assumed in Ref. [12].

0.0 0.5 1.0 1.5

Q2 (GeV2)

0.000

0.001

0.002

0.003

0.004

0.005

F
s 1
(Q

2 )

Lattice QCD
Fluctuation model
LFHQCD(massless)
LFHQCD(massive)

FIG. 2. Predictions for F s1 (Q2) from the fluctuation model, LFHQCD, and lattice QCD [5, 7]. The predic-

tions of the fluctuation model use the LFWFs from Refs. [52, 53].

To further constrain the baryon-meson fluctuation model, we will match its predictions to the

lattice QCD data by taking β and Is as free parameters. The result is shown in Fig. 3, with

β = 0.31(11) GeV and Is = 1.06(51)%. These values are consistent with the original choice in

Ref. [12] and the value determined in Ref. [54].

If we take the model parameters determined by the fits, we obtain a model-based phenomeno-

logical constraint on the s(x)− s̄(x) distribution based on the baryon-meson fluctuation approach.

A comparison with global PDF fits is shown in Fig. 4. The factorization scale is not specified in

this nonperturbative model, so the comparison has been done assuming µ = 1 GeV. The PDF

uncertainties are commonly represented in two ways: the Hessian matrix and the Monte Carlo

samplings. In Fig. 4, the uncertainty bands of the global fits are standard deviations calculated

from the Hessian matrix for MMHT2014 [17] and JR14 [18] and from Monte Carlo replicas for

NNPDF3.0 [16]. The Monte Carlo replicas for MMHT2014 and JR14 are generated from the

10



Hessian matrix following the procedure described in Ref. [56].
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FIG. 3. Fits to the lattice QCD data of F s1 (Q2) using the fluctuation model and LFHQCD.

IV. LIGHT-FRONT HOLOGRAPHIC QCD

The EM form factors of nucleons were described in the nonperturbative holographic framework

from the coupling of the ρ to a qq̄ pair in the proton in the limit of massless quarks [57]. In this

section we calculate F s1 (Q2) and s(x) − s̄(x) in the nucleon using the analytic structure of form

factors and quark distribution functions in LFHQCD for bound states of arbitrary twist. Here,

twist refers to the dimension minus spin of the interpolating operator for the hadron state; it is

equal to the number of constituents in a given Fock component in the LF Fock expansion.

In LFHQCD [13], the EM form factors for a bound-state hadron with twist-τ can be expressed

as [14, 58]

Fτ (t) =
1

Nτ
B
(
τ − 1, 1− α(t)

)
, (40)

where the Euler Beta function is

B(u, v) =

∫ 1

0
dy yu−1 (1− y)v−1, (41)

with B(u, v) = B(v, u) = Γ(u)Γ(v)
Γ(u+v) , Nτ = Γ(τ − 1)Γ(1 − α(0))/Γ(τ − α(0)) a normalization factor,

and α(t) is the Regge trajectory of the vector meson which couples to the EM current in the

t-channel exchange.

The Beta function structure of the EM form factors (40), which follows from the gauge/gravity

structure in LFHQCD, was obtained in the pre-QCD era by Ademollo and Del Giudice [59] and
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FIG. 4. Asymmetric strange-antistrange x[s(x)− s̄(x)] distribution. In the upper panel, the fit results from

the fluctuation model and LFHQCD are compared. In the middle panel, the global fits are presented by

central curves and standard deviation bands. In the lower panel, the global fits are presented by a hundred

Monte Carlo replicas. The global fits are at µ = 1 GeV: NNPDF3.0 (gray) [16], MMHT2014 (green) [17],

JR14 (cyan) [18].
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independently by Landshoff and Polkinghorne [60]. Their derivations were based on the Veneziano

model [61], which is an incorporation of the concept of duality [62] in a pole model. For hadronic

four-point functions, it leads to a representation of the scattering amplitude by Euler Beta func-

tions. Extending these considerations to current induced interactions, a structure like (40) was

derived in Refs. [59, 60, 63]. However, the variable τ in the duality based derivations is a free

parameter and the Regge trajectory is a phenomenological input. In contradistinction, LFHQCD

provides a clear physical meaning of τ , the twist of a given Fock component of the hadron, and

also incorporates the Regge trajectory from the vector-meson (VM) spectrum by solving the semi-

classical LF QCD Hamiltonian eigenvalue problem.

For linear Regge trajectories

α(t) = α(0) + α′t, (42)

Eq. (40) incorporates the hard-scattering counting rules at large t [64, 65]. Indeed, for fixed u and

large v we have B(u, v) ∼ Γ(u)v−u, and therefore the first argument in the Euler Beta function

determines the scaling behavior of (40)

lim
Q2→∞

Fτ (Q2) = Γ(τ − 1)

(
1

α′Q2

)τ−1

, (43)

at large Q2 = −t. The second argument in (40) determines the timelike pole structure of the

form factor; the analytic structure of (40) thus leads to a nontrivial connection with the hadron

spectrum. In fact, using the expansion of the Gamma function

Γ(N + z) = (N − 1 + z)(N − 2 + z) · · · (1 + z)Γ(1 + z), (44)

for integer twist N = τ , with N the number of constituents for a given Fock component, we find

Fτ (Q2) =
1(

1 + Q2

M2
n=0

)(
1 + Q2

M2
n=1

)
· · ·
(

1 + Q2

M2
n=τ−2

) , (45)

which is expressed as a product of τ − 1 poles located at

−Q2 = M2
n =

1

α′

(
n+ 1− α(0)

)
. (46)

The form factor (45) thus generates the radial excitation spectrum of the exchanged particles in the

t-channel, while keeping the structural form found previously in the limit of zero quark masses [13].

For the lowest radial excitation the VM spectrum in LFHQCD is given by [13, 33] (Appendix B)

M2 = 4λ

(
J − 1

2

)
+ ∆M2, (47)

where the squared mass shift ∆M2 incorporates the effect from finite light quark masses. The

quantity λ = κ2 is the emergent mass scale, the only dimensional quantity appearing in LFHQCD
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FIG. 5. Chew-Frautschi plot for the leading ρ and ω (gray dashed) and φ (red continuous) trajectories in

LFHQCD. At values t = M2 where α(t) is an integer, there is a hadron with mass squared M2 and spin

J = α(M2). The ρ and ω intercepts are fixed by the pion mass from the relation ∆M2
ρ = ∆M2

ω = M2
π± and

the mass scale λ is fixed by the best fit to the slopes of both trajectories: This fixes the intercept of the φ

trajectory. We find
√
λ = 0.534 GeV, αρ(0) = αω(0) = 1

2 −
∆M2

π

4λ = 0.483 and αφ(0) = 0.01. Solid triangles

represent the ω trajectory. The data is from Ref. [55].

for massless quarks [13]. Its value determined from the best fit to all radial and orbital excitations

of the light mesons and baryons is κ =
√
λ = 0.523± 0.024 GeV [33].

There is no need to introduce additional procedures to include quark masses when using the

structural form (40) to describe form factors, since the effect of quark masses only amounts to a

shift of the Regge intercept. For example, for the ρ, a vector mesons we obtain from Eq. (47) the

leading Regge trajectory

αρ(t) =
1

2
+

t

4λ
−

∆M2
ρ

4λ
, (48)

with slope α′ = 1
4λ and intercept αρ(0) = 1

2 −
∆M2

ρ

4λ , which differs from the conformal limit 1
2 by

the mass shift
∆M2

ρ

4λ from quark masses. Likewise, the ω, f trajectory is

αω(t) =
1

2
+

t

4λ
− ∆M2

ω

4λ
, (49)

with the same slope α′ = 1
4λ and similar intercept αω(0) = 1

2 −
∆M2

ω
4λ . We show in Fig. 5 the

Chew-Frautschi plot for the leading ρ− a and ω − f trajectories.

The spectrum of the exchanged particles in the t-channel follows from (46) for the leading VM

trajectory (48). We find

−Q2 = M2 = 4λ

(
n+

1

2

)
+ ∆M2

ρ , (50)

which is precisely the spectrum of the ρ and its radial excitations [13] (Appendix B). In this case

the shift in the intercept is rather small since ∆M2
ρ = ∆M2

ω = M2
π± and M2

π
4λ ' 0.02.
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A. Strange quark form factor

In contrast to the two-step convolution expansion of the fluctuation model, F s1 (Q2) and s(x)−
s̄(x) from LFHQCD can be obtained directly from higher-twist terms in the Fock state expansion

by matching to the quark degrees of freedom. To this end, let us recall that for the up and

down quark form factors the ρ-trajectory is relevant because it dominantly couples to uū and dd̄

quark currents in the proton [57]. Likewise, we compute F s1 (Q2) in the holographic framework by

considering the Regge trajectory of the φ meson, which is nearly a pure ss̄ state [66], and therefore

couples dominantly to the ss̄ sea current in the nucleon.

To determine the slope and intercept of the φ trajectory,

αφ(t) =
1

2
+

t

4λ
−

∆M2
φ

4λ
, (51)

we fix the ρ intercept from the pion mass and find the best value for the universal Regge slope

from the simultaneous fit of the ρ and φ trajectories; this procedure determines the φ intercept

and the universal slope α′ = 1
4λ . We obtain

√
λ = 0.534 GeV and αφ(0) = 0.01, or equivalently

∆M2
φ = 1.96λ. The φ − f ′ trajectory is shown in Fig. 5. One can also compute the intercept in

LFHQCD with effective quark masses, see Appendix B, the value is αφ(0) = 0.00±0.04. The value

of ∆M2
φ is significantly larger than ∆M2

ρ due to the presence of the more massive strange quarks

in the φ meson.

Since the light-front holographic framework is inherently relativistic, the LFWF for a state

with twist-τ automatically incorporates Fock state components with two different orbital angular

momenta Lz and Lz + 1, in analogy to the upper and lower components of a Dirac 4-component

spinor. For example, the valence quark distributions of a nucleon correspond to a leading twist-3

effective LFWF with orbital angular momentum Lz = 0, plus a twist-4 term corresponding to a

three-quark effective LFWF with Lz = 1. Note that Fock states with both Lz and Lz + 1 are

needed in order that a baryon can have a nonzero Pauli form factor and a nonzero anomalous

magnetic moment [39].

The five-quark state |uudss̄〉 is the lowest Fock state which contains strangeness. Therefore,

the leading contributions to the strange form factor are terms with twist-5 and twist-6. Using the

constraint F s1 (0) = 0 from the sum rule (1), the analytic structure of F s1 (Q2) is uniquely determined

by the holographic structure up to twist-6:

F s1 (Q2) = (1− η)Ns

[
F φτ=5(Q2)− F φτ=6(Q2)

]
+ ηNs

[
Fωτ=5(Q2)− Fωτ=6(Q2)

]
, (52)

where we have allowed for a small φ − ω mixing η in the strange form factor [40]. Ns is a nor-

malization factor and Fω,φτ (Q2) is the twist-τ form factor (40) with Regge trajectory αω,φ(t) given

by (49) and (51) respectively. The form factor can also be expressed as a product of τ − 1 poles

located at t = −Q2 = 4λ
(
n+ 1

2

)
+ ∆M2

ω and t = −Q2 = 4λ
(
n+ 1

2

)
+ ∆M2

φ, n = 0, 1, 2 · · · τ − 2.
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One thus obtains in this case the form factor poles at the mass of the ω and φ vector meson and

its radial excitations.
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FIG. 6. Effect of φ − ω mixing in F s1 (Q2) and the s(x) − s̄(x) asymmetry. The effect of the mixing is

negligible even for 10% mixing, i.e., for η = 0.1.

To illustrate the effect of the φ − ω mixing we show in Fig. 6 the effect of a 10 % mixing in

F s1 (Q2). The effect of the small mixing turns out to be negligible for F s1 (Q2). We also show in

Fig. 6 the chiral limit for massless quarks. Since the quark mass effect is very small in the ω

trajectory, this chiral limit corresponds to a pure ω trajectory.

Note that the normalization factor Ns in (52) is not the intrinsic strange/antistrange quark

number Is, since the strange and antistrange distributions can both have twist-5 and twist-6 con-

tributions. However, the shape of F s1 (Q2) is completely determined from the structure of LFHQCD.

The result is shown in Fig. 2, together with predictions from the fluctuation model and lattice QCD.

The value of
√
λ = 0.534 GeV and the mass shift ∆M2

φ = 1.96λ are obtained from the φ trajectory

depicted in Fig. 5. The value of Ns = 0.047 in Fig. 2 is determined by a best fit to lattice QCD

predictions. As in the case of the fluctuation model, we also fit the lattice QCD data, taking
√
λ
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and Ns as free parameters. The result is shown in Fig. 3 with parameter values
√
λ = 0.52(17) GeV

and Ns = 0.046(17). This value of
√
λ agrees with that determined from the Regge trajectory. The

conformal limit results, ∆M2 = 0, are also shown in the figures for comparison. The strange form

factor (52) has the large-Q2 behavior Q8F s1 (Q2) → Const, with Const = 1680Ns λ
4 ' 0.5 GeV8,

consistent with the scaling predicted from the hard-scattering counting rules [64, 65].

B. Strange quark distribution functions

To describe the quark distribution functions in the holographic formalism it is convenient to

express the Beta function (41) in a reparametrization invariant form

B(u, v) =

∫ 1

0
dxw′(x)w(x)u−1 (1− w(x))v−1 , (53)

provided that w(x) satisfies the constraints [14]

w(0) = 0, w(1) = 1, w′(x) ≥ 0. (54)

Therefore, using (53) and the Regge trajectory, (48), (49) or (51), the EM form factor (40) for

twist-τ can be written in the invariant form

Fτ (t) =
1

Nτ

∫ 1

0
dxw′(x)w(x)−

t
4λ
− 1

2
[
1− w(x)

]τ−2
e
−∆M2

4λ
log
(

1
w(x)

)
. (55)

The EM form factor can also be expressed by the exclusive-inclusive connection as the inte-

grated expression of the t-evolved PDF, namely, the generalized parton distribution (GPD) at zero

skewness, Hq
τ (x, t) ≡ Hq

τ (x, ξ = 0, t),

F qτ (t) =

∫ 1

0
dx
(
Hq
τ (x, t)−H q̄

τ (x, t)
)

=

∫ 1

0
dx qτ (x) exp[tf(x)], (56)

where f(x) is the profile function and qτ (x) is the collinear PDF of twist-τ . Comparing (56) with

the holographic expression (55) we find that both functions, f(x) and qτ (x), are determined in

terms of the reparametrization function of the Beta function, w(x), by

f(x) =
1

4λ
log
( 1

w(x)

)
, (57)

qτ (x) =
1

Nτ
[1− w(x)]τ−2w(x)−

1
2w′(x) e

−∆M2

4λ
log
(

1
w(x)

)
, (58)

where qτ (x) is normalized by
∫ 1

0 dx qτ (x) = 1. In the conformal limit where the quark masses

vanish, ∆M2 → 0, we recover the results given in Ref. [14].
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The specific function w(x), taken from Ref. [14], is effectively determined by Regge behavior at

small-x and the local power-law counting rule at x → 1. At x → 0, w(x) scales as w(x) ∼ x to

recover Regge behavior [67]. At x→ 1 the additional constraints

w′(1) = 0 and w′′(1) 6= 0, (59)

yield the Drell-Yan counting rule qτ (x) ∼ (1 − x)2τ−3 at large x [41]. Since w(1) = 1, it follows

that log
(

1
w(x)

)
→ 0 in the limit x→ 1, which implies that the local counting rules at large-x are

unmodified by the introduction of quark masses in the holographic structural framework. However,

the squared mass shift induced by finite quark masses does modify the small-x behavior by a factor

x∆M2/4λ, therefore softening the Regge behavior of the PDFs at small-x

qτ (x) ∼ x−α(0) ∼ x− 1
2

+ ∆M2

4λ , (60)

since w(x) in (58) scales as w(x) ∼ x at small-x. Since ∆M2 is considerably larger for strange

quarks than for the up and down quarks, the predicted behavior of the strange sea distributions is

less singular at x→ 0 than the nonstrange light quarks.

It has been noted in the pre-QCD era that the behavior of parton distributions near x → 0 is

governed by the Regge intercept [60]. This is again in agreement with LFHQCD even including

the finite quark mass correction. The t-dependence of GPDs, instead, is not influenced by the

introduction of quark masses, since the Regge slope is universal for light hadrons [33].

The expression for the strange-antistrange PDF asymmetry s(x) − s̄(x) corresponding to (52)

is

s(x)− s̄(x) = (1− η)Ns

[
qφτ=5(x)− qφτ=6(x)

]
+ ηNs [qωτ=5(x)− qωτ=6(x)] , (61)

with qω,φτ (x) given by (58) for ∆M2
ω and ∆M2

φ respectively. For the universal reparametrization

function w(x) we use the form in Ref. [14],

w(x) = x1−xe−a(1−x)2
, (62)

with a = 0.531 determined from the first moment of proton valence quark distributions. The effect

of the φ− ω mixing for the s(x)− s̄(x) asymmetry also turns out to be negligible for a mixing of

the order of 10% and will be neglected.

The PDF predictions for the asymmetry s(x)− s̄(x) are shown in Fig. 4 and compared with the

fluctuation model and global fits for Ns = 0.046(17) and
√
λ = 0.52(17) GeV obtained from the

lattice form factor results. The actual computations are carried out with the universal function w(x)

given by (62). In contrast to the baryon-meson fluctuation model, which has the small-x behavior

s(x)− s̄(x)→ 0, the holographic model has the Regge behavior s(x)− s̄(x) ' −0.044x−0.01 in the

limit x → 0. This can be compared with the global data fit results, shown in Fig. 4 at the initial

scale µ = 1 GeV.
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The sign and the magnitude of 〈S−〉, Eq. (2), play a significant role in understanding the

NuTeV anomaly [68–73]; namely, that the Weinberg angle θW extracted from deep inelastic neu-

trino/antineutrino scatterings by NuTeV deviates by about 3σ from the standard model value

sin2 θW = 0.23129(5) [55]. A positive 〈S−〉 will reduce the NuTeV anomaly, whereas a negative

〈S−〉 will increase it [20, 69, 71]. Assuming a single source for the NuTeV anomaly, 〈S−〉 ∼ 0.005

is required.

From our analysis, the lattice QCD result favors a positive 〈S−〉. However, the fits with the

fluctuation model and LFHQCD yield 〈S−〉 = 0.0011(4), which is not sufficient to solely explain

the NuTeV anomaly; other sources are needed. Although the value for 〈S−〉 is model dependent,

we emphasize that more precise determinations of F s1 (Q2) from first-principle lattice QCD calcu-

lations and/or future experiments will provide important constraints on the strange-antistrange

asymmetry.

C. Separation of strange and antistrange asymmetric quark distributions

Light-front holographic QCD predicts the structural behavior of the strange asymmetry (61)

up to twist-6, but it does not directly predict the individual distributions s(x) and s̄(x) which

together determine the intrinsic strange contribution to the quark sea in the nucleon∫
dx s(x) =

∫
dx s̄(x) = Is. (63)

We will show, however, how one can uniquely determine the minimum strange probability Is in

the proton and then give constraints on the separate s(x) and s̄(x) distributions.

We expand the longitudinal quark distributions s(x) and s̄(x) into their twist-5 and twist-6

components

s(x) = α qτ=5(x) + β qτ=6(x), (64)

s̄(x) = γ qτ=5(x) + δ qτ=6(x), (65)

corresponding to Lz = 0 and Lz = 1, respectively. Comparing with (61) and using the sum rule

(1), we find

α+ β = Is, (66)

γ + δ = Is, (67)

α− γ = Ns, (68)

δ − β = Ns, (69)

with the general solution

β = Is − α, (70)

γ = α−Ns, (71)

δ = Is − α+Ns. (72)
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We can thus write

s(x) = α qτ=5(x) + (Is − α) qτ=6(x), (73)

s̄(x) = (α−Ns) qτ=5(x) + (Is − α+Ns) qτ=6(x), (74)

with α an arbitrary parameter constrained by the conditions s(x) ≥ 0 and s̄(x) ≥ 0. Since the

twist-5 term dominates at large-x we require α ≥ 0 and γ ≥ 0. For positive Ns, the positivity

constraints lead to α ≥ Ns. At small-x we have the behavior

lim
x→0

qτ=5(x)

qτ=6(x)
=
Nτ=6

Nτ=5
≡ R, (75)

with Nτ defined in (40). In the conformal limit, ∆M2 = 0, we have R = 8
9 . Incorporating

quark masses, ∆M2
φ = 1.96λ, we have R = 0.80. This small-x behavior leads to the condition

Is ≥ (1−R)α from Eq. (70). Together with α ≥ Ns we have the condition

Ns ≤ α ≤
1

1−RIs. (76)

Because the ratio qτ=5(x)/qτ=6(x) is monotonically increasing, the condition (76) ensures s(x) ≥ 0

and s̄(x) ≥ 0 over the full range of x.

The solution which minimizes the strange sea probability corresponds to α = Ns and Is =

(1−R)Ns with longitudinal quark distributions

s(x) = Ns qτ=5(x) + (Is −Ns) qτ=6(x), (77)

s̄(x) = Is qτ=6(x). (78)

We show in Fig. 7 the holographic results for the individual quark distributions s(x) and s̄(x).

The results correspond to the lower bound Is = 0.92%. As we discussed in Sec. II, the strange

distribution s(x) should have its support for larger values of the longitudinal momentum x, as

compared with s̄(x), to lead to negative s(x) − s̄(x) asymmetry at small-x and to a positive

asymmetry at large-x. This important property is verified for the holographic quark distributions

shown in Fig. 7. One can observe in Fig. 7 (left) that the high-twist suppression at large-x from

local counting rules is significant for the s(x) leading-twist-5 distribution above x ∼ 0.7 and for

the s̄(x) twist-6 distribution above x ∼ 0.6.

The positive form factor F s1 (Q2) obtained from the lattice calculations [5, 6], shown in Fig. 2,

requires that the strange quarks are more concentrated at small transverse separation compared

with the antistrange quarks (See Sec. II). As shown in Fig. 8 this is indeed the case for the

LFHQCD results computed from the coordinate space transverse distribution given by Eq. (18).
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transverse coordinate space corresponding to the minimum possible intrinsic strange probability.
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V. DISCUSSIONS AND CONCLUSIONS

In this article, we have demonstrated that a nonzero strangeness contribution to the spacelike

electromagnetic form factor of the nucleon F s1 (Q2) 6= 0 implies a strange-antistrange asymmetry

in the nucleon’s light-front wave function and thus in the nucleon PDF.

A lattice QCD calculation predicts a positive strange quark form factor, which indicates that

the strange quark distribution is more centralized in coordinate space than the antistrange quark

distribution. Consequently, the strange quark distribution is more spread out in momentum space.

The lattice result thus indicates a negative s(x) − s̄(x) longitudinal momentum distribution at

small-x and a positive distribution at large-x.

We have shown how the baryon-meson fluctuation model leads to a nonzero strange quark form

factor of the nucleon, and a s(x) − s̄(x) asymmetry. Imposing the lattice QCD data, we have

analyzed the constraints on the model, leading to 1.06(51)% intrinsic strange sea quark probability

in the nucleon.

We have also discussed a new model for the intrinsic sea-quark distributions based on light-front

holographic QCD. The strange quark form factor and the s(x) − s̄(x) asymmetry are determined

in this framework up to a normalization factor, which can be constrained by the lattice prediction.

Effects from the finite quark masses of the vector mesons which couples to the quark current in

the nucleon have also been discussed. Remarkably, the holographic structure of form factors and

PDFs allows the introduction of quark masses without modifying the hard scattering counting

rules, the local counting rules, or the t-dependence of GPDs. The small-x behavior modified by

quark masses is still governed by the Regge intercept. Since the strange quark mass is much greater

than up and down quark masses, the strange quark distributions at small-x in LFHQCD is less

singular than up and down quark distributions. By incorporating the positivity bound on quark

distribution functions, we have derived a lower bound for the intrinsic strange sea probability

using the holographic approach. The lower bound is 0.92%, compatible with the value found in the

fluctuation model; however, the intrinsic strangeness probability contributing to s(x) + s̄(x) can

be significantly larger. We have also evaluated the individual s(x) and s̄(x) distributions and the

coordinate-space transverse distributions for the strange and antistrange quarks in the nucleon for

the intrinsic strange quark probability determined by the lower bound. The result supports the

qualitative analysis that the strange quark is more concentrated at small transverse separation than

the antistrange quark. This novel nonperturbative approach to sea quark distributions presented

here, based on the light-front holographic framework, complements the physical picture inherent to

the meson-baryon fluctuation model, and gives new insights into both the structure of the strange-

antistrange asymmetry and the strange form factor of the nucleons. This approach can also be

extended to the study of intrinsic charm and bottom.
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Appendix A: Lattice QCD determination of the strange quark form factor

The s quark contribution to the nucleon’s magnetic moment and charge radius has been calcu-

lated in Ref. [5] using the overlap fermion on the (2+1) flavors RBC/UKQCD domain wall fermion

(DWF) gauge configurations. Details of these ensembles are listed in Table I. The authors used 24

valence quark masses in total for the 24I, 32I, 32ID, and 48I ensembles representing pion masses in

the range mπ ∈(135, 400) MeV to explore the quark-mass dependence of the strange quark form

factors.

TABLE I. The parameters for the DWF configurations: spatial/temporal size, lattice spacing [74, 75], the

strange quark mass in the MS scheme at 2 GeV, the pion mass corresponding to the degenerate light sea

quark mass, and the numbers of configurations used in Ref. [5].

Ensemble L3 × T a (fm) m
(s)
s (MeV) mπ (MeV) Nconfig

24I [74] 243 × 64 0.1105(3) 120 330 203

32I [74] 323 × 64 0.0828(3) 110 300 309

32ID [75] 323 × 64 0.1431(7) 89.4 171 200

48I [75] 483 × 96 0.1141(2) 94.9 139 81

One can perform the model-independent z−expansion fit to the form factor G(Q2) [76, 77]

Gz−exp(Q2) =

kmax∑
k=0

akz
k, z =

√
tcut +Q2 −√tcut√
tcut +Q2 +

√
tcut

, (A1)

using the lattice data of strange Sachs electric and magnetic form factors GsE,M (Q2) to extrapolate

the s-quark magnetic moment and charge radius as shown in [5], and then use the fit parameters

ak to interpolate GsE,M values at various Q2 for a given valence quark mass on the lattice. The

available Q2 on the 24I and 32I ensembles are Q2 ∈ (0.22, 1.31) GeV2, on the 32ID ensemble

are Q2 ∈ (0.07, 0.43) GeV2 and on the 48I ensemble are Q2 ∈ (0.05, 0.31) GeV2. It is a common

problem for lattice QCD calculations that the signal-to-noise ratio decreases as one reaches the

physical pion mass. Lattice results of GsE,M (Q2) at the physical pion mass on the 48I ensemble [75]

is noisier compared to the GsE,M (Q2) obtained from the lattice ensembles with heavier pion masses.

Although the largest available momentum transfer of the 24I and 32I ensembles is Q2 ∼ 1.3 GeV2,
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the largest momentum transfer available on the 48I ensemble is Q2 ∼ 0.31 GeV2. We note that the

uncertainties in the extrapolation of the nucleon strange electromagnetic form factor become very

large and the form factors are consistent with zero above Q2 ∼ 0.7 GeV2 for the 48I ensemble and

therefore the extrapolations of the 48I ensemble electromagnetic form factor data were constrained

up to Q2 = 0.5 GeV2 in the global fit (a simultaneous fit in lattice spacing, volume and pion mass)

in Ref. [6]. It is important to note that the lattice QCD estimate of GsE,M (Q2) in Ref. [6] is the

most precise and accurate first-principles calculation of s-quark EMFFs to date. This is the only

calculation at the physical pion mass where the quark mass dependence, as well as finite lattice

spacing (a), volume corrections, and partial quenching effect (when the valence and sea quark

masses are not the same in lattice QCD simulation) were considered.

After obtaining Q2-dependence from the z-expansion fit to the lattice data, for a given Q2

-value, we obtain 24 data points corresponding to different valence quark masses from 3 different

lattice spacings and volumes and 4 sea quark masses including one at the physical point. We use

the chiral extrapolation formula from Ref. [78] and volume correction from Ref. [79], yielding a

global fit in different quark masses, lattice spacings, volumes of the strange quark Sachs electric

form factor at a given Q2. It is given by

GsE(mπ, mK ,mπ,vs, a, L) = A0 +A1m
2
K +A2m

2
π

+A3m
2
π,vs +A4a

2 +A5

√
Le−mπL, (A2)

where mπ/mK is the valence pion/kaon mass and mπ,vs is the partially quenched pion mass

m2
π,vs = 1/2(m2

π + m2
π,ss) with mπ,ss the pion mass corresponding to the sea quark mass. The

χ2/d.o.f. for different Q2 global fits ranges between 0.7-1.13. For example, in the continuum limit,

the global fit for Q2 = 0.25 GeV2 provides the physical value of GsE |phys = 0.0024(8), A1 = 0.58(30),

A2 = −0.29(15), A3 = −0.003(9), A4 = 0.001(2), and A5 = −0.001(3) with χ2/d.o.f. = 1.1. One

could also consider a log(mK)-term in the chiral extrapolation of GsE as shown in [78], however

our analysis shows that this term does not have any effect on the global fit for our lattice data. A

similar vanishing difference has been observed if one considers e−mπL instead of a
√
Le−mπL term

in the volume correction, where L is the finite box size of a lattice. For example, including the

factor log(mK) and e−mπL instead of
√
Le−mπL, one obtains GsE |phys = 0.0026 in comparison with

GsE |phys = 0.0024. We include these small effects in the systematics of the global fit results. We

also assign a 20% systematic uncertainty from the model-independent z-expansion interpolation

coming from adding a higher order term a3 while fitting the GsE(Q2) data. These uncertainties are

added in quadrature to the systematics discussed in [5].

Similarly, we calculate the strange Sachs magnetic form factor GsM at a particular Q2 using the
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global fit formula

GsM ( mπ,mK ,mπ,vs, a, L) = A0 +A1mπ +A2mK

+A3m
2
π,vs +A4a

2 +A5mπ(1− 2

mπL
)e−mπL, (A3)

where we have used a chiral extrapolation linear in mπ and mloop = mK [78, 80–82]. For the volume

correction we refer to Ref. [83]. From the global fit formula (A3), for example, in the continuum

limit at Q2 = 0.25 GeV2, we obtain GsM |phys = −0.018(4), A1 = 0.04(3), A2 = −0.18(12), A3 =

−1.27(84), A4 = 0.008(6), and A5 = 0.04(5) with χ2/d.o.f. = 1.13. From the values of the

parameters in the global fit formula (A3), it is seen that the quark mass dependencies play an

important role in calculating GsM (Q2) at the physical point. A 9% systematic uncertainty from

the model-independent z−expansion and an uncertainty from the empirical fit formula have been

included as discussed in [5]. We obtain systematics from the global fit formula by replacing the

volume correction by e−mπL only and also by adding a mπ,vs term in the fit and include the

difference in the systematics of the global fit results.

More details about the lattice analysis can be found in Refs. [5, 7].

Appendix B: The vector meson trajectories in LFHQCD

The meson spectrum in LFHQCD is given by [13, 33]

M2 = 4λ

(
n+

L+ J

2

)
+ ∆M2[m1, m2], (B1)

where the squared mass shift ∆M2[m1,m2] incorporates the effect from finite light quark masses.

Following the procedure discussed in Refs. [13, 33], one can add a correction term of the invariant

mass
∑

i
m2
i

xi
to the LF kinetic energy in the LF Hamiltonian, and leave, as a first approximation,

the LF transverse potential unchanged. The resulting LF eigenfunction is then modified by the

factor e
− 1

2λ

∑
i

m2
i
xi by performing a Lorentz frame-invariant substitution in the LFWF [84]. This

leads, for a hadron with two constituents of mass m1 and m2, to the correction of the quadratic

mass spectra by the term:

∆M2[m1,m2] =
1

N

∫ 1

0
dx

(
m2

1

x
+

m2
2

1− x

)
e
− 1
λ

(
m2

1
x

+
m2

2
1−x

)
,

Nm =

∫ 1

0
dx e

− 1
λ

(
m2

1
x

+
m2

2
1−x

)
, (B2)

where the mi are effective quark masses.

The longitudinal confinement dynamics in presence of quark masses has also been discussed in

Refs. [85, 86]. In [86] a specific longitudinal confinement potential is introduced by extending the

transverse holographic potential while maintaining rotational invariance in the heavy quark limit.
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The approaches of Refs. [13] and [86] lead to very similar results for the ground state distribution

amplitudes.

For vector mesons in the lowest radial excitation one obtains from (B1):

M2 = 4λ(J − 1
2) + ∆M2[m1,m2]. (B3)

from which one deduces the Regge trajectory:

α(t) = α′ t+ α(0), (B4)

with slope α′ and intercept α(0) given by

α′ =
1

4λ
, α(0) =

1

2
− 1

4λ
∆M2[m1,m2]. (B5)

The QCD scale
√
λ = κ is determined from the spectra in all light hadronic channels and it is

remarkably independent of the channel (mesonic and hadronic) [33]. Its value is
√
λ = κ = 0.523

GeV, with a standard deviation of 0.024 GeV. Therefore, for mesons consisting of light quarks

the Regge slope is universal, α′ = 1
4λ . In contrast, the intercept α(0) depends on the effective

quark masses, see (B5). Using the measured values of the pion and kaon masses one obtains from

Mπ = ∆M2[mq,mq̄] and MK = ∆M2[mq,ms̄] the values mq = mu = md = 46 MeV and ms = 357

MeV for the effective quark masses of the light quarks [13, 33]. With these values for the effective

quark masses one obtains the intercept of the ρ, φ and K∗ trajectories

αρ(0) =
1

2
− m2

π

4λ
, (B6)

αφ(0) =
1

2
− ∆M2[ms,ms̄]

4λ
, (B7)

αK∗(0) =
1

2
− m2

K

4λ
. (B8)

Here it was taken into account that the φ meson is nearly a pure ss̄ state [66].

Using the mass shift Eq. (B2) we find ∆M2[ms,ms̄]/λ = 2.16 ± 0.20. This value is slightly

larger than the value 1.96 extracted from the combined spectral fit in Sec. IV A, but agrees with it

even within the statistical errors. As final values for the intercepts from LFHQCD we obtain the

intercept values αρ(0) = 0.482 ± 0.002, αφ(0) = −0.04 ± 0.05 and αK∗(0) = 0.275 ± 0.020, to be

compared with the fitted values from the spectra αφ(0) = 0.01 and αK∗(0) = 0.273.
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