
A robust simplex algorithm for online optimization

Xiaobiao Huang∗

SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

(Dated: June 12, 2018)

A new optimization algorithm is introduced for online optimization applications. The algorithm
was modified from the popular Nelder-Mead simplex method to make it noise aware and noise resis-
tant. Simulation with an analytic function is used to demonstrate its performance. The algorithm
has been successfully tested in experiments, which showed that the algorithm is robust for optimiza-
tion problems with complex functional dependence, high cross-coupling between parameters, and
high noise. Advantages of the new algorithm include high efficiency and that it does not require
prior knowledge of the parameter space such as an initial conjugate direction set.

PACS numbers: 29.50.+v, 29.85.-c

I. INTRODUCTION

Large, complex machines such as accelerators are usu-
ally built according to exquisitely studied and optimized
designs and are expected to perform in a way as pre-
dicted in the design studies. However, in reality there
are always random and systematic errors in an actual
machine that are not included in the corresponding de-
sign model and these errors will cause deviations of the
behaviors of the machine from the model. Compensation
of these errors is necessary for the machine to attain the
optimal performance.
Traditionally the desired error compensation approach

is to use diagnostics to monitor or probe the beam and
to use data acquired by these diagnostics to determine
the actual errors or a set of changes to actuators (i.e.,
knobs) for corrections. This approach, however, may not
always be possible as there may be a lack of diagnostics,
an undetermined correction target, or a lack of causal
relationship between the diagnostic measurements and
the performance measures. In such cases, tuning knobs
directly to improve machine performance is inevitable.
Manual tuning has been common since the early days

of accelerators. In the era of computerized controls, au-
tomated tuning has become possible. Traditional algo-
rithms, such as the Nelder-Mead simplex method [1],
have been implemented in accelerator controls [2]. More
recently, an exploration of suitable online optimization
algorithms has led to the invention of the robust con-
jugate direction search method (RCDS) [3], which has
been proven to be an effective method for automated ac-
celerator tuning through successful applications at many
laboratories [4–10].
The RCDS algorithm is an efficient parameter scan

method for multi-variable optimization problems without
significant cross-coupling between the decision variables.
For problems with severe cross-coupling, the algorithm,
in theory, can build up a conjugate direction set in the
parameter space to gain high efficiency [11]. However, in

∗ xiahuang@slac.stanford.edu

realistic online applications, the algorithm usually does
not run enough iterations to substantially benefit from
the scheme. Therefore, supplying an initial conjugate
direction set (which may be obtained with a model) to
the algorithm is very important. For example, Ref. [3]
showed that, for the storage ring coupling minimization
problem, RCDS efficiency is much higher with the initial
conjugate direction set calculated with the lattice model
than by starting with directions along individual decision
variables (skew quadrupoles).

On the other hand, Ref. [3] showed that the Nelder-
Mead simplex method is very efficient without prior
knowledge of the parameter space. It was also shown
that the deficiency of the simplex method for online op-
timization is its susceptibility to noise in function eval-
uation. As soon as the noise starts to alter the results
of function value comparisons between the simplex ver-
tices, the algorithm breaks down and fails to converge to
the optimum. The above observations have prompted us
to modify the simplex method to improve its robustness
against noise.

In this study we propose a robust simplex algorithm
that is suitable for the optimization of noisy functions.
This algorithm takes the noise level into consideration
in function value comparisons, takes additional measure-
ments if necessary to reduce noise, uses local curve fit-
ting when direct comparisons do not yield definitive op-
eration decisions, and explores multiple directions in an
iteration. These modifications make the algorithm sig-
nificantly more robust against noise. We have tested
the new algorithm in simulation with the analytic Rosen-
brock function [12]. We have also tested it in experiments
on the SPEAR3 storage ring for the coupling minimiza-
tion and the kicker bump matching problems. The re-
sults demonstrated that the new method is robust against
noise and is efficient, even for problems with high cross-
coupling between parameters.

In Section II we describe the robust simplex algorithm.
Section III discusses the simulation test of the algorithm.
Experimental results for both the coupling correction
problem and the kicker bump matching problem are pre-
sented in Section IV. The conclusion is given in Sec-
tion V.

2

II. THE ROBUST SIMPLEX ALGORITHM

In this paper we deal with multi-variable, single ob-
jective optimization problems. For definitiveness, we as-
sume minimization problems. In online machine tuning
applications, the decision variables naturally have limited
valid ranges. As in Ref. [3], we normalize each variable to
the range [0, 1]. Each point in the n-dimensional parame-
ter space is represented by a vector X = (x1, x2, · · · , xn),
where n is the number of decision variables. The goal of
the algorithm is to find a point, Xmin, where the objec-
tive function value f(Xmin) is lower than the value at
any other point.

A. The original simplex algorithm

The Nelder-Mead simplex algorithm does not constrain
the ranges of the variables. A simple modification to im-
plement variable range constraint is to set any component
of the solution vector X to the nearest range limit, which
is 0 or 1.
The simplex algorithm follows a simple and elegant

paradigm. It operates with a simplex in the parameter
space, which consists of n+1 vertices. The initial simplex
may be rebuilt by taking a small step along each axis from
the starting point to make n new points.
After the objective function values for each vertex is

evaluated, the original simplex algorithm executes the
following steps iteratively [1]:

1: Sort the function values for the n + 1 vertices, with
f1 < · · · < fn < fn+1. The corresponding vertices
are located at X1, · · · , Xn, Xn+1.

2: Define the center point on the simplex face that is
opposite to vertex Xn+1, Xc = 1

n

∑n

i=1
Xi. The

algorithm may evaluate the function values at sev-
eral points on the line connecting the points Xn+1

and Xc. These points are defined as follows:

reflection: Xr = Xc + (Xc −Xn+1).

expansion: Xe = Xc + 2(Xc −Xn+1).

inner contraction: Xic = Xc −
1

2
(Xc −Xn+1).

outer contraction: Xoc = Xc +
1

2
(Xc −Xn+1).

First evaluate the function value at the reflection
point, fr = f(Xr). If f1 < fr < fn, replace vertex
Xn+1 with Xr and terminate the iteration.

3: If fr < f1, evaluate the function value at the expan-
sion point, fe = f(Xe), replace vertex Xn+1 with
Xr orXe, whichever has the smaller function value,
and terminate the iteration.

4: If fn < fr < fn+1, evaluate foc = f(Xoc). If foc < fr,
replace vertex Xn+1 with Xoc and terminate the
iteration.

5: If fr > fn+1, evaluate fic = f(Xic). If fic < fn+1,
replace vertex Xn+1 with Xic and terminate the
iteration.

6: When none of the previous steps terminate the itera-
tion, perform a shrink toward X1, the vertex with
the minimum function value, i.e., replace vertex X2

through Xn+1 with new points

X
′

i = X1 +
1

2
(Xi −X1),

where i = 2, 3, · · · , n+ 1. Terminate the iteration.

After each iteration, the algorithm goes back to step 1 for
the next iteration. The algorithm may terminate after a
pre-specified number of function evaluations or after the
difference between the minimum and the maximum of
the vertex function values is below a target value.

B. The robust simplex method

The original simplex method uses function value com-
parisons at almost every step. The outcomes of these
comparisons provide information about the objective
function in the vicinity of the simplex which aids the
algorithm in choosing the search path. When noise con-
taminates the function values, the comparison outcomes
may be changed, which will distort the function infor-
mation, lead to a wrong search direction, and prevent
the algorithm from converging to the minimum. On the
other hand, the algorithm has high efficiency in search-
ing for the minimum when there is no noise. Therefore,
the appropriate approach of modifying the algorithm to
improve its robustness against noise would be to preserve
the actions wherever noise does not modify the compari-
son results and to reduce noise or to change the behavior
when the comparison results become corrupted due to
noise.
During an iteration, the main actions of the simplex

method are to sample the objective function along the
line connecting Xn+1 and Xc at the specified positions.
If the reflection and contraction operations result in a
new point with function value lower than the current
maximum vertex value, the new point will replace the
current maximum vertex. Noise in function values may
introduce two problems here. First, it may affect the
sorting results of the vertex function values. The differ-
ences between the largest function values of the vertices
may be below the noise level and thus there is no unam-
biguous maximum value vertex. Second, the sequence of
actions in reflection, expansion, and contraction may be
changed by noise.

A straightforward remedy for the ambiguity in compar-
ison results would be to increase the number of samples
at the points involved. However, we do not want to in-
crease the sample numbers at all points since in many

3

cases the comparison results are not ambiguous. A sen-
sible approach would be to increase the number of sam-
ples as needed using the noise level and the differences
between the two values in a comparison as the guide. It
is noted that the average value of N samples of a normal
distribution N (µ, σ2), with expectation µ and standard
deviation σ, obeys the normal distribution N (µ, σ2/N).
If we draw N1 and N2 samples from two normal dis-
tributions, N (µ1, σ

2
1) and N (µ2, σ

2
2), and calculate their

average values, X̄1 and X̄2, respectively, the difference
between the two average values, X̄1− X̄2, obeys the nor-
mal distribution

N (µ1 − µ2,Σ
2), with Σ2 =

σ2
1

N1

+
σ2
2

N2

If the absolute value of µ1 − µ2 is substantially larger
than Σ, the sign of X̄1 − X̄2 is a good estimate of the
sign of µ1−µ2. For example, if |µ1−µ2| = Σ, the chance
of µ1 − µ2 and X̄1 − X̄2 having the same sign is 84%; if
|µ1 − µ2| = 1.4Σ, the chance is 92%.
When applying the above statistical theory to the com-

parison of function values at two vertices, it is assumed
that the standard deviation at every point in the parame-
ter space is equal; and, we will use X̄1−X̄2 as an estimate
of µ1 − µ2. Therefore, when necessary we will increase
the number of samples, N1 and N2, until

|X̄1 − X̄2| ≥ M1σ

√

1

N1

+
1

N2

, (1)

or an upper limit, Nmax, for the total number of eval-
uations per point is reached, where M1 is a numerical
value which we choose to be 1.4. Upper limits for N1

and N2 are set to avoid excessive function evaluations.
The actual value of the upper limit may depend on the
noise level and the nature of the function terrain. High
noise levels and complicated terrains would require more
averaging.
If a comparison result of two function values is ob-

tained with condition (1) satisfied, we call the result
definitive, otherwise ambiguous. In cases the determina-
tion of the maximum-value vertex is ambiguous, instead
of trying to pick out the actual maximum-value vertex,
the algorithm collects a set of vertices with the largest
values and performs the reflection, expansion, contrac-
tion operations on each of them until a significant reduc-
tion (i.e., above the noise level) of the maximum vertex
function value is achieved.
In the reflection, expansion, and contraction opera-

tions, the corresponding vertex is replaced by a new point
only if the comparisons leading to it are definitive. If no
vertex replacement takes place with the operations along
the line of the vertex and the center point on its opposite
face, a quadratic fit of five points on the line is performed
to improve the accuracy of determining the next step.
Combining the modifications, we devised a robust sim-

plex (RSimplex) algorithm that is suitable for online op-
timization. The algorithm requires the rms noise level of
the objective function, σ, as an input parameter. It also

takes an iterative approach to change the simplex using
function values at the vertices as a guide. When making a
comparison of function values at two points, unless noted
otherwise, the procedure described in the above to reach
a definitive result is applied, subject to the upper limit
of the number of evaluations for each point. Details of
the steps in one iteration are described in the following.

1: Sort the vertex function values in the ascending or-
der and identify the maximum value vertex group,
Gmax, with

Gmax = {Xn+1,Xn, · · · ,Xn−m1+2},

where vertices Xn through Xn−m1+2 have function
values that are too close to f(Xn+1) to be defini-
tively ruled out as the maximum value vertex. Up-
per limits may be given to the size of the group,
m1. For example, m1 may be no more than 4.

2: Perform reflection/expansion and contraction opera-
tions for members vertices ofGmax sequentially, ter-
minate the iteration if a vertex replacement takes
place.

The reflection/expansion and contraction opera-
tions are described in more details below. For each
member vertex of Gmax, say Xi, calculate the func-
tion value at its reflection point, fr. If fr < f1,
also evaluate at the expansion point and compare
the functions values at the reflection point and the
expansion point, use the point with the lower func-
tion value to replaceXi and terminate the iteration
if the comparison is definitive; otherwise, evaluate
the middle point between the two points, use it to
replace Xi, and terminate the iteration.

Otherwise, compare fr and fn ≡ f(Xn). If fr is
definitively lower than fn, use Xr to replace Xi;
otherwise, move on to the contraction operation as
described in the next paragraph.

In the contraction operation, if fr > fi definitively,
evaluate the inside contraction point; if, instead,
fr < fn+1 definitively, evaluate the outside contrac-
tion point; otherwise evaluate both the inside and
outside contraction points and the center of mass
point Xc and perform a quadratic fit for a more ac-
curate examination. If either the inside contraction
yields fic < fn+1 or the outside contraction yields
foc < fn+1 definitively, use the corresponding con-
traction point to replace vertex Xi. Otherwise per-
form the quadratic fit.

In the quadratic fit, function values at five points,
Xi (i.e., the member vertex in Gmax) and its cor-
responding Xic, Xc, Xoc, and Xr are fitted to a
function

y = aα2 + bα+ c,

where α = −1, −0.5, 0, 0.5, 1 for the five points,
respectively, and y is the function value. From the

4

fitting we also get the uncertainty of the fitting pa-
rameters. If each of the five points is only evalu-
ated once, we have σa = 1.07σ, σb = 0.63σ, and
σc = 0.70σ. The fitted function value difference
between points Xi and Xic is fi − fic = 3

4
a − 1

2
b.

If this value is larger than M1σc and b > 0, we use
the inside contraction point to replace Xi. If b < 0
and 3

4
a + 1

2
b > M1σc, we use the outside contrac-

tion point to replace Xi. Terminate the iteration if
vertex Xi is replaced.

3: If no vertex replacement takes place in step 2, and
if the difference between the maximum and min-
imum vertex function values, fn+1 − f1, is above
M2σ, perform a shrink toward the vertex with the
minimum function value. Here M2 is a numerical
value which may be chosen to be 2.0. The M2 re-
quirement is imposed to avoid the reduction of the
simplex size to a level when comparison operations
are swamped by noise. Note there could be ambi-
guity as to which vertex has the minimum value.
Comparisons between a few leading candidates for
a definitive choice are performed, subject to the up-
per limit of the number of function evaluations for
each vertex. After the shrink operation, move to
step 1 for the next iteration.

The values M1 = 1.4 or M2 = 2.0 are empirically cho-
sen and are somewhat arbitrary. The optimal values may
be obtained from a statistical analysis.
The size of the simplex decreases every time a contrac-

tion or shrink operation is performed. During optimiza-
tion the simplex may shrink in size to a point such that
the differences between the vertex function values are not
significantly higher than the noise level. At this point, if
no gain is being made in reducing either fn+1 or f1, one
may re-build the simplex by using the current minimum
as the starting point. The vertex with the current min-
imum is kept in the simplex and the other vertices are
replaced with points shifted in one axis from the mini-
mum in the same fashion as is done for the construction
of the initial simplex. The step size of the parameter shift
may be equal to or a fraction of the initial step size. This
could allow the search algorithm to jump out a local min-
imum, although there is no guarantee that the algorithm
can find the global minimum.
Additional exploration of the parameter space may

also be introduced when the simplex has become too
small compared to the noise level. Such exploration can
be a search over a direction that is perpendicular to a
simplex face with the robust 1-dimensional optimizer as
found in Ref. [3], or some sorts of stochastic exploration
around the minimum value vertices.
It is worth pointing out that both the original Nelder-

Mead simplex method and the RSimplex method are
single objective algorithms and tend to converge to
nearby local extrema. Multi-objective genetic algorithms
(MOGA) [13, 14] or multi-objective particle swarm op-
timization (MOPSO) [4, 15] algorithms could be used

when a multi-objective application or a global search over
a parameter space with many local extrema are desired,
although caution should be given to the fact that the
performance of MOGA can be affected by function eval-
uation noise [3].

III. SIMULATION

To test the performance of the modified simplex pro-
gram, we did a simulation study using the analytic
Rosenbrock function [12]. The Rosenbrock function with
n variables is defined to be

f =
n−1
∑

i=1

100(xi − x2
i−1)

2 + (1− xi)
2. (2)

In the tests we set n = 6 and the parameter range of all
6 variables to be within [−5, 5]. The global minimum is
f = 0, which is achieved when xi = 1 for i = 1, 2, · · · , 6.
The initial solution is chosen to be the origin, with

xi = 0 for all 6 variables and a corresponding function
value of f = 5. Without noise the original simplex al-
gorithm (Nelder-Mead) converges to the minimum with
about 600 function evaluations. The step length for the
initial simplex is 2. When random Gaussian noise with
a standard deviation σ = 0.01 is added to the function,
the Nelder-Mead algorithm typically does not converge
to the minimum. Instead, it converges to solutions with
function values between 0 and 4.5.
When the modified simplex algorithm is applied, with

M1 = 1.4 and M2 = 2.0, and an upper limit of function
evaluations per vertex Nmax = 3, the minimum func-
tion values achieved are significantly closer to the min-
imum. FIG. 1 shows the minimum function values ob-
tained within 1000 function evaluations for 100 repeated
runs, sorted in the ascending order, for the original sim-
plex algorithm, the robust simplex without simplex re-
building, and the robust simplex with simplex rebuild-
ing. Simplex rebuilding is performed around the mini-
mum function value vertex when fn+1 − f1 < M2σ and
the reductions of both the maximum and the minimum
values in the last N iterations are less than 0.2σ. The
side length of the rebuilt simplex is one half of the initial
simplex. Also shown in FIG. 1 is the result for the origi-
nal simplex method but with sample averaging for noise
reduction, for which the objective function is the average
of 3 evaluations.
FIG. 2 shows the histories of evaluated solutions for a

typical case for the Nelder-Mead algorithm and the two
variations of the robust simplex algorithm with a final
minimum value that corresponds to the median value of
the 100 cases. While the modified simplex method is
more robust against noise, it can still be trapped by a
sub-optimal solution. Rebuilding the simplex helps the
algorithm break out from such a situation.
FIG. 1 and 2 clearly illustrate the benefits of the mod-

ified simplex algorithm. By taking extra samples when

5

0 20 40 60 80 100

case index

0

1

2

3

4

5

fi
n

a
l
m

in

Rosenbrock, n=6, =0.01, 1000 evals

Nelder-Mead

Nelder-Mead w/ N=3 averaging

RSimplex w/o Rebuild

RSimplex w/ Rebuild

FIG. 1. Minimum function values in 1000 evaluations for
the Rosenbrock problem in 100 optimization runs (sorted)
with the Nelder-Mead simplex algorithm (blue dashed line),
Nelder-Mead with N = 3 averaging (red dash-dot line), the
robust simplex algorithm without simplex rebuilding (RSim-
plex w/o Rebuild, solid yellow line) and with simplex rebuild-
ing (RSimplex w/ Rebuild, solid magenta line).

0 200 400 600 800 1000

number of function evaluations

0

2

4

6

8

10

12

o
b

je
c
ti
v
e Rosenbrock, n=6, =0.01, 1000 evals

Nelder-Mead

RSimplex w/o Rebuild

RSimplex w/ Rebuild

FIG. 2. History of the objective function values of all evalu-
ated solutions for the Rosenbrock function optimization prob-
lem using three algorithms: Nelder-Mead simplex (blue line),
RSimplex w/o simplex rebuilding (red line), and RSimplex
w/ simplex rebuilding (yellow line).

needed and using local fitting to improve the accuracy
of vertex comparisons, the modified algorithm is better
able to find the optimum in a noisy environment.

IV. EXPERIMENTS

We have tested the robust simplex method on the
SPEAR3 storage ring with two experiments. The first
application is to minimize the vertical emittance with
skew quadrupoles. The other is to minimize the tran-
sient oscillation on the stored beam by improving kicker
bump matching. Both experiments were previously used
to test the RCDS algorithm [3].

A. Coupling minimization

In an electron storage ring, the vertical emittance
arises from various error sources, such as rolls of
quadrupoles, vertical orbit distortion in sextupoles, and
skew quadrupole components from insertion devices and
other magnets. These errors can be compensated with
skew quadrupole magnets. This is often referred to as
coupling correction. In the SPEAR3 storage ring, we
use 13 skew quadrupoles (which are actually windings on
sextupole magnets) to correct coupling.
When the dominant beam loss is Touschek scatter-

ing loss, the beam loss rate is inversely proportional
to the vertical beam size, which, in turn, is propor-
tional to the square root of the vertical emittance. Skew
quadrupoles typically do not affect beam lifetime in other
ways. Therefore, maximizing beam loss rate with skew
quadrupoles is equivalent to minimizing the vertical emit-
tance.
In the experiment, beam loss over a 6-second period

is converted to beam loss rate (in mA/min) to be used
as the objective function (with a change of sign to make
a minimization problem). The beam current is main-
tained at nearly 500 mA with top-off injection every 5
minutes. The initial setpoints of all 13 skew quadrupoles
are set to zero. The corresponding loss rate is about
0.6 mA/min. The rms noise of the objective function is
about 0.03 mA/min, which comes from the noise in the
beam current measurement.
The ranges of skew quadrupole current set-points are

from −20 to 20 Amp. The initial simplex is built by
shifting from the initial point in the positive direction of
each skew quadrupole by 10% of the whole range, or 4
Amp, to create the other 13 vertices. After the algorithm
is launched, it moves the simplex in the parameter space
toward the minimum without intervention.
The robust simplex algorithm converged to a minimum

in about 200 function evaluations. The program was ter-
minated after 260 evaluations were executed as no further
improvement was made. The algorithm ran 91 iterations.
The history of the normalized parameters in the opti-
mization run is shown in FIG. 3, from which we can see
the evaluation of the initial simplex vertices, the subse-
quent exploration of the parameter space, and finally the
convergence toward the minimum.
The size of the simplex and the difference between the

maximum and minimum values on the vertices varied
during the iterations. FIG. 4 shows two dimension-less
parameters defined as

u =
f(Xn+1)− f(X1)

σ
, v = V

1

n × 500, (3)

where V is the volume of the simplex, n is the dimen-
sion of the parameter space, and v is scaled arbitrarily
for plotting. The u parameter serves as an indication of
the simplex size relative to the function evaluation noise
level. A small u (say, u < 3.0) means the function value
comparison outcome would be frequently altered by ran-

6

dom noise. The v parameter represents the geometric
dimension of the simplex. Changes in the v parameter
indicate the nature of the operations being performed
by the algorithm, as the volume of the simplex changes
during expansion, contraction, or shrink operations. The
first 44 iterations (about 100 evaluations) only applied
reflection operations. There were two shrink operations
toward the end.

number of function evaluations

50 100 150 200 250

n
o
rm

a
liz

e
d
 p

a
ra

m
e
te

rs

0

0.2

0.4

0.6

0.8

1

RSimplex

FIG. 3. Variation of the 13 skew quadrupole current set-
points (normalized to the range [0, 1]) for the coupling correc-
tion experiment using the RSimplex algorithm (w/o simplex
rebuilding).

number of function evaluations

50 100 150 200 250

u
,v

0

5

10

15
u=(Max-Min)/σ

v=volume1/13*500

FIG. 4. Evolution of the simplex size as indicated by the u

(circles) and v (squares) parameters defined in Eq. (3) during
the RSimplex optimization run for the coupling correction
experiment.

For comparison, we also tested the same optimization
problem with the Nelder-Mead simplex method and the
RCDS method. The history of the objective functions of
all three algorithms are shown in FIG. 5. The Nelder-
Mead simplex algorithm could not make any significant
gains. As its simplex quickly shrank, it soon stopped
making appreciable changes to the parameters. It was
terminated after about 100 function evaluations as no
gain was being made. The RCDS algorithm reached the
same level of loss rate in about 120 evaluations. However,

it benefited from the conjugate direction set that was
calculated using the lattice model [3].

50 100 150 200 250

number of function evaluations

-1.5

-1

-0.5

0

o
b
je

c
ti
v
e
 (

m
A

/m
in

)

RCDS

Nelder-Mead Simplex

RSimplex

FIG. 5. History of the objective function (which is essen-
tially the beam loss per minute with a negative sign) over the
coupling minimization experiment for the three algorithms:
RCDS, Nelder-Mead simplex, and RSimplex (w/o simplex re-
building).

After the optimization, the skew quadrupoles were set
to the best solutions found with RSimplex and RCDS,
respectively. The corresponding loss rates were 1.55 and
1.56 mA/min, respectively. The skew quadrupole setting
for coupling correction obtained with LOCO [16], the or-
bit response matrix based method, was also applied to
the machine. The resulting loss rate was 1.41 mA/min,
lower than the solutions found with the optimization al-
gorithms.

B. Kicker bump matching

The robust simplex algorithm is also applied to op-
timize the kicker bump matching problem on SPEAR3.
This problem was previously used to test the RCDS algo-
rithm [3] and the extremum seeking (ES) algorithm [17].
The goal is to minimize the transient oscillation of the
stored beam after the three injection kickers are fired.
The kick amplitude, pulse width, and pulse delay for
each kicker can be changed. The parameters for one of
the kickers, K3, are held constant, while the parame-
ters for the other two kickers are used as optimization
knobs. There are two skew quadrupoles between the
kickers, which affect the horizontal to vertical coupling.
These two skew quadrupoles are also used as optimiza-
tion knobs to help reduce vertical oscillation. There are
a total of 8 knobs.
The objective function is σx + 3σy, where σx,y are

the rms of the horizontal and vertical turn-by-turn or-
bit readings on a beam position monitor (BPM) for the
first 256 turns after the kickers are fired. A weight factor
of 3 is given to the vertical plane because user experi-
ments are more sensitive to vertical oscillations. The ini-
tial oscillation amplitudes correspond to approximately

7

σx = 100 µm and σy = 35 µm. The noise sigma for the
objective function is σ = 3 µm.

Four algorithms, the robust simplex, the Nelder-Mead
simplex, RCDS, and the ES were applied. The Nelder-
Mead simplex method also worked in this experiment
because the cross-coupling between the decision variables
is not severe and the function terrain in the parameter
space is relatively simple. FIG. 6 shows the history of
the u, v parameters defined similarly as in the coupling
minimization problem. It is noted that the u parameter
remains at large values (u > 10.0) before the algorithm
converged, which could explain why here the RSimplex
method behaves similarly to the Nelder-Mead simplex
method. The difference of function values on the sim-
plex vertices is significantly higher than the noise level
before it converged. The modifications we introduced in
the robust simplex do not need to kick in if there is no
ambiguity in function value comparisons.

20 40 60 80 100

number of function evaluations

0

10

20

30

40

u
,v

u=(Max-Min)/

v=volume
1/8

*500

FIG. 6. Evolution of the simplex size as indicated by the u

(circles) and v (squares) parameters defined in Eq. (3) during
the RSimplex optimization run for the kicker bump matching
experiment.

The history of the objective function values during the
experiments for all algorithms are shown in FIG. 7. The
robust simplex, the original simplex, and RCDS reached
the same minimum level of objective function with about
the same number of function evaluations. This demon-
strates the fact that the robust simplex does not make un-
necessary additional steps in the converging process. No
initial conjugate direction set was supplied to the RCDS
algorithm in this experiment. The results of the ES algo-
rithm on the same problem, using the control parameter
values in Ref. [17], are presented for comparison.

V. CONCLUSION

We modified the original Nelder-Mead simplex algo-
rithm for online optimization. The new algorithm (ro-
bust simplex, or RSimplex) takes extra samples for noise
reduction when statistically the comparisons of function
values do not yield definitive results, and makes addi-

50 100 150 200 250

number of function evaluations

0

50

100

150

200

250

o
b

je
c
ti
v
e

 (
m

)

ES

RCDS

Nelder-Mead Simplex

RSimplex

FIG. 7. History of the objective function (σx+3σy of the turn-
by-turn beam position oscillation in the first 256 turns after
the kickers are fired) for the kicker bump matching experi-
ments for four optimization algorithms: Extremum Seeking
(ES, ‘+’), RCDS (‘*’), Nelder-Mead simplex (squares), and
RSimplex (w/o simplex rebuilding, circles).

tional changes to the operations to improve the accuracy
of decision making and to further explore the parame-
ter space. The new algorithm is significantly more ro-
bust against noise than the original simplex algorithm
in the optimization of complex functions. Different from
the RCDS algorithm, which is also robust against noise,
the robust simplex algorithm does not need any prior
information about the objective function in order to be
efficient for problems with high cross-coupling between
decision variables.
The new algorithm has been tested with simulations

using an analytic function and demonstrated with ex-
periments on the SPEAR3 storage ring. The coupling
minimization experiment showed that the robust simplex
algorithm can find the optimum setting despite signifi-
cant cross-coupling between the decision variables, com-
plex function terrain, and high noise levels. In the less
challenging problem of kicker bump matching, both the
robust simplex method and the original method worked
with the same efficiency.

ACKNOWLEDGMENTS

Work was supported by the U.S. Department of En-
ergy, Office of Science, Office of Basic Energy Sciences,
under Contract No. DE-AC02-76SF00515.

8

[1] J. A. Nelder and R. Mead, The Computer Journal 7, 308
(1965).

[2] L. Emery, M. Borland, and H. Shang, in Proceedings of

PAC03 (Portland, Oregon, USA, 2003) pp. 2330–2332.
[3] X. Huang, J. Corbett, J. Safranek, and J. Wu, Nuclear

Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated
Equipment 726, 77 (2013).

[4] X. Huang and J. Safranek, Phys. Rev. ST Accel. Beams
18, 084001 (2015).

[5] H.-F. Ji, Y. Jiao, S. Wang, D.-H. Ji, C.-H. Yu, Y. Zhang,
and X. Huang, Chinese Physics C 39, 127006 (2015).

[6] S. Liuzzo, N. Carmignani, L. Farvacque, P. T. Nash, B.,
P. Raimondi, R. Versteegen, and S. M. White, in Pro-

ceedings of IPAC2016 (Busan, Korea, 2016) pp. 3420–
3422.

[7] I. Martin, M. Apollonio, and R. Bartolini, in Proceedings

of IPAC2016 (Busan, Korea, 2016) pp. 3381–3383.
[8] G. Wang, W. Cheng, X. Yang, J. Choi, and T. Shaf-

tan, in Proceedings of IPAC2017 (Copenhagen, Den-
mark, 2017) pp. 4683–4685.

[9] T. Pulampong, P. Klysubun, S. Kongtawong,

S. Krainara, and S. Sudmuang, in Proceedings of

IPAC2017 (Copenhagen, Denmark, 2017) pp. 4086–
4088.

[10] W. F. Bergan, A. C. Bartnik, I. V. Bazarov, H. He, D. L.
Rubin, and J. P. Sethna, in Proceedings of IPAC2017

(Copenhagen, Denmark, 2017) pp. 2418–2420.
[11] M. J. D. Powell, The Computer Journal 7, 155 (1964).
[12] H. Rosenbrock, The Computer Journal 3, 175184 (1960).
[13] I. V. Bazarov and C. K. Sinclair, Phys. Rev. ST Accel.

Beams 8, 034202 (2005).
[14] K. Tian, J. Safranek, and Y. Yan, Phys. Rev. ST Accel.

Beams 17, 020703 (2014).
[15] X. Pang and L. Rybarcyk, Nuclear Instruments and

Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment
741, 124 (2014).

[16] J. Safranek, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detec-
tors and Associated Equipment 388, 27 (1997).

[17] A. Sheinker, X. Huang, and J. Wu, IEEE Transctions
on control systems technology 26, 336 (2018).

