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Abstract

We identify subhalos in dark matter–only (DMO) zoom-in simulations that are likely to be disrupted due to
baryonic effects by using a random forest classifier trained on two hydrodynamic simulations of Milky Way
(MW)–mass host halos from the Latte suite of the Feedback in Realistic Environments (FIRE) project. We train our
classifier using five properties of each disrupted and surviving subhalo: pericentric distance and scale factor at first
pericentric passage after accretion and scale factor, virial mass, and maximum circular velocity at accretion. Our
five-property classifier identifies disrupted subhalos in the FIRE simulations with an 85% out-of-bag classification
score. We predict surviving subhalo populations in DMO simulations of the FIRE host halos, finding excellent
agreement with the hydrodynamic results; in particular, our classifier outperforms DMO zoom-in simulations that
include the gravitational potential of the central galactic disk in each hydrodynamic simulation, indicating that it
captures both the dynamical effects of a central disk and additional baryonic physics. We also predict surviving
subhalo populations for a suite of DMO zoom-in simulations of MW-mass host halos, finding that baryons impact
each system consistently and that the predicted amount of subhalo disruption is larger than the host-to-host scatter
among the subhalo populations. Although the small size and specific baryonic physics prescription of our training
set limits the generality of our results, our work suggests that machine-learning classification algorithms trained on
hydrodynamic zoom-in simulations can efficiently predict realistic subhalo populations.
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1. Introduction

The ΛCDM cosmological model provides a remarkably
successful framework in which the observed large-scale
distribution of galaxies can be understood in terms of the
underlying distribution of dark matter halos. However, there
are several outstanding “small-scale” problems associated with
ΛCDM cosmology (see Bullock & Boylan-Kolchin 2017 and
Del Popolo & Le Delliou 2017 for recent reviews). For
example, dark matter–only (DMO) simulations predict large
numbers of low-mass subhalos that contribute to an ever-rising
low-mass end of the subhalo mass function. If these low-mass
subhalos exist and host galaxies, we should observe many more
dwarf satellites than currently detected around the Milky Way
(MW) or the Andromeda Galaxy (M31); this is often dubbed
the missing-satellites problem (Klypin et al. 1999; Moore
et al. 1999). Meanwhile, the “too big to fail” (TBTF;
Boylan-Kolchin et al. 2011) problem arises because the number
of subhalos with high maximum circular velocities
(Vmax15 km s−1) found in DMO simulations of MW-mass
systems substantially exceeds the number of such subhalos
inferred to exist around the MW and M31. Equivalently,
observational estimates for the masses of the subhalos that host
the dwarf satellites of the MW and M31 fall below the masses
predicted by DMO simulations (Boylan-Kolchin et al. 2012).

While these small-scale problems present challenges to the
ΛCDM paradigm, a number of promising astrophysical
solutions to each problem have been proposed. For example,
it is now understood that cosmic reionization suppresses star
formation in low-mass subhalos, while supernova (SN)

feedback can suppress star formation in more massive
subhalos, potentially resolving the missing-satellites problem
(Bullock et al. 2000; Somerville 2002). Proposed solutions to
the TBTF problem build on these ideas by invoking stellar
feedback to soften central density cusps and deplete subhalos
of dark matter (Governato et al. 2012; Pontzen & Governato
2012), along with enhanced subhalo disruption via tidal
stripping or disk shocking, to destroy many of the high-Vmax

subhalos found in DMO simulations. Several authors have
suggested that these mechanisms can yield subhalo populations
in agreement with those inferred observationally for the MW
and M31 (Zolotov et al. 2012; Brooks et al. 2013; Brook & Di
Cintio 2015; Wetzel et al. 2016; Sawala et al. 2017).
Indeed, recent high-resolution hydrodynamic simulations

that self-consistently resolve star formation, stellar feedback,
and the formation of central galactic disks indicate that the
missing-satellites and TBTF problems can largely be mitigated
for the subhalo populations of MW-mass host halos. For
example, Wetzel et al. (2016) and Garrison-Kimmel et al.
(2017, hereafter GK17) studied the subhalo populations of two
MW-mass host halos from the Latte simulation suite of the
Feedback in Realistic Environments (FIRE) project (Hopkins
et al. 2014) using the “zoom-in” simulation technique (Katz &
White 1993; Oñorbe et al. 2015). These authors found that the
total number of subhalos in each simulation is reduced by about
a factor of two relative to corresponding DMO simulations with
identical initial conditions, and they also found significantly
fewer subhalos with high circular velocities in the hydro-
dynamic runs. Moreover, the subhalo populations in both of
these systems are consistent with a variety of observational
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probes for the MW and M31, which suggests that the missing-
satellites and TBTF problems can be resolved in these
particular simulations (Wetzel et al. 2016). Zhu et al. (2016)
reached similar conclusions by comparing hydrodynamic
zoom-in simulations of MW-mass host halos from the Aquarius
Project (Springel et al. 2008) to DMO simulations of the same
hosts.

These results rely on a limited number of high-resolution
simulations of MW-mass host halos; unfortunately, studying a
large, diverse sample of subhalo populations in hydrodynamic
zoom-in simulations is currently infeasible. While many
authors have justifiably focused on the subhalo populations
of MW-mass host halos, since these are particularly relevant to
the original TBTF problem, it is important to assess whether
analogous TBTF problems arise for the subhalo populations of
more massive host halos. In addition, understanding whether
the TBTF problem is consistently mitigated in a range of
simulations with different baryonic physics implementations is
necessary in order to make robust conclusions. Quantifying the
impact of baryonic physics on subhalo populations more
generally will be important in order to interpret results from
large-scale surveys, including the Dark Energy Spectroscopic
Instrument (DESI Collaboration et al. 2016) and the Large
Synoptic Survey Telescope (LSST Science Collaboration
et al. 2009), and from targeted searches for satellites of MW-
like galaxies outside the Local Group, such as the Satellites
Around Galactic Analogs Survey (SAGA; Geha et al. 2017).

Thus, models that can incorporate a variety of hydrodynamic
simulations to predict realistic subhalo populations directly
from DMO simulations are worth exploring. As a first step
toward such a model, we present a machine-learning
classification algorithm to identify subhalos in DMO zoom-in
simulations of MW-mass host halos that are likely to be
disrupted due to baryonic effects in hydrodynamic resimula-
tions. In particular, we train a random forest classifier on
disrupted and surviving subhalos from the FIRE zoom-in
simulations presented in GK17, and we use the classifier to
predict surviving subhalo populations in DMO zoom-in
simulations. Our aim is to explore whether this algorithm can
capture the effects of baryons in existing hydrodynamic
simulations and how the particular baryonic physics in
these simulations alters subhalo populations in independent
DMO simulations. Rather than providing a detailed comparison
of different classification algorithms, we show that a simple
random forest classifier predicts subhalo populations in
excellent agreement with hydrodynamic results when applied
to DMO simulations of the FIRE host halos. This technique
is efficient, since a trained classifier can immediately predict
surviving subhalo populations from relatively inexpensive
DMO simulations. We view classification as a promising
technique for predicting subhalo disruption because classifiers
will become more robust as the number of high-resolution
hydrodynamic simulations to train on increases. In particular,
classification algorithms can be trained on a variety of zoom-in
simulations to capture the impact of baryons on subhalo
populations for a range of host halo masses, central galaxy
types, formation histories, and subgrid physics prescriptions.

In addition to the practical utility of our results for predicting
realistic subhalo populations, our work provides insights into
subhalo disruption in hydrodynamic simulations and relates to
the small-scale challenges described above. For example, our
random forest classifier determines how strongly various

subhalo properties correlate with disruption, which indicates
the importance of different disruption mechanisms, including
tidal effects and stellar feedback, given the specific baryonic
physics prescription in these simulations. To explore the
relative importance of these disruption mechanisms, we
compare the surviving subhalo populations that we predict
from DMO simulations of the FIRE host halos to the DMO-
plus-disk simulations presented in GK17, which are designed
to capture the dynamical effects of the central galactic disk that
develops in each hydrodynamic simulation. In particular, by
performing DMO zoom-in simulations of two systems with
analytic disk potentials tuned to match the galactic disks that
develop in the corresponding hydrodynamic simulations, GK17
found subhalo populations in good agreement with the
hydrodynamic results, particularly in the innermost regions
(r100kpc). This result suggests that, for MW-mass halos
with a central galactic disk, the tidal effects of the disk are
largely responsible for disrupting both the low-Vmax subhalos
relevant to the missing-satellites problem and the high-Vmax

subhalos relevant to the TBTF problem. Our machine-learning
predictions are consistent with the DMO-plus-disk simulations
at low Vmax, but we find enhanced disruption for subhalos with
Vmax15kms−1, and our results match the FIRE simulations
more closely for such subhalos. Interestingly, several authors
have suggested that baryonic physics efficiently creates cored
subhalo density profiles in this regime (Chan et al. 2015; Tollet
et al. 2016; Fitts et al. 2017). We therefore argue that baryonic
effects within subhalos, such as stellar feedback, can help to
relieve the tension between the subhalo populations predicted
by DMO simulations and those inferred from observations of
the Local Group.
Our work also has broader implications for studying the

galaxy–halo connection. For example, by using our classifier to
predict surviving subhalo populations for the suite of DMO
zoom-in simulations of MW-mass host halos from Mao et al.
(2015), we find that the average amount of subhalo disruption
due to baryonic effects is larger than the host-to-host scatter
among various subhalo populations. Thus, models that utilize
subhalo statistics from these simulations should account for
enhanced subhalo disruption when marginalizing over the
effects of baryonic physics. Several semianalytic models (e.g.,
Lu et al. 2016, 2017) incorporate subhalo velocity functions
predicted by DMO zoom-in simulations of MW-mass host
halos in order to constrain the properties of the MW satellite
galaxies and their host halos, and it is plausible that the
physical insights provided by these models could change when
more realistic subhalo populations are used as input.
This paper is organized as follows. In Section 2, we describe

the FIRE simulations that we use to train our random forest
classifier, as well as the DMO and DMO-plus-disk simulations
presented in GK17 to which we compare our results. In
Section 3, we describe our training and cross-validation
methods, and we test our classifier by predicting disrupted
subhalos in two FIRE zoom-in simulations. We present our
main results in Section 4. In Section 4.1, we predict surviving
subhalo populations in DMO simulations of the FIRE host
halos, and we present velocity functions and radial distributions
for our predicted subhalo populations; in Section 4.2, we
predict surviving subhalo populations for the suite of DMO
zoom-in simulations from Mao et al. (2015), and we discuss the
implications for satellite searches. We address avenues for
future work and summarize our conclusions in Section 5.



We adopt cosmological parameters consistent with each
simulation that we analyze. In particular, we use h=0.702,
Ωm=0.272, Ωb=0.0455, and ΩΛ=0.728 for our analysis of
the FIRE simulations and h=0.7, Ωm=0.286, Ωb=0.047,
and ΩΛ=0.714 for our analysis of the MW zoom-in
simulation suite. Note that we express distances in physical
kpc and velocities in kms−1.

2. Simulation Data

We train our random forest classifier using subhalos from the
hydrodynamic zoom-in simulations presented in GK17. These
authors studied the subhalo populations of two MW-mass host
halos, referred to as m12i (Mvir=1.1×1012 Me) and
m12f(Mvir=1.6×1012Me), which were simulated as part
of the Latte suite from the FIRE project (Hopkins et al. 2014).
These simulations were performed using the FIRE-2 code
(Hopkins et al. 2017), which includes the same radiative
heating and cooling, star formation, and stellar feedback
prescriptions as the original FIRE-1 code in addition to several
numerical improvements. The simulations were run in the same
cosmological volume (side length 60h−1 Mpc) as the AGORA
project (Kim et al. 2014); the m12i and m12f zoom-in
simulation regions each contain a single host halo at redshift
z=0 that has no MW-mass neighbors within 3Mpc. The
m12i simulation was originally presented in Wetzel et al.
(2016); m12f, which was simulated using the same parameters
and pipeline, was first presented in GK17. The baryonic mass
resolution in these simulations is ∼7000Me, while the dark
matter particle mass is 3.5×104Me, corresponding to a
subhalo mass resolution of ∼3×106Me. We refer the reader
to GK17 and Hopkins et al. (2017) for details on the initial
conditions, gravitational-force softenings, and models for
radiative heating/cooling, star formation, and stellar feedback
in these simulations. Halo catalogs were created using AHF
(Knollmann & Knebe 2009), and merger trees were generated
using the consistent-trees merger code (Behroozi
et al. 2013b).

We will compare our results to the m12i and m12f subhalo
populations from three sets of simulations: the hydrodynamic
FIRE simulations described above, DMO simulations that were
run with identical initial conditions, and the dark matter–plus–
disk potential (DISK) simulations presented in GK17. The
DISK simulations are identical to the corresponding DMO
simulations, but they include gravitational potentials designed
to capture the effects of the central disks in the hydrodynamic
simulations. In particular, a disk potential is added to each
DMO zoom-in simulation at z=3, and its parameters and
evolution are tuned to match the central disk that develops in
the corresponding FIRE simulation. We refer the reader
to GK17 for a detailed description of the DISK simulations.

Figure 1 in GK17 illustrates the dark matter substructure in
m12i for each type of simulation. The visual differences
between the FIRE and DMO subhalo populations qualitatively
show that baryonic physics in the FIRE simulations lowers
both the total number of surviving subhalos and the number of
high-Vmax subhalos that contribute to the TBTF problem. This
figure also shows that the DISK simulation captures the
majority of the subhalo disruption in m12i, particularly in the
innermost regions (r100kpc), which implies that the central
disk is largely responsible for the subhalo disruption in the
corresponding hydrodynamic simulation. We have verified the
quantitative results in GK17 by calculating velocity functions

and radial distributions for the m12i and m12f subhalo
populations in the FIRE, DISK, and DMO simulations. Note
that, as in GK17, we scale all subhalo masses by a factor of
1−fb and all subhalo circular velocities by a factor of

f1 b- in our post-processing of the DMO and DISK halo
catalogs, where f 0.17b b m= W W  is the cosmic baryon
fraction. The mass correction accounts for the fact that the
baryonic mass in the hydrodynamic simulations is included in
the dark matter particles in the DMO simulations, and the
circular velocity correction is an approximate way to account
for reduced subhalo densities due to stellar feedback, similar to
the prescription in Zolotov et al. (2012). Neither of these
corrections affect our results.
To study disrupted subhalos in the FIRE simulations, we

select subhalos that disappear from the m12i and m12f halo
catalogs after z=3. We choose this redshift in order to match
the initial redshift of the DISK simulations in GK17; note that
there are very few subhalos disrupted before z=3 that pass
our subsequent minimum circular velocity cuts. We restrict our
analysis to first-order subhalos (i.e., we exclude subhalos of
subhalos); thus, for a disrupted subhalo to be included in our
catalog, it must contribute to the host halo at z 0= .
Operationally, each disrupted subhalo must have a descendant
ID equal to the ID of a main-branch progenitor of the final host
halo. Meanwhile, we define surviving subhalos as those that
remain in the halo catalog at z=0 and have a parent ID that is
equal to the host ID, which similarly excludes higher-order
subhalos.
To ensure that we study well-resolved subhalos, we restrict

both disrupted and surviving subhalos to those with peak
circular velocity Vpeak>10 km s−1 in our fiducial model,
where Vpeak is defined as the largest maximum circular velocity
a subhalo attains along its entire main branch. This is a
conservative choice; for example, GK17 presented velocity
functions using the cut Vmax>5 km s−1, where Vmax is the
maximum circular velocity at z=0. However, this cut ensures
that we train our algorithm on subhalos that are consistent with
those we will classify in a lower-resolution zoom-in simulation
suite. By choosing a Vpeak threshold rather than a Vmax

threshold, we also avoid biasing our subhalo selection with a
redshift-dependent cut, since Vpeak—unlike Vmax—is not
defined at a particular redshift. The Vpeak>10 km s−1 cut
results in a combined total of 566 surviving subhalos and 872
disrupted subhalos from m12i and m12f, which we combine
to form our fiducial training set. In the Appendix, we examine
the impact of different training sets and minimum circular
velocity cuts, and we present the results using the Vmax cut
employed in GK17 for comparison.

3. Random Forest Classification

3.1. Overview

We use the random forest algorithm from the package
Scikit-Learn (Pedregosa et al. 2011) to classify disrupted
and surviving subhalos. We refer the reader to the Scikit-
Learn documentation for a detailed description of the
algorithm, but we outline the most important aspects here. A
random forest is a collection of decision trees, each of which is
tuned to classify objects based on their input properties. Each
tree in the forest is trained on a random sample of the training
data with replacement, using a random subset of the input
features at each split in the learning process, with the goal of



predicting the classes of the objects in the training set as
accurately as possible according to some metric. For example,
the default Scikit-Learn implementation minimizes the
Gini impurity of the classifier’s prediction. The random forest
prediction for a given object is the majority vote of the tuned
decision trees, while the classification probability is equal to the
fraction of trees that predict a certain class. In this work, we
label subhalos as either surviving until z=0 or disrupted at
some earlier time; thus, our random forest objects are subhalos,
and our decision trees vote for whether each subhalo is
disrupted or survives until z=0. Note that our model does not
explicitly include enhanced mass stripping due to baryonic
effects, since we simply label subhalos as disrupted or
surviving.

We train our classifier using the disrupted and surviving
subhalos from m12i and m12f described above. We train on
subhalo properties that depend on the entire history of each
subhalo to avoid biasing the classifier by using properties
defined at specific redshifts—for example, at z=0 for
surviving subhalos or at the final available redshift for
disrupted subhalos. In particular, since we aim to classify
subhalos in DMO halo catalogs that have survived to z=0 but
are likely to be disrupted in hydrodynamic resimulations,
training our classifier with only present-day properties results in
too many surviving subhalos because of the systematic
evolution of subhalo properties over time.

Thus, we train on the following properties: pericentric
distance and scale factor at first pericentric passage after
accretion (dperi, aperi), and scale factor, virial mass, and
maximum circular velocity at accretion (aacc, Macc, Vacc). In
principle, we could train the classifier on additional subhalo
properties at pericenter or accretion; these properties could also
include information about the host halo, such as subhalo scale
radius in units of the host halo’s scale radius. Indeed, random
forests are well-suited to classifying objects using a large
number of features because of the randomized nature of the
training process, so we could even use every available subhalo
property at pericenter and accretion to train the classifier.
However, we will show that our five-property classifier
performs very well, so we adopt this model to simplify our
analysis and avoid overfitting the training data. In addition, we
checked whether including the present-day properties Vmax and
Mvir improves our classifier, finding that these properties are
much less informative than features defined at pericenter or
accretion. We discuss the correlations among the training
features below, and we explore the feature selection in more
detail in the Appendix.

We calculate the aforementioned subhalo features from the
merger trees as follows. We define accretion as the last
snapshot, working backward in time from z=0 (for surviving
subhalos) or the redshift of disruption (for disrupted subhalos),
at which a subhalo’s host ID is equal to the main halo’s ID.
Physically, this occurs when a subhalo enters the virial radius
of the host halo for the final time.7 We then take aacc, Macc, and
Vacc as the scale factor, virial mass, and maximum circular
velocity at the time of accretion for each subhalo. We define
pericenter as the first snapshot after accretion at which a
subhalo reaches a local minimum in its three-dimensional
distance from the center of the host halo. We inspected

individual subhalo orbits and determined that selecting the
distance from the center of the host halo at the first snapshot
after accretion at which a subhalo’s separation from the host
increases provides an accurate estimate of dperi.

8 For subhalos
that do not reach a local minimum in their separation from the
host halo after accretion, we define dperi as the instantaneous
distance from the center of the host. In particular, for surviving
subhalos on infalling orbits that have not experienced a
pericentric passage by z=0, we define dperi as the distance
from the host at z=0. Analogously, for destroyed subhalos on
infalling orbits that have not reached pericenter by the time of
disruption, we define dperi as the distance from the host at the
time of disruption.

3.2. Choice of Subhalo Features

We choose the subhalo properties listed above because we
expect them to correlate with subhalo disruption. Several of
these properties are motivated by the results in GK17, which
show that most of the subhalo disruption in m12i and m12f is
caused by the central galactic disk in each simulation. For
example, Figure 1 shows the joint and marginal distributions of
dperi and aperi for disrupted and surviving subhalos with
Vpeak>10 km s−1 in m12i and m12f. Disrupted subhalos,
shown in red, tend to have closer pericentric passages that
occur at earlier times—or smaller values of aperi—than their
surviving counterparts, which are shown in blue. The dperi
distributions make sense physically; subhalos that pass close to
the center of the host experience significant tidal forces due to
the galactic disk and are therefore more likely to disrupt.9 Next,

Figure 1. Normalized joint and marginal distributions of pericentric distance
and scale factor at first pericentric passage after accretion for surviving (blue)
and disrupted (red) subhalos with Vpeak>10 km s−1 in the m12i and m12f
FIRE simulations. We select disrupted subhalos starting at a=0.25 (z = 3).

7 Note that a subhalo could have been contained within the host halo’s virial
radius at an earlier time and later reaccreted; we select the final accretion event
for each subhalo.

8 Given a spacing of ∼25Myr between halo catalog snapshots and a
generous subhalo orbital velocity of ∼300 km s−1 at pericenter, the uncertainty
in dperi is only ∼8kpc.
9 GK17 found that the amount of disruption is largely insensitive to the shape
and mass of the central disk, so subhalo disruption in these simulations is at
least partly due to disk shocking rather than tidal stripping.



consider the aperi dependence: subhalos that reach pericenter
earlier have relatively low masses at pericenter and tend to
experience more pericentric passages, both of which contribute
to enhanced disruption. Although aperi and aacc are somewhat
degenerate properties, we find that including aacc improves our
results, likely because subhalos accreted at higher redshifts are
tidally stripped for longer periods of time, making them more
susceptible to disruption.

Figure 2 illustrates the Vacc and Macc distributions for
disrupted and surviving subhalos in m12i and m12f.
Interestingly, even though these features mainly contain
information about internal rather than orbital subhalo proper-
ties, they are useful for identifying disrupted subhalos; as we
show below, these properties account for 16% of the total
feature importance score for our fiducial five-property classi-
fier. At the low-mass end of the subhalo population, subhalos
with lower values of Vacc are more likely to be disrupted. In
particular, the survival of low-mass subhalos at fixed Macc is
dictated by tidal effects that preferentially disrupt lower-
concentration subhalos, i.e., subhalos with smaller values of
Vacc at fixed Macc. However, at the high-mass end of the
subhalo population, subhalos with larger values of Vacc are
more likely to be disrupted. This behavior suggests that
baryonic mechanisms, in addition to the tidal effects of the
central disk, contribute to subhalo disruption in the FIRE
simulations. Specifically, it is plausible that Vacc and Macc

encode information about stellar feedback, which can soften
central density cusps. In particular, we expect high-mass
subhalos with larger values of Vacc to host more massive
galaxies and experience more significant baryonic feedback,
i.e., high-mass subhalos with larger values of Vacc are more
likely to be disrupted. Thus, even though Macc and Vacc are
highly correlated, it is useful to train on both properties because
subhalo concentration determines Vacc at fixed Macc and

provides physical information about whether a subhalo subject
to given tidal forces is disrupted. The advantage of random
forest classification is that it captures these complex relation-
ships between subhalo properties and subhalo disruption.

3.3. Training and Validation

To train our classifier, we use the GridSearchCV function to
search the space of random forest hyperparameters and select the
ones that yield the highest out-of-bag (OOB) classification score
averaged over ten cross-validation folds of the training data.10

These hyperparameters include the number of trees in the forest,
the depth of each tree, the maximum number of features used by
each tree, and the loss function. We train the classifier using a
randomly selected 75% of the disrupted and surviving subhalos
from our fiducial training set, with replacement. The number of
folds and the ratio of the test-training split do not affect our
results. The raw percentage of subhalos with Vpeak>10 km s−1

from the hydrodynamic m12i and m12f simulations that are
identified correctly by our classifier is 95%. We cross-validate this
result by computing the OOB classification score, which is
defined as the percentage of subhalos from the training data that
the random forest classifies correctly when each tree does not vote
on subhalos in its own training set. The optimal OOB score for
our fiducial five-property classifier is 85%, and we find that at
least 20 trees are needed to achieve this OOB score. Our classifier
therefore identifies subhalos accurately, although the gap between
the overall classification accuracy and the OOB scores suggests
that we mildly overfit the training data. In particular, the raw
accuracy is higher than the OOB score because decision trees are
allowed to vote on subhalos within their respective training sets
when classifying all subhalos. To illustrate the relative importance
of each subhalo feature, Table 1 shows the OOB score along
with the percentage of correct and incorrect predictions for
subhalos in the test set, which is the set of all subhalos that are not
included in the training set, for five different classifiers. We
calculate these scores for each classifier by using the hyperpara-
meters determined by GridSearchCV and averaging the results
over 100 test-training splits. Each row of Table 1 lists the results
for a classifier trained using an additional subhalo feature; as we
add training features, the OOB score and the total classification
accuracy generally improve. Note that there are more disrupted
subhalos than surviving subhalos in our fiducial training set, so
the raw classification accuracy for each set of features is higher
than the mean classification accuracy inferred from Table 1. Thus,
while the classification accuracy for surviving subhalos decreases
when Macc and Vacc are added, the increase in classification
accuracy for disrupted subhalos outweighs this effect. We
emphasize, however, that dperi, aperi, and aacc contain most of
the information about subhalo disruption in m12i and m12f.
Next, we examine our classifier’s receiver operating

characteristic (ROC) curve, which illustrates the rate of true-
versus false-positive classifications for subhalos in the test set.
The ROC curve for our five-property classifier is shown in
Figure 3. The red and black lines illustrate perfect (100% true-
positive rate) and random (true-positive rate equal to false-
positive rate) classifiers. We quantify our classifier’s perfor-
mance by calculating the area under the ROC curve (AUC),
which confirms that the random forest classifies subhalos in the

Figure 2. Normalized joint and marginal distributions of maximum circular
velocity and virial mass at accretion for surviving (blue) and disrupted (red)
subhalos with Vpeak>10 km s−1 in the m12i and m12f FIRE simulations.
We select disrupted subhalos starting at a=0.25 (z = 3); note that
Vacc<Vpeak for subhalos that are stripped prior to infall (e.g., see Behroozi
et al. 2014).

10 In n-fold cross-validation, the training set is divided into n subsets of equal
size; n 1- of these subsets are used for training, the remaining subset is used
for cross-validation, and this procedure is repeated once for each possible
cross-validation subset.



FIRE simulations accurately: its AUC is 0.93, while a random
classifier has an AUC equal to 0.5, and a perfect classifier has
an AUC equal to 1. Note that Figure 3 shows the ROC curve
for a particular test-training split, but the scatter in the ROC
curves for different test-training splits is small.

3.4. Importance of Subhalo Features

The random forest algorithm determines the feature importance
of the various subhalo properties included in the training process.
The feature importance indicates the relative importance of each

property for predicting whether a given subhalo is disrupted or
survives until z=0. In particular, a property’s feature importance
score is the suitably normalized change in the OOB classification
score when the property is randomly shuffled among the subhalos
in the training set. Thus, the property with the highest feature
importance score is the most important for classifying disrupted and
surviving subhalos in the m12i and m12f simulations. Figure 4
illustrates the mean feature importance scores for each classifier
listed in Table 1; for a given classifier, the scores are averaged over
100 test-training splits, and the same hyperparameters are used for
each realization. For our fiducial five-property classifier, which
corresponds to the fifth column of Figure 4, we find mean feature
importance scores of 0.28 for dperi, 0.21 for aperi, 0.35 for aacc, 0.08
for Macc, and 0.08 for Vacc. The variance in the feature importance
scores for different test-training splits is small, and the scores
depend very weakly on the random forest hyperparameters.
Figure 4 shows that pericentric distance is an important

property for determining whether a given subhalo is disrupted;
subhalos with close pericentric passages are more likely to be
destroyed. The scale factors at accretion and at first pericentric
passage after accretion are also important features. In particular,
subhalos that accrete and reach pericenter earlier are preferen-
tially disrupted. The fact that aacc has the highest feature
importance score suggests that the number of pericentric
passages, rather than the distance and scale factor associated
with each individual passage, is most strongly correlated with
subhalo disruption. However, we note that interpreting the
feature importance scores for dperi and aperi is complicated by
the fact that we defined these properties as the instantaneous
distance and scale factor at the final available snapshot for
subhalos on infalling orbits that have not reached their true
pericenter. The true pericenters for such subhalos occur at
smaller values of dperi and larger values of aperi than we have
assigned here; in a more detailed analysis, we would need to
calculate these features by fitting individual subhalo orbits.
However, the fraction of disrupted (surviving) subhalos in our

Table 1
Performance Metrics for Five Different Random Forest Classifiers Trained on
Disrupted and Surviving Subhalos from the m12i and m12f FIRE Simulations

with Vpeak>10 km s−1

Training
Features

OOB
Score

Classification Accur-
acy (Disrupted)

Classification Accur-
acy (Surviving)

dperi 72% 80%±3% 58%±4%

dperi, aperi 82% 88%±2% 72%±3%

dperi, aperi, aacc 85% 87%±2% 82%±4%

dperi, aperi,
aacc, Macc

85% 88%±2% 81%±3%

dperi, aperi,
aacc, Macc,
Vacc

85% 89%±2% 80%±4%

Note. The first column lists the subhalo features used to train each classifier.
The second column lists the OOB classification score, which is the percentage
of subhalos in the training data identified correctly when each tree does not
vote on subhalos in its own training set. The third and fourth columns list the
percentage of disrupted and surviving subhalos in the test set that are identified
correctly by each classifier, averaged over 100 test-training splits. The test set is
the collection of subhalos from the m12i and m12f FIRE simulations with
Vpeak>10 km s−1 that are not included in the training set. We also indicate the
standard deviation of each classification accuracy. Note that the ratio of
disrupted to surviving subhalos in our fiducial halo catalog is roughly 3:2.

Figure 3. True- vs. false-positive classification rate for our fiducial five-
property random forest classifier, which is trained on subhalos from the m12i
and m12f FIRE simulations with Vpeak>10 km s−1. These classification rates
apply to subhalos that are not included in the training set. The AUC is equal to
1 for a perfect classifier (red), 0.93 for our random forest classifier (blue), and
0.5 for a random classifier (black).

Figure 4. Feature importance scores for the five subhalo properties used to
classify disrupted and surviving subhalos in the m12i and m12f FIRE
simulations. The colored bars above each property indicate the feature
importance scores averaged over 100 test-training splits when that property is
added to the training features. Thus, the columns correspond to the five
different classifiers in Table 1. For a given classifier, each property’s score
indicates its relative importance for classifying disrupted and surviving
subhalos. Here dperi and aperi are the pericentric distance and scale factor at
first pericentric passage after accretion, and aacc, Macc, and Vacc are the scale
factor, virial mass, and maximum circular velocity at accretion.



fiducial training set that have not reached their true pericenter
by the time of disruption (z= 0) is only 17% (20%), so the
feature importance for dperi and aperi is reasonably accurate.

3.5. Model Limitations

Finally, we note that our classification method, like any other
model, has its limitations. In particular,

1. our classifier is only trained on two zoom-in simulations
of MW-mass host halos with a specific baryonic physics
prescription, and thus it is not clear how well our
algorithm will perform on subhalo populations associated
with higher- or lower-mass host halos;

2. neither of the hosts that we train on experience a recent
major merger, so our classifier might not apply to halos
with significantly different formation histories;

3. both hosts form a central galactic disk that is responsible
for most of the subhalo disruption, so our classifier
mainly captures the dynamical effects of a central disk.

We discuss these limitations in more detail and comment on
how they might affect our results in the following section.

4. Results

We now present our main results. In Section 4.1, we use our
classifier to identify subhalos in DMO simulations of m12i
and m12f that are likely to be disrupted in hydrodynamic
resimulations. We analyze our predicted surviving subhalo
populations by comparing the velocity functions and radial
distributions to those from the FIRE, DISK, and DMO
simulations in GK17. In Section 4.2, we predict surviving
subhalo populations for the suite of DMO zoom-in simulations
of MW-mass host halos from Mao et al. (2015), and we study
the resulting velocity functions, radial distributions, and
implications for satellite searches.

4.1. Predictions for DMO Simulations of the FIRE Halos

4.1.1. Subhalo Feature Distributions

There are about twice as many surviving subhalos at z=0 in
the DMO simulations of m12i and m12f as in the corresponding
hydrodynamic simulations. As we have discussed, we expect
many of these subhalos to be disrupted due to baryonic effects,
including stellar feedback, enhanced tidal stripping, and disk
shocking, and our random forest classifier can identify such
subhalos based on their internal and orbital properties. In
particular, to identify subhalos in the m12i and m12f DMO
simulations that are likely to be disrupted by baryonic effects, we
select subhalos with Vpeak>10 km s−1 at z=0, and we use our
trained classifier to predict whether these subhalos should have
been destroyed at some earlier time using their values of dperi,
aperi, aacc, Macc, and Vacc. Note that this method does not require
matching subhalos between DMO and hydrodynamic simulations.

Figure 5 shows the joint and marginal distributions of dperi and
aperi for surviving subhalos from the m12i and m12f DMO
simulations predicted by our random forest classifier. The random
forest predicts a surviving subhalo population in dperi−aperi space
that agrees well with the hydrodynamic data; we also find good
agreement in the spaces defined by the other subhalo features. Of
course, since our classifier is trained on subhalos from the m12i
and m12f FIRE simulations, we expect it to perform particularly
well on the corresponding DMO simulations, which have

identical initial conditions. Nevertheless, these results are
encouraging: even though there is no galactic disk or stellar
feedback in the DMO simulations, our classifier efficiently
predicts subhalo populations that are in good agreement with the
hydrodynamic results. In particular, once the classifier has been
trained on the hydrodynamic simulations, it can immediately
predict surviving subhalo populations from DMO halo catalogs.
Simulations that include baryonic effects by hand, such as the
DISK simulations presented in GK17, are complementary to our
approach, since they provide more direct physical modeling at the
expense of increased computational costs.
In general, at least three mechanisms contribute to enhanced

subhalo disruption in the m12i and m12f hydrodynamic
simulations relative to the DMO simulations: tidal effects due
to the central galactic disk, stellar feedback, and characteristic
changes in subhalo orbits due to the presence of baryons. The
results from the DISK simulations in GK17 indicate that the
central disk is the main source of subhalo disruption in these
simulations, but the frequency of disruption events might
be enhanced by stellar feedback, which can soften central
density cusps (Governato et al. 2012; Pontzen & Governato
2012; Zolotov et al. 2012; Di Cintio et al. 2014); as noted
above, we multiply all circular velocities in the DMO and
DISK simulations by a factor of f1 b- to approximate this
effect. Meanwhile, Zhu et al. (2017) analyzed the orbital
properties of subhalos in hydrodynamic and DMO zoom-in
simulations of an MW-mass host halo from the Aquarius
Project and found that the distributions of subhalos in different
orbital families change when baryons are included. It is difficult
to assess the importance of the characteristic differences in
internal and orbital subhalo properties between hydrodynamic
and DMO simulations in general; however, the fact that we

Figure 5. Normalized joint and marginal distributions of pericentric distance
and scale factor at first pericentric passage after accretion for surviving
subhalos in the m12i and m12f FIRE simulations (blue); surviving subhalos
from the corresponding DMO simulations are shown in green. The unfilled
contour and purple histograms show the most probable surviving subhalo
population from the m12i and m12f DMO simulations predicted by our
random forest classifier.



predict subhalo feature distributions starting from DMO halo
catalogs that agree with hydrodynamic results suggests that
these effects are relatively unimportant.

4.1.2. Subhalo Counts

Having shown that we can predict the feature distributions of
surviving subhalos from DMO simulations of m12i and m12f,
we turn to our predictions for the number of surviving subhalos
as a function of various properties. In Figure 6, we present our
predictions for the m12i and m12f velocity functions; the top
panels show the velocity functions evaluated using Vmax, and
the bottom panels show the velocity functions evaluated using
Vpeak. The blue lines show the most probable surviving subhalo
populations predicted by our random forest algorithm for each
host halo; we also plot the FIRE, DISK, and DMO results for
comparison. We restrict the velocity functions to subhalos
within 300 kpc of the center of their respective host at z=0,
since this roughly corresponds to the virial radii of m12i and
m12f. Similarly, Figure 7 shows the distribution of tangential
and radial orbital velocities for subhalos within 300 kpc of their
respective host at z=0, and Figure 8 shows the radial
distribution of surviving subhalos at z=0 within each host
halo. In Figures 6–8, we only include subhalos with Vpeak>10
kms−1 to match the cut used in our fiducial training set. The
bottom panels in these figures show the number of surviving
subhalos predicted by the most probable realization of our
random forest classifier divided by the number of subhalos
found in each hydrodynamic simulation. We also plot the
Poisson error associated with the random forest predictions as
shaded areas in each figure. In the Appendix, we show that the
intrinsic scatter in the random forest predictions is small.

There are several interesting aspects of Figures 6–8 that are
worth exploring. Our random forest algorithm predicts that the
amount of substructure in each host is significantly reduced
relative to the DMO simulations, bringing the velocity functions
and radial distributions into good agreement with the FIRE
results. The random forest predictions for the velocity functions
are comparable to the DISK simulations at low velocities, which
indicates that the effects of the disk are largely encoded in the
subhalo properties that we use to train our classifier, at least for
subhalos with low values of Vmax or Vpeak. However, the random
forest predicts more subhalo disruption than the DISK
simulations for Vmax15 or Vpeak20 km s−1 and generally
matches the FIRE results more closely in these regimes. The
minor discrepancies for Vmax15 km s−1 are likely caused by
enhanced mass stripping due to baryonic effects, which would
shift the predictions toward smaller velocities at high Vmax.

Our predicted radial distributions are also generally comparable
to the DISK simulations; however, for 30kpcr100kpc,
where the disk should be particularly effective at disrupting
subhalos, our classifier predicts more subhalo disruption than the
m12i DISK simulation and matches the FIRE results more
closely for both hosts. Finally, Figure 7 shows that our classifier
predicts a substantial reduction in the number of subhalos with
low tangential velocities, even though it is not explicitly trained on
orbital velocities. Our predicted tangential and radial velocity
distributions are similar to the DISK results for m12i, while we
slightly overpredict the number of high-Vtan and high-Vrad
subhalos for m12f. Comparing our predictions to the DISK
simulations is a particularly useful way to assess whether our
classifier captures baryonic physics beyond the dynamical effects
of a central galactic disk, since the DISK simulations do not

modify internal subhalo properties. Thus, Figures 6–8 suggest that
our classifier captures both the tidal effects of a disk and additional
baryonic processes that contribute to subhalo disruption.
Our random forest classifier predicts that many subhalos with

large values of Vmax and Vpeak should be disrupted, while these
subhalos are not necessarily destroyed in the DISK simulations
(see Figures 6 and 14). These subhalos either orbit at large radii,
so that they are not significantly affected by the disk, or they are
too tightly bound to be disrupted by the disk alone. We find that
45% (84%) of the disrupted subhalos from m12i and m12f with
Vpeak>20 km s−1 have pericentric passages within 50 kpc
(100kpc) of their respective hosts. The disk does not seem to
be the main factor that contributes to the destruction of the
remaining subhalos, though a combination of stellar feedback and
tidal forces could lead to their disruption. Interestingly, the region
of the Vmax and Vpeak functions where we predict enhanced
subhalo disruption relative to the DISK simulations
(Vmax15 and Vpeak 20 km s−1) corresponds to the regime
where baryonic physics can efficiently create cored subhalo
density profiles (Chan et al. 2015; Tollet et al. 2016; Fitts
et al. 2017). It is also intriguing that our classifier predicts both the
Vmax and Vpeak functions accurately, even though it does not
account for enhanced mass stripping beyond the f1 b- circular
velocity correction, which does not reproduce the hydrodynamic
results on its own (for example, compare the “Raw DMO” and
“DMO” curves in GK17). Since Vmax and Vpeak are proxies for
satellite luminosity, our method can therefore be extended to
predict satellite galaxy populations associated with MW-mass
host halos (see Figure 11); in addition, it can be used to constrain
the cumulative mass functions of dark and luminous substructures
relevant to gravitational-lensing analyses. Clearly, a more diverse
training sample is required in order to make robust predictions
regarding the populations of satellite galaxies around the MW and
MW analogs from the SAGA survey. Nonetheless, Figures 6
and 8 show that classification algorithms can predict subhalo
populations in good agreement with hydrodynamic simulations,
providing an efficient way to explore the range of possible
satellite galaxy populations associated with a particular host halo.
One could argue that the efficiency of our approach is

outweighed by the fact that we must train our classifier on
computationally expensive hydrodynamic simulations in order
to predict surviving subhalo populations for corresponding
DMO simulations. However, as we demonstrate in the
following section, our method can be used to predict surviving
subhalo populations when hydrodynamic simulations are
unavailable. Of course, the surviving subhalo populations we
predict in this paper are specific to the FIRE simulations that
we use to train our classifier. Nonetheless, even though the
generality of our results is limited by the small size of our
training set, our work suggests that random forest classification
can be used to predict realistic subhalo populations given a
sufficiently diverse sample of hydrodynamic training simula-
tions. In addition, we emphasize that our classifier is trained on
simulations that yield satellite populations that are consistent
with the observed mass functions and velocity dispersion
functions for satellites of the MW and M31.

4.2. Predictions for a Suite of DMO Zoom-in Simulations

4.2.1. Subhalo Counts

We now use our classifier to identify subhalos from a suite of
independent DMO zoom-in simulations that are likely to be
disrupted in hydrodynamic resimulations. In particular, we



predict surviving subhalo populations for the 45 zoom-in
simulations of MW-mass host halos from Mao et al. (2015).
We refer the reader to Mao et al. (2015) for a detailed
description of the simulations, but we briefly highlight the most
important aspects for this work. The host halos lie in the mass
range Mvir=1012±0.03Me and have a variety of formation
histories; we plot the mass accretion histories for these hosts in

Figure 9. Note that m12i and m12f have formation histories
that are consistent with these host halos, so we expect our
model to perform well on this simulation suite. Of course, our
model would not accurately predict subhalo disruption for hosts
with significantly different formation histories due to the
limited size of our training set. The zoom-in simulations were
run at a lower resolution than the DMO simulations of m12i

Figure 6. Velocity functions for subhalos hosted by m12i (left) and m12f (right), predicted from DMO simulations of these hosts by our random forest classifier
(blue). The top panels show velocity functions evaluated using the maximum circular velocity at z=0, and the bottom panels show velocity functions evaluated using
the peak circular velocity Vpeak. Our classifier is trained on subhalos with Vpeak>10 km s−1 from both hydrodynamic simulations. The FIRE (red), DISK (dot-
dashed), and DMO (dashed) results are shown for comparison; recall that we scale circular velocities in the DISK and DMO halo catalogs by a factor of f1 b- .
Dotted lines show the DMO results scaled by a factor of 1/2 for comparison. We restrict these velocity functions to subhalos within 300 kpc of their respective hosts at
z=0. The bottom panels show the ratio N Npred FIRE, where Npred is the number of surviving subhalos predicted by the random forest and NFIRE is the number of
subhalos in each FIRE simulation. Shaded areas show the standard deviation about the most probable random forest prediction for 1000 draws from a Poisson
distribution with a mean value of Npred at each value of Vmax or Vpeak.



and m12f; the dark matter particle mass is 3×105Me, and
Mao et al. (2015) estimated that Vmax∼9 km s−1 is a
conservative lower limit for the subhalo circular velocity
resolution. Halo catalogs and merger trees were generated
using the ROCKSTAR halo finder and the consistent-
trees merger code (Behroozi et al. 2013a, 2013b). Again, we
scale all subhalo masses by 1−fb and all subhalo circular
velocities by f1 b- in our post-processing of the halo
catalogs. As noted at the end of Section 1, the cosmological
parameters for these simulations are slightly different than

those used in the FIRE simulations, and we adjust the
parameters in our analysis accordingly.
In Figure 10, we plot the maximum circular velocity functions

and radial distributions for the subhalo populations from this
simulation suite, along with those predicted by the most probable
realization of our random forest classifier for each simulation.
We also plot the results from the m12i and m12f FIRE
simulations, along with the mean DMO curves scaled by a
constant factor, for comparison. In particular, we scale the mean
DMO curves by a factor of 2/3 so that the average number of

Figure 7. Distributions of tangential orbital velocities (top) and radial orbital velocities (bottom) for subhalos with Vpeak>10 km s−1 hosted by m12i (left) and m12f
(right) at z=0, predicted from DMO simulations of these hosts by our random forest classifier (blue). The classifier is trained on subhalos with Vpeak>10 km s−1

from both FIRE simulations. We restrict these distributions to subhalos within 300kpc of their respective hosts at z=0. The various curves and panels are described
in Figure 6.



subhalos with Vpeak>10 km s−1 and r<300 kpc matches the
mean random forest prediction. The random forest predictions
were generated using the method described above. We classify
subhalos in each zoom-in simulation using the features dperi,
aperi, aacc,Macc, and Vacc, and we restrict the velocity functions to
subhalos within 300kpc of their respective host at z=0. We
plot the most probable realization of the random forest prediction
for each host. The intrinsic scatter in our random forest
predictions is small.

Figure 10 shows that the reduction in the total number of
subhalos predicted by our random forest classifier is larger than

the host-to-host scatter for the subhalo populations in these zoom-
in simulations. In particular, our classifier predicts that the total
number of subhalos with Vpeak>10 km s−1 and r<300kpc is
reduced by a factor of 2/3, while the 1σ host-to-host scatter
corresponds to an 87% reduction at most. This suggests that
subhalo disruption due to baryonic effects, such as stellar
feedback and the tidal influence of a central galactic disk, should
not be neglected in semianalytic models that use the subhalo
populations predicted by these DMO simulations as input. In
particular, for MW-mass host halos that contain a central galactic
disk similar to those found in the m12i and m12f FIRE
simulations, the reduction in substructure due to the disk and
other baryonic processes is larger than the scatter in subhalo
abundance from host to host, so the impact of baryonic physics
cannot be accounted for simply by marginalizing over the subhalo
populations of host halos with a range of formation histories.
While the average amount of subhalo disruption is larger

than the host-to-host scatter among the subhalo populations in
these simulations, the impact of baryons on individual subhalo
populations is largely consistent. In particular, our classifier
predicts that the hosts with the most subhalos tend to have the
largest number of surviving subhalos once baryonic effects are
taken into account. Moreover, the number of DMO subhalos
and predicted number of surviving subhalos above different
Vmax thresholds and within various hostcentric radii are highly
correlated for this simulation suite. For example, the Spearman
rank correlation coefficient between the number of surviving
subhalos with Vpeak>10 km s−1 and r<300kpc predicted
by the DMO simulations and our classifier is 0.74. This implies
that the shapes of the velocity functions and radial distributions
are not strongly affected by baryonic physics; indeed, the
scaled DMO curves in Figure 10 are very similar to the random
forest predictions, except at small radii, where subhalos are
preferentially disrupted in the training data. The fractional
amount of subhalo disruption is also consistent among the

Figure 8. Radial distributions of subhalos with Vpeak>10 km s−1 hosted by m12i (left) and m12f (right) at z=0, predicted from DMO simulations of these hosts
by our random forest classifier (blue). The classifier is trained on subhalos with Vpeak>10 km s−1 from both FIRE simulations, and the various curves and panels are
described in Figure 6. The scaled DMO curve overpredicts the number of surviving subhalos at small radii by an order of magnitude, highlighting the enhanced
subhalo disruption in the inner regions of the hydrodynamic simulation due to the central disk.

Figure 9.Mass accretion histories for the suite of DMO zoom-in simulations of
MW-mass host halos presented in Mao et al. (2015). The black line shows the
mean mass accretion history for the 45 hosts, and the shaded area shows the
associated ±1σ standard deviation. Mass accretion histories for the m12i and
m12f FIRE simulations are shown in orange and green, respectively.



zoom-in simulations. In particular, the number of predicted
surviving subhalos with Vmax>10 km s−1 and r<300kpc
for all 45 hosts is given by N N 0.65 0.09pred DMO =  . To
illustrate these results, the inset in the bottom panel of
Figure 10 shows the number of predicted surviving subhalos
with Vpeak>10 km s−1 and r<300kpc for each host versus
the corresponding number of subhalos in each DMO simula-
tion. The inset shows that the random forest predictions are
consistent with an overall scaling of the DMO subhalo

populations. Thus, subhalo disruption due to baryonic effects
can be parameterized rather simply for these host halos in the
context of our disruption model. We leave a detailed
exploration of such a parameterization to future work informed
by a wider range of hydrodynamic simulations, but we note
that a simple one-parameter rescaling would not be sufficient to
model subhalo disruption in detail; for example, Figure 10
shows that the shape of the mean radial subhalo distribution is
somewhat altered by baryonic physics. Finally, we note that

Figure 10. Velocity functions (top) and radial distributions (bottom) for the suite of 45 zoom-in simulations of MW-mass host halos presented in Mao et al. (2015).
The thick lines show the mean number of subhalos predicted by the DMO simulations (black) and our random forest classifier (blue), which is trained on the m12i
and m12f FIRE simulations; the shaded areas show the ±1σ standard deviation of these predictions. The thin lines show the DMO result and the most probable
random forest prediction for each host. The thick dotted lines show the mean DMO velocity function and radial distribution scaled by a factor of 2/3 for visual
comparison, and the orange and green lines show the results for m12i and m12f, respectively. Note that the scaled DMO line in the top panel is mostly obscured by
the random forest prediction. The inset in the bottom panel shows the number of predicted surviving subhalos with Vpeak>10 km s−1 and within 300kpc of their
respective host vs. the number of such subhalos in the corresponding DMO simulations. The thick dotted line in the inset shows the constant fraction of surviving
subhalos corresponding to the scaled DMO curves, and the thin dash-dotted line shows a 1: 1 relationship for comparison. The vertical line at Vmax=9 km s−1 in the
top panel represents a conservative resolution limit for these simulations.



our random forest classifier predicts that these zoom-in
simulations typically contain more high-Vmax subhalos than
m12i or m12f and more subhalos at small radii than m12i.
Determining whether these differences represent statistical
fluctuations or systematic differences between the FIRE
simulations and this simulation suite would require a larger
sample of hydrodynamic results for comparison.

4.2.2. Implications for Satellite Searches

Our model, when applied to MW-size zoom-in simulations,
suggests that MW-mass host halos are somewhat less likely to
host bright satellite galaxies such as the Magellanic Clouds and
that they have more extended radial satellite profiles than those
inferred from DMO simulations. At face value, both of these
predictions seem to be in tension with observations of MW
satellites (e.g., see Kim et al. 2017). However, the MW itself
could be an outlier, so here we also examine our model’s
predictions for the satellite populations of MW analogs.

To estimate the impact of baryonic physics on the luminosity
functions of MW analogs, which can be compared to the results of
the SAGA survey, we use the Vpeak–luminosity abundance-
matching relation tuned to the r-band luminosity function from
the GAMA galaxy survey (Loveday et al. 2015); we refer the
reader to Geha et al. (2017) for details on the abundance-matching
procedure. Figure 11 shows the resulting luminosity functions for
the MW zoom-in suite, along with the luminosity functions for
these hosts predicted by our random forest classifier. We neglect
the scatter in the Vpeak–luminosity relation for this simple estimate
because the host-to-host scatter among the zoom-in simulations is
larger than the intrinsic scatter in the luminosity function introduced
by abundance matching. Our classifier predicts a significant
reduction in the number of bright satellites associated with MW
analogs; the number of satellites with observed r-band magnitudes
Mr,o<−12.3 inferred from the DMO simulations is 3.0±1.6,
while our random forest predicts that only 1.5±1.3 such satellites

exist. Although these estimates of surviving satellite populations are
simplistic, it will be interesting to compare predictions informed by
hydrodynamic simulations to observational results as the number of
systems with high completeness limits improves.

5. Conclusions and Discussion

To conclude, we summarize our main results as follows.

1. We train a random forest classifier on disrupted and
surviving subhalos in two hydrodynamic zoom-in
simulations of MW-mass host halos from the FIRE
project using five properties of each subhalo: dperi, aperi,
aacc, Macc, and Vacc.

2. Our classifier identifies subhalos in the FIRE simulations
with an 85% OOB classification score and predicts surviving
subhalo populations from DMO simulations of these hosts
that are in excellent agreement with the hydrodynamic
results, often outperforming the DMO-plus-disk simulations
presented in Garrison-Kimmel et al. (2017).

3. We argue that our classifier captures the effects of the
central galactic disks that develop in the FIRE simula-
tions, in addition to other baryonic disruption mechan-
isms such as stellar feedback.

4. We use our classifier to predict surviving subhalo
populations for the suite of DMO zoom-in simulations
of MW-mass host halos presented in Mao et al. (2015),
finding that the average amount of subhalo disruption is
larger than the host-to-host scatter; however, the baryonic
impact on each subhalo population is largely consistent,
with N N 0.65 0.09pred DMO =  for subhalos with
V 10 km speak

1> - and r<300kpc.

We refer the reader to the end of Section 3 for a summary of the
limitations of our classification method.
There are several interesting avenues for future work. For

example, since we find that the average amount of subhalo
disruption due to baryonic physics is larger than the host-to-host
scatter among the suite of zoom-in simulations analyzed above,
this characteristic reduction in the number of subhalos should be
taken into account when marginalizing over the effects of
baryonic physics for MW-mass host halos that contain a central
galactic disk. Thus, it is plausible that the reduced number of
surviving subhalos will change the conclusions drawn from
semianalytic models that use the subhalo populations predicted by
such simulations (e.g., Lu et al. 2016, 2017).
Another potential application of our results concerns the radial

segregation of dark matter subhalos with respect to various
subhalo properties. Subhalo segregation, as studied by van den
Bosch et al. (2016), directly depends on the subhalo populations
predicted by DMO simulations. Since subhalo populations that
have been altered by baryonic effects systematically differ from
those predicted by DMO simulations, subhalo segregation could
be affected by baryonic physics, and our classifier provides an
efficient method for predicting surviving subhalo populations in
order to explore this possibility. Meanwhile, resolving the
disruption of individual subhalos in detail is an important
challenge for current simulations; for example, van den Bosch
(2017) estimated that 80% of all subhalo disruption in the
Bolshoi simulation is numerical, rather than physical. The Latte
simulations have ∼4000× smaller dark matter particle mass and
∼35× smaller dark matter force softening than Bolshoi, so these
effects are likely much less severe, but it is nevertheless worth
exploring whether artificial disruption persists in high-resolution

Figure 11. Luminosity functions for the DMO zoom-in simulations presented
in Mao et al. (2015; black), inferred using the Vpeak–luminosity abundance-
matching relation tuned to the r-band luminosity function from the GAMA
survey (Loveday et al. 2015). We do not apply scatter in the Vpeak−Mr,o

relation to highlight the host-to-host variability. The blue line shows our mean
prediction for the luminosity function of surviving satellites, and shaded areas
show ±1σ and ±2σ standard deviations. We also plot luminosity functions for
m12i (orange) and m12f (green). Here Mr,o is the observed r-band luminosity,
and the vertical line corresponds to the completeness limit of the SAGA survey.



hydrodynamic simulations and how these numerical artifacts
might influence our results.

The algorithm presented in this paper is extremely simple,
using only five subhalo properties as training features. Never-
theless, these properties encode the majority of the information
about subhalo disruption in the m12i and m12f FIRE
simulations, yielding a classifier that predicts surviving subhalo
populations from DMO simulations that are in excellent
agreement with hydrodynamic results. Of course, as the number
of hydrodynamic training simulations grows, it will be worthwhile
to explore more sophisticated classification algorithms and study
the feature selection in more detail. It will be interesting to assess
how well a classifier can perform in principle, since there are
characteristic differences between DMO and hydrodynamic
simulations, including changes in subhalo orbits due to the
presence of baryons(Zhu et al. 2017), that our simple model
cannot capture. Our results hint that these characteristic
differences are relatively unimportant, but further tests should be
performed using a larger sample of training simulations.

As more high-resolution zoom-in simulations become available,
it will become feasible to train classifiers on increasingly diverse
data sets, allowing for more robust predictions. Once a classifier
has been trained on a wide variety of hydrodynamic simulations, it
can predict a range of surviving subhalo populations associated
with different central galaxy types and halo formation histories
directly from DMO simulations. It is worth exploring whether
these predictions can be used as input for neural networks in order
to generate large samples of mock halo catalogs, perhaps
eliminating the need for certain types of simulations entirely.

Machine-learning algorithms have the potential to identify
large samples of realistic subhalo populations that can be used
as input for models that populate subhalos with galaxies.
Comparing the surviving subhalo populations predicted by
such algorithms for host halos on different mass scales could
provide insight into the original TBTF problem for MW-mass
systems and analogous problems for host halos of different
masses. Moreover, comparing the results of classification
algorithms that are trained on hydrodynamic simulations with

different implementations of baryonic physics would be a
promising step toward parameterizing the impact of baryons on
the abundance and properties of dark matter subhalos.
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Appendix
Scatter, Feature Selection, and Resolution

We perform several tests to check the robustness of our
results. First, we examine the scatter in the random forest

Figure 12. Velocity functions for m12i (left) and m12f (right) predicted by the most probable realization of our random forest classifier when trained only on
subhalos from m12i (orange) or m12f (green) with Vpeak>10 km s−1. Blue lines show 200 realizations of the prediction for our fiducial classifier, which is trained
on subhalos from both hosts, and red lines show the FIRE results. While there is a difference between the total number of surviving subhalos predicted by classifiers
trained only on m12i or m12f, the scatter about the most probable prediction for our fiducial classifier is small.



predictions for the m12i and m12f Vmax functions and
whether the details of the training data affect our results.
Figure 12 shows the Vmax functions from 200 realizations of
our fiducial classifier, along with the most probable realization
of classifiers trained only on subhalos from m12i or m12f
with Vpeak>10 km s−1. The scatter about the most probable
prediction for our fiducial classifier is small; in particular, the
intrinsic scatter of the random forest prediction is comparable
to or smaller than the Poisson noise over the entire velocity
function for each host. Thus, even though the prediction for the
total number of surviving subhalos is different for classifiers
trained on m12i or m12f separately, this uncertainty does not
propagate to our fiducial classifier.

Next, we explore the choice of training features. In
particular, we test how adding subhalo features affects our
results for the Vmax functions and radial distributions of the

surviving subhalo populations predicted from DMO simula-
tions of m12i and m12f. In Figure 13, we plot the most
probable Vmax functions and radial distributions predicted by
five classifiers that each use an additional training feature,
corresponding to the rows of Table 1 and the columns of
Figure 4. As we add subhalo features, the predicted distribu-
tions approach the FIRE results. Interestingly, dperi (or aperi or
aacc) alone provides most of the information needed to match
the total number of surviving subhalos with Vpeak>10 km s−1

and r<300kpc, but adding additional features improves the
predictions at large Vmax and small radii.
Finally, we study how our results depend on the resolution

limits used for the training data. In Figure 14, we show the
m12i and m12f velocity functions and radial distributions
predicted by a classifier trained on subhalos from both hosts
with Vpeak>5 km s−1, which is less restrictive than the

Figure 13. Velocity functions and radial distributions of subhalos in m12i (left) and m12f (right) predicted by the most probable realization of random forest
classifiers trained on subhalos from both hydrodynamic simulations with Vpeak>10 km s−1. The classifiers use the features dperi (blue); dperi and aperi (red); dperi, aperi,
and aacc (green); dperi, aperi, aacc, and Macc (orange); and dperi, aperi, aacc, Macc, and Vacc (cyan), corresponding to the rows of Table 1 and the columns of Figure 4. The
solid red lines show the FIRE results.



Vpeak>10 km s−1 cut used in our primary analysis. We plot
the results for subhalos with Vmax>5 km s−1, where Vmax is
the maximum circular velocity evaluated at z=0, which
allows for a direct comparison with the results in GK17. Our
conclusions are unaffected by changing the minimum circular
velocity. In fact, our predictions match the hydrodynamic
results even more closely than before in the low-Vmax regime,
since this less restrictive cut significantly increases the number
of subhalos at the low-Vmax end of the training set. Thus, our
classifier can be applied to simulations with a range of
resolution thresholds if appropriate cuts are applied to the
training data.
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