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Abstract

A simple mathematical description is developed for the bunching spectrum in echo enabled
harmonic generation (EEHG) that incorporates the effect of additional electron beam energy mod-
ulations. Under common assumptions, they are shown to contribute purely through the phase of
the longitudinal bunching factor, which allows the spectral moments of the bunching to be cal-
culated directly from the known energy modulations. In particular, the second moment (spectral
bandwidth) serves as simple constraint on the amplitude of the energy modulations to maintain
a transform-limited seed. We show that, in general, the impact on the spectrum of energy dis-
tortions that develop between the EEHG chicanes scales like the harmonic number compared to
distortions that occur upstream. This may limit the parameters that will allow EEHG to reach
short wavelengths in high brightness FELs.

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, under Contract No. DE-AC02-76SF00515.



I. INTRODUCTION

Echo Enabled Harmonic Generation (EEHG)[1] is an external seeding scheme for mod-
ern free electron lasers (FELs) designed to improve the temporal coherence and produce a
transform-limited output pulse. It uses lasers to imprint coherent energy modulations on a
relativistic electron beam that are then converted to a high harmonic density modulation.
The beam then enters the FEL undulator where the density-modulated (bunched) electrons
radiate coherently, and the radiation is amplified up to saturation. To reach EUV or shorter
wavelengths from conventional UV lasers, high harmonics with EEHG are required, but
preservation of the coherent modulation can be challenging during the manipulation and
transport.

As with most harmonic up-conversion schemes, initial errors can be multiplied and spoil
the final output. The sensitivity of EEHG to initial laser phase, noise, and energy distortions
in the electron beam has been examined previously [2-8]. EEHG uses two laser modula-
tors and two dispersive chicanes to perform the harmonic upshift, and the final bunching
spectrum is relatively insensitive to small distortions on the beam or in the laser upstream
of the first chicane [9, 10]. Laser phase distortions in the second modulator, however, can
get amplified and impact the time-bandwidth product similarly to High Gain Harmonic
Generation (HGHG) [11].

Here we examine the impact of energy structures on the beam that emerge during the
EEHG transformation i.e., between the chicanes. Such energy distortions can be particu-
larly problematic because much like phase errors in the second laser, they are not filtered by
the large first dispersion and have a pronounced impact on the final spectrum. To analyze
the problem, we develop a general description for the bunching in the presence of small but
arbitrary energy modulations. Simple distortions are analyzed and compared with previous
results. We then consider the impact on the bunching spectrum of two common contrib-
utors to nonlinear beam energy structure; longitudinal space charge (LSC) and coherent
synchrotron radiation (CSR). Both are driven by collective effects and are difficult to re-
move. LSC produces energy modulations from localized density perturbations and from the
beam core itself. For highly relativistic beams in a short drift the modulations are negligible,
but in strong modulators K, >> 1, the effective drift length can increase by ~ K? which may
be on the order of a kilometer for few GeV-scale beams coupling to UV lasers. This can have
a significant impact on the final bunching in EEHG. Alternately, CSR leads to nonlinear
energy structures from the coherent emission of the beam as it bends through magnetic
dipoles. This has the largest impact on the bunching in the last two bends of the strong first
EEHG chicane. Here, for both LSC and CSR, constraints on the induced energy structures
according to their impact on the bunching spectrum are derived with simple models, and
results are checked with numerical particle simulations. General limits are established on
the relevant parameters to seed transform-limited FEL pulses with EEHG.



II. MATHEMATICAL DESCRIPTION

Notation closely follows that of [12] where more details on the EEHG process can be
found. Consider an electron beam transformation similar to EEHG of the form,

p1=p+ Apsin(kiz) + Apy(2),

21 = 2+ Bip1/ki,

pa = p1 + Agsin(kozy) + Apa(21),
29 = 21 + Bapy /K.

(1)

where the normalized laser modulations are A; 5 = A~ 2/0,, normalized dispersions are

By = k:lRé16’2) 0,/7, the slice energy spread is 0., and + is the relativistic factor. Additional
energy modulations Ap; and Aps of arbitrary longitudinal dependence are modeled as oc-
curring alongside the laser modulations. In this simplified description, Ap; can also be any
existing energy structure from upstream, and Apy can be used to capture the integrated
effect of CSR from the first chicane.

In a beam with the phase space distribution f(z,p), the bunching spectrum near the
harmonic spatial frequency kg = agk; = (n + mK)k; is given by

bn’m(k) :/eiz(kkE)ifpifﬁpl(z)ikB2Ap2(21)/k1 (2>
x f(2,p) Jn(—=EA1) Jn(—kA2 By /) dzdp,

where { = kB/ki—mKB;, B = By+Bs, and K = ky/k;. Useful analytic solutions for b,, ,,, (k)
are available only for a few simple forms of the energy modulations, particularly for Ap,
which is a function of z;(z,p) rather than z. However, if Aps is sufficiently slowly-varying
that the modulation experienced at the position z; is the same as at z, then Apy(z1) =
Apy(z) is a significant mathematical simplification. Similarly, we also assume that the
energy structures in Ap; are small enough so that they do not lead to large changes in
the phase space distribution after the first chicane, B1dAp;/dz < k;. We will explore
these assumptions shortly. Retaining the lowest order contributions near the harmonic, the
bunching spectrum can be written as

b (k) ~ I_)mm/f(z)e_iz(k_kE)’Li“”(z)dz, (3)

where b,,,, = e <5/ 2T (=€pAL) I (—apAsBs) is the optimized bunching amplitude and
&g = nBy 4+ agBs is the EEHG scaling parameter [10]. An uncorrelated Gaussian initial
energy distribution f(z,p) = f(2)(2r)""/2e7#*/2 has been assumed. The additional energy
modulations Ap; and Ap, are expressed through a z-dependent phase,

©(2) = —EpAp1(2) — apBaAps(2)
= 1(2) + pa(2).

(4)

Evidently, energy modulations that occur within or before the first modulator, Ap;, are
multiplied by the small scaling parameter |£g| S 1 in their contribution to the phase ¢;(z).
Linear, quadratic, and sinusoidal such initial modulations were studied in [10], where it was
shown that the smallness of £z is responsible for the relative insensitivity of the EEHG
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bunching spectrum to small initial perturbations. However, we see here that energy mod-
ulations introduced between the chicanes, Aps, are multiplied by the much larger factor
apBy ~ m/As > 1 and therefore can have a pronounced impact on the final bunching
spectrum at high harmonics.
From (3), the bunching along z can be identified from the Fourier transform b, ,,(k) =
fgn,m(z)e_ikzdz:
bnan(2) = by f(2)e 2=, (5)
In this form it is straightforward to obtain both the instantaneous (local) and projected

(global) behavior of the bunching spectrum. The instantaneous spatial bunching frequency
is just the z-derivative of the full longitudinal phase,

ko(2) = kg + ¢/ (2). (6)

Thus the local bunching frequency in the beam is calculated directly from the derivative of
the energy modulations in (4) without the need to first solve for the bunching spectrum.
From the instantaneous frequency we can then obtain the global mean frequency [13],

SO ke (2) P (2)dz
ke = [2 f2()dz he

This is the first moment of the bunching spectrum, but here it is calculated simply from the
beam distribution f(z) and the additional phase. The bandwidth of |b,, ., (k)|> about (k.) is
then given by ([k, — (k.)]?) [14]:

+(¢'(2))- (7)

oi = iy + (¢’ = (&),
_ 2 9 (8)

= Ok, -+ T
where o} = [(f')?dz/ [ f?dz yields the transform-limited bandwidth in the absence of
additional energy structure. We define o,/ as the bandwidth associated with the additional
frequencies introduced through the phase p(z). It is particularly useful for capturing the
influence of nonlinear low frequency modulations O(1/0) that broaden the bandwidth and
produce a pedestal near the bunching harmonic. To maintain high quality FEL seeding in
the presence of such bandwidth growth, one figure of merit on the magnitude of the tolerable
energy modulations on the beam is then

U(p’/O-kE S 1. (9)

This will be used throughout, and states that the additional bandwidth should be less than
the bandwidth of the bunching spectrum defined by the unperturbed beam.
Visualization of the instantaneous bunching spectrum is assisted by a Wigner distribution,

Wiz, k) = /_00 e~ b, (2 + :L‘/Q)i)zm(z —x/2)dx. (10)

The bunching spectral power is [b,.(k)[> = [°. W(z,k)dz, and the instantaneous
frequency is the average frequency of W(z,k) at a given z position, k,(z) =
I kW (2, k)dk) [ W (2, k)dk [15).



One measure of how accurately the approximate bunching in (3) reproduces the exact
solution in (2) is the harmonic shift of the bunching peak in a beam with a linear energy chirp,
which can be solved exactly in both cases. An initial linear chirp of the form Ap; = hik,2z was
solved explicitly in [9, 10] and yields a shifted harmonic factor of a = (ag + mKh,By)/(1 +
hiB). From Eq. (7) with (¢/'(z)) = —&ghiky, the shifted harmonic in the approximate
theory is a = ag — £ghy. The relative difference between the two appears only to second
order in the chirp, h2¢gB/ag, which is generally small. An identical chirp acquired in the
second modulator Aps = hik;z yields a = ag/(1+ hy Bs) from the exact expression in (2), or
a = ag(l — hyBy) from the approximate expression in (7). Similarly, the relative difference
to lowest order is h?B32, which is also typically small.

With this approximate description we can compute the spatial-spectral distribution of the
bunching through the shape of the energy modulations imprinted on the beam. Two simple
examples with analytic solutions are given in the Appendix. More complicated nonlinear
modulations generated by LSC and CSR are examined in the following sections.

III. LONGITUDINAL SPACE CHARGE

LSC generates energy structures from the mutual repulsion of electrons near density
peaks. In a cylindrical beam with uniform transverse density and hard-edge radius ry, the
on-axis energy change over the length Ly due to LSC forces is

Aprsc(z) _4La /000 @dk‘ /00 Msin[k(z — 2))dz (11)

O~ ZZO — 0o ]A

where [4,=17 kA, Zy = 377 Q, and I(z) = Qcf(z) is the current profile. The LSC impedance
per unit length Z(k) depends on the parameters of the system [16]. Inside an undulator
and under specific conditions, the impedance can be strongly enhanced compared to a free
space drift [17]. Assuming these conditions are satisfied for the EEHG modulators and in

the limit kry /v, < 1,
7
Z(k) =20k {Hzln(%)}, (12)
]{7’[,

where v, = v/+/1 + K2/2 is the longitudinal Lorentz factor inside an undulator.
—#*/29% for a pencil beam 7,/70, < 1, the

Assuming a Gaussian current profile /(z) = lpe
associated energy modulation is,

21, L s 279,52
Aprsc(z) =~ 0L~ In (7 0 ) g% /0% (13)

2 +2
O-WIA’YzO-z p

The shape of the modulation is shown in FIG. 1. The long-range LSC wake generates a
positive energy chirp in the beam core. If it develops in the second modulator, it redshifts
the local bunching frequency as indicated by k,(z), which is calculated from Aprsc(z) with
Egs. (4) and (6). The LSC-induced bandwidth constraint from (9) with o, = 1/v/20, for
a Gaussian is

]OLd V202
U%SC/U;CE ~n In ( > <1 (14)

o Iay20, 4

where n = g or apBs depending on whether the LSC effect occurs in the first or second
modulator, respectively. Inspection of the induced global energy spread oap, 0 = 0y, 0= /n
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FIG. 1: Examples of LSC and CSR wakes (top), Wigner bunching distributions (middle), and
bunching spectra (bottom). The instantaneous frequency from theory is plotted (dashed red line)
over each Wigner distribution, which are from numerical simulations of the case when o /oy, = 10.
Results apply generally for Gaussian beams with energy structures described by Egs. (13) and (22).

shows that Eq. (14) translates to a simple constraint; oap,.. < 1/v2n. Clearly if n =
agBs > 1, the tolerable energy modulation from LSC in the second modulator is much less
than the intrinsic slice energy spread. This may be problematic for high current beams in
strong undulators.

IV. MICROBUNCHING INSTABILITY

Consider a beam upstream of the EEHG line with a small amplitude (by < 1) density
modulation I(z) = (1 + 2by cos kgz) that gets amplified by LSC and produces an energy
modulation. Through a drift length (or undulator) Lg4, space charge forces will drive energy
modulations with frequency ko > 1/0, according to [18],

8mboloLa|Z(ko)| .
Apy(z) = Oai IZ|ZO( o)l sin(koz)
= AM(]C()) Sin(kioz).

In the limit ky < k; a monochromatic modulation generates coherent bunching sidebands
at the frequencies kg + ¢ko with amplitudes that scale as J,(nAy). The case of an energy

(15)
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FIG. 2: Left: Density modulation gain function through the first EEHG modulator and chicane.
Right: Corresponding impact of A; on the MBI-induced energy spread through the second undula-
tor with Aps (k) = 0.17, Apr2(kp) = 0.11, and by = 0.2%. Parameters are similar to an idealized
LCLS-II, 4 GeV beam at high current Iy = 3.3 kA to exaggerate the effect for simulation efficiency,
with 0, = 0.88, 0,/c =50 fs, r, = 30 pm, Lgq; = 6.25 m, Lgo =4 m, K, = 17.8, B; = 20, and
27 /k1 = 260 nm.

modulation upstream of the first chicane (n = {g) was studied in [10]. Here we see that if
the energy modulation develops in the second modulator, the larger n = apBy > 1 leads
to a much stronger effect on the spectrum. For example, the bunching at kg is suppressed
when Jy(nAy) = 0, and thus when Ay, = 2.4/n. Clearly if n = agBs this can be much
smaller than the slice energy spread.

Let us assume that the energy modulation in (15) occurs in the first EEHG modula-
tor alongside the first laser modulation. The beam will then pass through the first EEHG
chicane, which can convert the induced energy modulation into a density modulation, de-
pending on k. Higher frequencies can be suppressed [19], whereas lower frequencies can
be amplified. In the linear theory, the current spectrum after the chicane is just the initial
current spectrum times a density “gain” function,

N

B B _1(koB1)?
Gllko) = =200 g (o) o (22004, ) 3 () (16)
2k1bg ky

where by < k(;fl Ay < 1. In the absence of the first laser A; = 0, this reduces to the
standard expression for the gain due to LSC [20]. We see here however, that the first EEHG
laser acts to reduce the growth of the density modulation (FIG. 2). It does so by mixing
high frequency energy structures into the beam that are longitudinally smeared, similar to
a laser heater.

In the second EEHG modulator, the density modulation can then develop into an addi-
tional energy modulation that will impact the spectrum via the phase ¢5(z). The modulation
at the end of the second undulator is similar to Eq. (15) but with the bunching multiplied
by the gain,

ApMVQ(Z) = AMQ(]{?())G(I{ZQ) sin(koz). (17)
Apro has the same form as Ay, but uses the impedance Ly|Z(ko)| of the second undulator.
For A; = 0 the modulation scales in frequency as Aparo o kge*(koBl/kl)z/z, which has
maximum when ko &~ k,, = V/3k; /Bi. The EEHG beamline works as a LSC amplifier with
multiple stages, but with the first laser and strong chicane providing some mitigation against
MBI growth.

The single frequency analysis can be extended to the case of a beam that initially has
a broadband spectrum of incoherent density modulations. Such is the case of MBI from
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shot noise that can produce a spectral pedestal around the harmonic bunching spike [21].
This case can be modeled with (17) as a discrete sum over the different frequencies and
corresponding amplitudes,

Apupi(z) = Z Ana2(k;)G(kj) sin(k;z + ¢;) (18)

where ¢; is a random phase. For noise, the induced energy spread is dominated by
the incoherent contribution to the sum, o3, . = 3> Ama(k;)’G(k;)*. The contri-
bution to the bunching spectrum pedestal from the growth in the second modulator

alone is then Ui’M = “EBQ)2 > Ana(k;)? G(k‘ )’k?.  In the continuous limit we can

integrate over the frequenmes Oprr = 3= Jo An2(k)*G(k)*dk to obtain o}, . ~

égilz\g (AA%?OM’z) o F ( 55 1L 1 —A%) where A); and Ay o are evaluated at the frequency

peak k,,, and n, = V27 /o, for a Gaussian current. F3 is a generalized hypergeometric
function that captures the impact of A; on the MBI-driven energy spread growth, as shown
in FIG. 2. If A; > 2 the energy spread growth is simply,

I 2
9 1 AniAnro

~ : . 1
TApusi 2mn, B A; < 6bg ) (19)

This expression holds if the energy modulations that develop from pure noise in the second
modulator are small compared with those amplified through cascading, and the system
satisfies the linear gain theory. Performing a similar integral for o, _ , one can obtain a
relationship between the induced incoherent bandwidth growth and the induced incoherent
energy spread growth. With A; > 2 it reduces to a simple form,

/JkE ~ \/6|n|k10-20APMBI’ (20>

OPvinr
where agpBy /By = |n).

The constraint in Eq. (9) then gives oap,,,, < 1/V6|n|kio., which is independent of
the harmonic number and suggests that the MBI-induced energy spread through the second
modulator must be much less than the slice energy spread (since kjo, > 1) to maintain
narrowband bunching. One caveat, however, is that o, includes frequencies that may
be outside the FEL bandwidth that can be largely 1gn0red specifically if 1/agpB; > p or if
the wavelengths are shorter than the cooperation length. Only when the MBI gain in the
low frequencies near the spike is large enough does the bunching spectrum have an attached
pedestal and the constraint applies.

FIG. 3 illustrates the impact of MBI on the bunching spectrum. Numerical simulations
were performed with energy modulations imposed on the beam according to (18). Results of
the bunching spectrum bandwidth indicate good agreement with the scaling of the incoherent
energy spread in Eq. (20). Simulations also confirm that the bunching factor is reduced

by e ~3(@nB 0k, [22], and thus that the harmonic number is limited by the induced
incoherent energy spread. Results highlight the need to keep by as small as possible to avoid
MBI growth in the EEHG section.

V. COHERENT SYNCHROTRON RADIATION

The impact of CSR on the EEHG bunching spectrum has been studied numerically (see,
g., [23]). The energy modulation imparted by CSR along the beam after passage through
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FIG. 3: MBI impact on EEHG bunching for parameters of an idealized LCLS-II type 4 GeV beam
with Iy = 1 kA, A; = 3, Ay = 5, and ag = 200, n = —1 using 27 /k; = 260 nm seed lasers.
Top left: Bunching spectrum evolution as a function of MBI-induced energy spread. Top right:
Corresponding induced spectral bandwidth vs energy spread growth from MBI. Solid line is the
prediction from Eq. (20). Bottom left: Bunching spectra for different induced energy spreads, each

1 242
averaged over 100 runs. Bottom right: Bunching reduction according to e 2(a8B2) 0h 5

a dipole bend magnet of length L,, is given in the steady state limit as [24],

B 2L, /z dz' dI(Z)
o JA(BRY)V3 J_ o (2= 23 dz'

Apcsr(z) = (21)

where R is the bend radius. This expression is applicable in the regime R/7® < 0. <
RO3/24, where § < 1 is the bend angle. It is assumed that the current profile remains
essentially unchanged throughout the bend. The energy change for a Gaussian current is
25, 26]

APCSR(Z ) =

LmI()F(%) < 8 )1/3
I40, 3v/20. R?

and H;;3 is the Hermite polynomial. The instantaneous frequency then goes like

e*Z2/2”§H4/3(—z/\/§az), as shown in FIG. 1. The induced bandwidth constraint on the
bunching from the CSR energy wake is then calculated to be

(22)

L, 1
Tglpsn Tk & nIAO-y<O-zR2)1/3 <1 (23)

where again 7 depends on where the energy modulation occurs. This is a subtler point for
CSR than for LSC because CSR occurs progressively throughout the chicane on the evolving
phase space. In a symmetric four-dipole first chicane, CSR in the first pair of dipoles has



a smaller impact on the final bunching spectrum than CSR in the last two dipoles, simply
because the phase space has not experienced the full shearing. Elegant simulations [27] with
the steady-state model indicate that CSR in each of the last two dipoles has a comparable
impact on the spectrum such that taking n ~ 2agBs in (23) approximately captures the
overall impact on the bunching from the first chicane.

The CSR constraint can be related directly to the longitudinal dispersion, R%) = 20*(Lp+
2L,,/3), where Lp is the drift length between the first and second dipoles. Eq. (23) then
gives a rough limit on the peak value,

3L I v
O D A7
RY < [E (1+ 57 ) (\n\fokl) ] : (24)

It is assumed that the chicanes are related by the harmonic number Rfﬁ) ~ |n|RéQ /ag. From
this perspective, chicanes with Lp/L,, > 1 are favorable because they allow larger values of
dispersion without violating the constraint. For the LCLS-II beam at ap = 100, Eq. (24) is
only satisfied for the required R%) ~ 7 mm dispersion if Lp/L,, > O(10?). This appears to
be the most restrictive constraint if this type of dispersion element is used with a Gaussian
beam.

In reality, the CSR effect may have transients and 3D effects that modify the description.
For example, the current can be reduced if the bend angle is such that o, < 6o, within
the dipole. On the other hand, large energy wakes generated in one dipole can be turned
into density modulations in the following dipole, which drives a CSR instability inside the
chicane. For simplicity in the analysis we therefore assume that the wakes are small enough
that the instability does not develop, and that the CSR effect is purely an energy modulation.
This is justified because the constraint on the bandwidth growth in (23) also indicates that
the tolerable energy modulations are less than the slice energy spread.

VI. CONCLUSIONS

We have developed an description for the bunching in EEHG that enables the spatial-
spectral bunching distribution and spectral moments to be simply calculated in the presence
of energy structures on the beam. In particular, a general expression for the spectral band-
width is derived for arbitrary energy structures and beam current profiles, and serves as a
measure of tolerable energy modulations via their impact on the bunching spectral width.
The description also applies to HGHG with one laser modulator and chicane turned off. In
EEHG, we find that the bunching spectrum is particularly sensitive to energy distortions
that develop on the electron beam during the harmonic up-conversion, such as within the
first chicane or second modulator. Specific examples of LSC and CSR are studied with
steady-state models, and we derive several constraints to maintain a near transform-limited
bunching spectrum with beams that have a Gaussian current profile. In several instances
the constraints appear highly restrictive, but we note that for the more typical flatter, non-
gaussian current profiles of modern systems and with the effects of FEL lasing included,
the constraints may be somewhat relaxed. This is especially true if the seed laser pulses
are shorter than the electron beam, which naturally broadens the bunching bandwidth. A
shorter seed pulse also samples smaller, more linear regions of the phase space. This is a
topic of future study.
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FIG. 4: Wigner distributions of bunching for a beam with linear and quadratic chirps [top row,
Eq. (25)] with a = 4/0, and 3 = 4/02, and a beam with a sinusoidal energy modulation [bottom

row, Eq. (27)] with kg = 3/0, and u = —4. The head is to the right.
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VIII. APPENDIX

Consider two examples of energy modulations with analytic solutions on a general beam
with a Gaussian current profile, f(z) = (2m02)~"/2e~*"/20%  for which the unperturbed band-
width is o, = 1/v/20.. In the presence of a linear and quadratic energy chirp, the additional
phase from (4) can be written as,

©(z) = az + B2>. (25)

The instantaneous frequency is then k,(z) = kg + a + 262 and induced bandwidth 03,, =
2(f0,)%. The Wigner distribution is then

7.2
W(Z, ]{) = bn—’me—z2/0'§—0'§(k‘—k;E_a_2ﬁz)2 (26)

Vo,

Alternately, a sinusoidal energy modulation on the beam gives the phase

o(2) = psin(koz), (27)
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with k.(2) = kg + pko cos(koz) and o7, = (uko)?/2 for kg > 1/0.. The Wigner distribution

is B
2

Z Jn(2p cos koz)

n=—oo

Wiz, k)= o (28)

6—22/J§—J§(k—kE—nko/2)2

Figure 4 shows the Wigner distributions for both analytic examples as well as results from
numerical particle simulations of EEHG bunching with the corresponding energy modula-
tions imprinted on the beam in the second undulator, with ¢,/c = 50 fs and b,,,, = 0.05.
The good agreement indicates that the approximations made in the analytic calculation of
Ap, are reasonable in these instances. Parameters are chosen for illustration and clearly
violate the bandwidth constraint in Eq. (9).

The first example in (25) is a linear frequency structure that is easily removable, at least
in principle. The responsible quadratic beam chirp can be largely removed by phase space
linearization, or used intentionally to produce compressible FEL pulses if the linear frequency
chirp is maintained during amplification. The sinusoid exemplifies a type of nonlinear energy
structure that could be used beneficially to produce coherent bunching sidebands [8, 10, 28],
or conversely may compromise the FEL output if uncontrolled.

[1] G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009).

[2] G. Stupakov, Z. Huang, and D. Ratner, Proceedings of FEL 2010 Conference pp. 278-281
(2010).

[3] G. Stupakov, SLAC-PUB-14639 (2011).

[4] D. Ratner, A. Fry, G. Stupakov, and W. White, Phys. Rev. ST Accel. Beams 15, 030702
(2012).

[5] G. Geloni, V. Kocharyan, and E. Saldin, Analytical studies of constraints on the performance
for eehg fel seed lasers (2011), arXiv:1111.1615.

[6] Z.T.Zhao, D. Wang, J. H. Chen, Z. H. Chen, H. X. Deng, J. G. Ding, C. Feng, Q. Gu, M. M.
Huang, T. H. Lan, et al., Nature Photonics 6, 360 (2012).

[7] G. Penn, Phys. Rev. ST Accel. Beams 17, 110707 (2014).

[8] P. Rebernik Ribi¢, E. Roussel, G. Penn, G. De Ninno, L. Giannessi, G. Penco, and E. Allaria,
Photonics 4, 19 (2017), ISSN 2304-6732.

[9] Z.Huang, D. Ratner, G. Stupakov, and D. Xiang, Proceedings of the 2009 Free-Electron Laser
Conference p. 127 (2009).

[10] E. Hemsing, B. Garcia, Z. Huang, T. Raubenheimer, and D. Xiang, Phys. Rev. Accel.
Beams 20, 060702 (2017), URL https://link.aps.org/doi/10.1103/PhysRevAccelBeans.
20.060702.

1] Z. Huang, Proceedings of FEL 2006 Conference pp. 133136 (2006).

2] D. Xiang and G. Stupakov, Phys. Rev. ST Accel. Beams 12, 030702 (2009).

3] L. Cohen, Time-frequency Analysis: Theory and Applications (Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1995), ISBN 0-13-594532-1.

[14] J. M. Lilly and S. C. Olhede, IEEE Transactions on Signal Processing 58, 591 (2010), ISSN

1053-587X.

12



[15]
[16]

[17]

[18]

[20]

T. A. C. M. Claasen and W. F. G. Mecklenbriauker, Philips Journal of Research 35, 217
(1980).

Z. Huang, M. Borland, P. Emma, J. Wu, C. Limborg, G. Stupakov, and J. Welch, Phys. Rev.
ST Accel. Beams 7, 074401 (2004).

G. Geloni, E. Saldin, E. Schneidmiller, and M. Yurkov, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment 583, 228 (2007), ISSN 0168-9002, URL http://www.sciencedirect.com/science/
article/pii/S0168900207020001.

J. Rosenzweig, C. Pellegrini, L. Serafini, C. Ternieden, and G. Travish, Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 393, 376 (1997), ISSN 0168-9002, free Electron Lasers 1996, URL
http://www.sciencedirect.com/science/article/pii/S0168900297005160.

K. Zhang, L. Zeng, Z. Qi, C. Feng, and D. Wang, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 882,
22 (2018), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/
S0168900217311439.

E. Saldin, E. Schneidmiller, and M. Yurkov, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 483,
516 (2002), proceedings of the 23rd International Free Electron Laser Conference and 8th
{FEL} Users Workshop.

D. Ratner, C. Behrens, Y. Ding, Z. Huang, A. Marinelli, T. Maxwell, and F. Zhou, Phys. Rev.
ST Accel. Beams 18, 030704 (2015).

G. Penn, Tech. Rep. NGLS Technical Note 35, LBNL (2012).

H. Deng, W. Decking, and B. Faatz, The echo-enabled harmonic generation options for flash
i (2011), arXiv:1103.0112.

E. Saldin, E. Schneidmiller, and M. Yurkov, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 398,
373 (1997), ISSN 0168-9002, URL http://www.sciencedirect.com/science/article/pii/
S016890029700822X.

P. Goldreich and D. A. Keeley, Astrophys. J. 170, 463 (1971).

I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products (Academic Press,
2000), sixth ed.

M. Borland, Advanced Photon Source LS-287 (September 2000).

E. Roussel, E. Ferrari, E. Allaria, G. Penco, S. Di Mitri, M. Veronese, M. Danailov, D. Gau-
thier, and L. Giannessi, Phys. Rev. Lett. 115, 214801 (2015).

13





