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Linear optics errors in the linac, the transport line, and the undulator section of a free electron
laser (FEL) can significantly impact the FEL performance. In this paper we propose two methods to
measure and correct the linear optics of one-pass systems using trajectory scan data. The methods
have been successfully applied to data taken on the Linac Coherent Light Source (LCLS) to find
the quadrupole errors and BPM gains.

PACS numbers: 29.20.Ej, 29.85.Fj

I. INTRODUCTION

Linear optics in an accelerator are a representation
of the focusing scheme of its lattice. First-order devi-
ations of the focusing scheme from design settings are
called linear optics errors and can have significant im-
pact on the propagation of the beam through steering
errors and degradation of the beam transverse profile. In
storage rings, linear optics errors have significant impact
on the nonlinear beam dynamics performance in terms
of dynamic aperture and momentum aperture. There-
fore, global optics correction for storage rings has been a
topic of intensive study and has achieved reasonable suc-
cess [1–8] with a brief review of linear optics correction
presented recently in [9].

Global optics correction for one-pass systems, includ-
ing linacs and transport lines, have not received as much
attention as for storage rings. For example, at the
LCLS [10] optics are typically measured at a few selected
locations with the transverse beam profile analyzed on
wire scanners or fluorescent screens [11, 12]. Optics con-
trol is focused primarily at these locations. Transverse
properties at other locations of the linac and transport
lines are then inferred by numerically propagating these
measurements throughout based on knowledge of mag-
net current settings and offline magnetic measurement
data. However, several applications leveraging global tra-
jectory, or “orbit” data have also been studied. This in-
cludes global steering and beam-based alignment [13, 14],
dispersion-free steering solutions [15], and global optics
measurement and matching of a multi-pass transport sys-
tem [16]. A demonstration at the LCLS to fit the orbit
response for BPM gain and offset correction has been
shown [17], though there is so far no reported determi-
nation of quantitative quadrupole errors.

A more detailed global optics measurement and cor-
rection scheme that can identify errors including spe-
cific magnet strength errors would have many benefits
for a long linac. First, any large errors due to short cir-
cuits, improper wiring, or mechanical roll in quadrupole
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magnets can be detected and corrected which can be
particularly helpful during commissioning stages or af-
ter significant maintenance. Second, isolation and cor-
rection of even smaller (∼1%) focusing errors can help
mitigate uncontrolled emittance dilution associated with
betatron oscillations [18]. Third, the correction of optics
throughout the linac also puts the beam profile closer to
the design at the selected profile-measurement locations
which may make systematic local optics matching eas-
ier. Finally, for free electron lasers such as the LCLS and
the European XFEL, the correction of optics up to and
throughout the undulator section may improve FEL out-
put as lower emittance and improved undulator matching
are achieved.

More advanced optics correction methods developed
for storage rings could be modified for one-pass systems.
The idea of using trajectory response matrices for optics
modeling has a long history [19]. A trajectory response
matrix based method has been successfully applied to
the SPEAR3 booster to storage ring (BTS) transport
line [20]. This approach fits the trajectory response ma-
trix data to the lattice model in a way similar to LOCO,
the orbit response matrix based method [1].

In storage rings turn-by-turn beam position monitor
(BPM) data taken with the beam undergoing coherent
betatron oscillations has been used for optics correction
in many studies [3–8]. Most methods rely on extracting
betatron phase advance and beta functions at the BPMs
using temporally coherent oscillations. Because there is
no temporally coherent oscillation in a linac, these meth-
ods do not apply.

There is, however, one method that uses the turn-by-
turn BPM data directly and does not rely on tempo-
ral oscillation signals [4]. This method derives the angle
coordinates using two BPMs separated by a drift, uses
the full phase space coordinates in tracking with a lat-
tice model, and fits the lattice model to the measured
BPM data. The method was tested with a section of the
SPEAR3 storage ring, which was essentially a one-pass
system. This method can be applied to a long linac or
transport line directly. The difference between such an
application and the test in Ref. [4] would only be how the
phase space is sampled. In the SPEAR3 test the beam
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samples the phase space through temporal betatron os-
cillation, which traces out an ellipse in the phase space,
while in a linac application we can drive the beam to
paint the phase space arbitrarily [21].

Long linacs and the undulator sections of FELs of-
ten consist of periodic structures with one BPM and one
quadrupole located next to each other in each period.
In such a case the kick angle a quadrupole applies to
the beam in one pass can be calculated with the beam
positions observed by the nearby BPMs, from which the
quadrupole gradient can be derived. This leads to a local
analysis method for optics error detection and correction.

We have applied both the local analysis method and
the BPM data fitting method to trajectory scan data
taken on the LCLS. The data were taken by a grid scan
of trajectories as prescribed in Ref. [21]. The two meth-
ods found quadrupole gradient errors consistent with the
experimental setting, and without the manual interven-
tion to fitting previously required [19]. Simulation has
also been done to investigate the performance and appli-
cation requirements of the global fitting method, using
particle tracking with the LCLS lattice to generate data.

In this paper we will first describe the two data analysis
methods in Section II. The application of the methods
to LCLS is discussed in Section III, which includes both
experimental and simulation results. Section IV gives the
conclusions.

II. DATA ANALYSIS METHODS

A. Local analysis in periodic structures

If a one-pass lattice system consists of periodic cells
and each cell has a BPM and a quadrupole magnet
which are located closely, a local analysis of trajectory
data could be conducted to derive the gradient of the
quadrupole. A special case of such a situation is found
in the LCLS linac, in which a BPM is located at the
center of a quadrupole in each cell between two adjacent
acceleration structures, as illustrated in FIG. 1.

FIG. 1. Layout of BPMs and quadrupoles in the LCLS Linac.

In the LCLS linac case the length of the quadrupole is
0.1 m, very small compared to the cell length of 12.3 m.
The quadrupole may be treated as a thin-lens device.
The angle coordinate of the beam in the space between
adjacent quadrupoles can be calculated with the beam
positions recorded by the BPMs. Considering the an-
gle coordinate changes in the acceleration sections due

to small energy changes, the angle coordinates at the en-
trance and exit of quadrupole Q2 as shown in FIG. 1
are
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where x and E are the beam position and energy at the
three BPMs, respectively, with subscripts indicating the
corresponding BPMs. The integrated gradient of the Q2
magnet, [KLq]2 can be derived from

∆x′2 ≡ x′+ − x′− = [KLq]2x2 (3)

with a linear fit of ∆x′2 vs. x2.
The more general case is for the BPM to be separated

by a small distance from the quadrupole center, for ex-
ample, as illustrated in FIG. 2. In this case the beam
angle and position coordinates at the BPMs are related
by

x2 = x1 + x′2L− ∆x′1L0, (4)

x3 = x2 + x′3L− ∆x′2L0, (5)

where ∆x′1,2 are kick angles by quadrupole Q1 and Q2,
respectively, and x′2,3 are angle coordinates at BPM 2 and
3, respectively, and we have assumed no energy change
for simplicity. The angular kick by quadrupole Q2 can
be solved to be

∆x′2 = x′3 − x′2 =
x1 + x3 − 2x2

L− L0
− L0∆x′1
L− L0

. (6)

In the case L0 � L as we have assumed, the angular
kick ∆x′1 in Eq. (6) can be calculated with the nominal
gradient of Q1

∆x′1 = [KLq]1,nomx1. (7)

Any error between the actual and nominal gradients for
Q1 will be scaled down by the factor L0/(L−L0) in the
calculated value of ∆x′2 and may be neglected. If neces-
sary, a second iteration can be conducted to recompute
∆x′2 using the quadrupole gradient results from the first
iteration instead of the nominal values. Knowing the an-
gular kick ∆x′2, the gradient of Q2 can be computed using
Eq. (3).

FIG. 2. Case with a small distance between BPM and
quadrupole.

The effect of the finite quadrupole lengths would be
small if Lq � L and can be included as a correction if
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necessary. The above approach could be applied to con-
figurations different from the above two cases, as long as
there is one nearby BPM for each quadrupole with a sep-
aration distance that is much shorter than the distance
between the adjacent quadrupoles.

Advantages of the local analysis approach include that
it does not require a thorough lattice model and that it is
not affected by optics errors elsewhere. A disadvantage is
that if the three adjacent BPMs have different calibration
gain errors, the measured quadrupole gradient will have
a systematic error. It is noted that if all BPMs have the
same calibration error, the calculated quadrupole gradi-
ent value is not affected.

B. Global trajectory data fitting

If the beam path is away from the centers of the
quadrupole magnets along the beam line, the beam tra-
jectories sample the strengths of the quadrupoles and
hence contain linear optics information. One way to re-
cover the optics information from the trajectory data is
to fit the lattice model to minimize the differences be-
tween the measured trajectories and the trajectories pre-
dicted by the model. This approach has been tested for
a one-pass system using a section of a storage ring [4].

FIG. 3. Configuration for global trajectory fitting

The key to realizing the approach is to derive the angle
coordinates to be used for tracking. This could be done
with two BPMs separated by a lattice section for which
the transfer matrix is precisely known. A simple case is
when the two BPMs are separated by a drift space. For
example, in FIG. 3 BPMs 0 and 1 are separated by a
drift with length L and hence the angle coordinates at
BPM 1 are

x′1 =
x1 − x0
L

, y′1 =
y1 − y0
L

. (8)

Knowing the transverse phase space coordinates (x, x′,
y, y′) at BPM 1, the beam positions at all downstream
BPMs can be predicted with particle tracking using the
lattice model.

BPM gain errors and rolls can be included in the pre-
diction. For each BPM, the predicted position readings
(x̃,ỹ) are related to tracking coordinates (x̄, ȳ) by(

x̃
ỹ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
gxx̄
gy ȳ

)
, (9)

where θ is the BPM roll and gx,y are horizontal and ver-
tical gains, respectively.

The predicted BPM readings are necessarily different
from the measured trajectories, given the errors in the ac-
tual machine optics and in the BPM calibration. These
errors could be recovered through a fitting scheme that
adjust the lattice parameters and the BPM parameters to
minimize the differences between the measured and pre-
dicted trajectories. This fitting scheme is a least-square
problem with the objective function

χ2 =

N∑
n=1

M∑
i=1

[(
xi(n) − x̃i(p)

σxi

)2

+

(
yi(n) − ỹi(p)

σyi

)2
]
,

(10)

where N is the number of trajectories, M is the number
of BPMs, p is a vector of fitting parameters, and σx,y
are BPM noise sigmas. The fitting parameters include
quadrupole gradients in the lattice model and BPM pa-
rameters. The least-square problem can be solved with
the Levenberg-Marquardt method [22, 23].

Quadrupole rolls can also be fitted. However, small
rolls are typically not very important if only the linear op-
tics is concerned as the change of the normal quadrupole
component due to a small roll is a second order effect and
the resulting skew quadrupole component should not in-
terfere the fitting of normal quadrupole gradients because
the skew and normal quadrupole components affect the
objective function differently.

It is worth pointing out that the ability to determine
the fitting parameters from the data may be limited, de-
pending on how the fitting parameters affect the χ2 func-
tion and the noise level in the data. One challenge is to
distinguish the contributions of quadrupoles that are very
close in terms of betatron phase advances. Another chal-
lenge is to determine the gradient errors of quadrupoles
located near the end of the line with few downstream
BPMs to detect their effects. In these cases there is a near
degeneracy in the fitting problem and the fitting param-
eter vector p could have large excursions in certain di-
rections in the parameter space that are not constrained
well by the data. The degeneracy problem is common to
linear optics correction methods and has been previously
studied in Ref. [2].

A practical solution to the degeneracy problem is to use
constrained fitting, which tries to limit the deviations of
fitting parameters from their initial values in each itera-
tion by adding penalty terms to the χ2 function [2]. For
example, the objective function may be modified to

χ2
c = χ2 +

P∑
i=1

w2
i

(
∂rT

∂Ki

∂r

∂Ki

)
∆K2

i , (11)

in order to limit the deviations of fitted quadrupole gra-
dients, ∆Ki, i = 1, 2, · · · , P , where P is the number
of quadrupole parameters, wi are weight factors, ∂r

∂Ki

is the column of the Jacobian matrix corresponding to
quadrupole i, and r is the residual vector. The residual
vector consists of all the terms in χ2, but not squared,
such that χ2 = rT r, where rT is the transpose of the
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column vector r. The appropriate values of the weight
factors differ for different fitting setup and can be empir-
ically found, using the χ2 contribution of the parameters
as a guidance. More discussion on the constrained fitting
scheme can be found in Ref. [2]. With constrained fitting,
we can find equivalent solutions that represent the optics
information in the trajectory data with minimal devia-
tions from the nominal setting. Solutions by constrained
fitting also have smaller error bars. Such solutions are
more ideal for iterative optics correction on the machine.

III. APPLICATION TO THE LCLS

The portion of the LCLS [10] under study consists
of the L3 sublinac downstream of final bunch compres-
sion, the beam switch yard (BSY) and linac to undu-
lator (LTU) transport line, the undulator section, and
the dump line consisting of 126 working BPMs and 131
quadrupole magnets. The design linear optics for the
beam line are shown in FIG. 4. The design L3 linac ac-
celerates the beam from 4.5 GeV to the full energy of
13.6 GeV.
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FIG. 4. Linear optics for LCLS from BC2 to the dump. Top:
the cosine of the betatron phase advance. Bottom: square
root of beta functions (

√
βx,y). There are three pairs of BPMs

that are separated by drift spaces (marked by vertical lines).

In evaluating the significance of the fitting both in the
initial measurement and in simulation, we consider the
design and measured tolerances. In the L2 and L3 subli-
nacs, the magnetic stability of all quadrupoles is required
to be 0.5% or less. For the BSY, LTU and undulator re-
gions, this requirement is reduced to 0.1%-0.2% or less.
Offline magnet measurements confirms the quadrupole
field reproducibility to be 0.03-0.06%, well within re-
quirements. However, quadrupole strengths in the actual
machine may differ from the offline bench measurements
due to changes of operation conditions, interference from
other components, or human errors. Though these meth-
ods will allow determination of BPM noise, this has previ-
ously been determined for the stripline-type BPMs used

in all regions outside of the undulator as typically 25 µm
RMS [24]. In the undulator where beam trajectory tol-
erance is much tighter (< 1 µm), RF BPMs have a noise
level of 300 nm.

A. LCLS trajectory scan data

We have applied the methods described in the previous
section to LCLS experimental data. In the experiment,
trajectories from the end of bunch compressor 2 (BC2)
to the final dump were scanned on a 6 × 6 grid by two
orbit correctors upstream of L3 in each of two transverse
planes, respectively. On each grid point the trajectories
were read 30 times. The trajectory data on two BPMs in
L3 are shown in FIG. 5 as an example. The design beta
functions on both BPMs are approximately βx = 36 m
and βy = 61 m. The scan amplitude is about 300 µm.
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FIG. 5. Trajectory scan data on two BPMs in L3 with a
separation of 24.7 m. Top: horizontal. Bottom: vertical.

The standard deviation of the 30 trajectory reads for
each grid point can serve as a measure of the noise of the
measurements. Singular value analysis (SVD) of the tra-
jectory data matrix can help reveal the sources of trajec-
tory variations. FIG. 6 shows the singular values for the
horizontal and vertical trajectories. Two leading modes
dominate for both planes and their spatial patterns bear
features of the optics functions, which indicates they cor-
respond to true trajectory variations due to steering er-
rors upstream of the L3 linac. If treated properly, such
trajectory variations are not noise, but a source of infor-
mation. Removing the two leading modes, we can obtain
an estimate of the BPM noise level. The standard devia-
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tions of trajectories before and after the two leading SV
modes are removed are shown in FIG. 7. The noise of
L3 linac BPMs are 5-10 µm RMS, lower than previously
determined.
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FIG. 6. Singular values of 30 trajectories over 126 BPMs.
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FIG. 7. Standard deviations of trajectory readings at all
BPMs with or without the two leading SV modes removed.

B. Local analysis for the L3 linac

In the L3 linac, there is one BPM for each quadrupole
and the BPM is located at the center of the quadrupole.
This allows the application of the local analysis described
in the previous section, using Eqs. (1-3).

FIG. 8 shows the data fitting of ∆x′ ∼ x and ∆y′ ∼ y
for one of the L3 quadrupoles as an example. Here and in
the following the x and y position values are trajectory
offsets after the nominal trajectory is subtracted. The
energy gain between two adjacent quadrupoles in the L3
linac is 200 MeV. The effect of beam energy change on the
angular coordinates is included in the calculation of ∆x′

and ∆y′. The linear fitting gives the integrated gradient
and an estimate of its error bar based on the BPM noise
level. The integrated gradients fitted from the horizontal
and vertical data are [KLq] = −0.0415 ± 0.00015 m−1

and [KLq] = −0.0413 ± 0.00012 m−1, respectively.
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FIG. 8. Fitting kick angles to trajectory offset to derive in-
tegrated quadrupole gradient for quadrupole Q28601, using
horizontal data (top), or vertical data (bottom). Each plane
uses 1080 data points.

In the above example we show data fitting for the hor-
izontal and vertical planes separately as an illustration.
In the actual data processing we fit the horizontal and
vertical data together for each quadrupole. The fitted
gradients for the L3 quadrupoles are compared to the
design model values in FIG. 9. Good agreement is seen
almost everywhere except for quadrupoles 9 (model name
Q26201) through 13 (Q26601). These quadrupoles were
tuned for optics matching in operation and therefore are
expected to deviate from the design model (see next sub-
section for comparison to the expected values). Their
effects on the trajectory data will be discussed in the
next sub-section.
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FIG. 9. Gradients for L3 quadrupoles obtained from trajec-
tory scan data with the local analysis are compared to the
design model values.
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C. Global lattice fitting

There are three pairs of BPMs that are separated by
drift spaces in the LCLS line downstream of BC2. The
locations of these BPMs are shown in FIG. 4 with vertical
bars. Using these BPMs to derive the angle coordinates,
we can apply the global lattice fitting method to various
sections of the line.

The first pair of BPMs are located in the BSY, after the
L3 linac. The distance between the two BPMs is 21.4 m.
Quadrupoles in the L3 linac can be fitted with trajec-
tory data using backward tracking. The particle track-
ing code Accelerator Toolbox (AT) [25] is used. Since
AT considers the reference beam energy a fixed value,
we made simple modifications to the code to account for
the changes to the angle coordinates due to beam energy
increases in the linac.

The design model is used as the initial lattice in the
least-square fitting. The χ2 value normalized by the de-
grees of freedom (the number of data points minus the
number of fitting parameters) was reduced from 1350 to
3.6. The final χ2 value does not converge to 1.0 because
of effects that are not accounted for by the fitting model,
such as, orbit corrector fluctuations, energy jitters, and
quadrupole and BPM rolls. The differences between the
fitted values and the design model values, ∆K, for the
L3 quadrupoles are shown in FIG. 10. Results using
the global fitting approach and the local analysis ap-
proach are compared to the “Extant” model, which cal-
culates quadrupole gradient values with the magnet set-
points and off-line magnetic field measurements. Good
agreement is found between the two beam-based meth-
ods and the Extant model. The expected accuracy of
fitted quadrupole gradients is discussed in Section III D.
The fitted BPM gains are plotted in FIG. 11. Gains for
the pair of drift separated BPMs are also included in the
fitting. The BPM gains are scaled so that the horizontal
and vertical gains for one of the BSY BPM pair, BPM
#50, are 1.0.

FIG. 12 shows the differences between the measured
and the tracked trajectories before and after the fitted
parameters are applied to the model. The measured
trajectories significantly differ from tracking results ob-
tained with the original lattice model at BPMs at or af-
ter quadrupoles 9 through 13 (note tracking direction is
backward). After fitting, the differences are substantially
reduced.

The global fitting method is applied to the BSY and
LTU sections that follows the same pair of BSY BPMs
using forward tracking. Fitting for this section can also
be done with a pair of drift separated BPMs located at
the end of the LTU (just before the undulators), using
backward tracking. The distance between this second
pair of BPMs is 6.6 m. In this section some quadrupoles
are powered with serial power supplies. One quadrupole
fitting parameter is used for all the quadrupoles with a
common power supply. There are 20 quadrupole param-
eters and 33 BPMs in the fitting setup.
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FIG. 10. Gradient changes from the design model, ∆K, us-
ing global fitting, local analysis, or magnet calibration data
(“Extant model”) are compared for the L3 linac quadrupoles.
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FIG. 11. Fitted BPM gains for the L3 linac BPMs. The gains
are scaled for BPM gain #50 to be 1.0.

The forward tracking fitting reduces the normalized
χ2 value from 877 to 6.7. The backward tracking reduces
the normalized χ2 value from 1905 to 3.9. The differences
of the fitted quadrupole gradient values from the fitting
starting values, which are from a lattice model, are plot-
ted in FIG. 13 for both fitting setups. There are two BSY
design optics for LCLS. The one we used as the fitting
starting point was not used in operation during the time
of data taking. The difference between the actual model
and the fitting starting point is also plotted in FIG. 13.
The fitting results from the forward and backward setups
agree very well. They agree well with the actual model
except at four quadrupoles in the LTU line. We success-
fully recovered the correct BSY optics, starting from a
wrong lattice model. The four LTU quadrupoles were
the ones tuned to locally re-match the optics and there-
fore are expected to be different from the lattice model.

The fitted BPM gains are plotted in FIG. 14 for results
obtained with both forward tracking and backward track-
ing. Here we also set the gains for BPM #50 to 1.0. The
BPMs obtained with the two tracking setups are very
similar. It is worth noting that the gains for BPM#51
obtained here with the BSY-LTU data and the L3 linac
data shown in FIG. 11 are also similar.

The trajectory differences between measurements and
tracking before and after fitting are shown in FIG. 15
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FIG. 12. Trajectory differences between measurements and
tracking before and after fitting for the L3 Linac. Top: hori-
zontal trajectories; Bottom: vertical trajectories.

for the forward tracking case. It can be seen that before
the model is calibrated with fitting, there are significant
differences between the measured and tracked trajecto-
ries. This is in part because we used a wrong BSY lattice
model as the starting point, in part because the four op-
tics matching quadrupoles in LTU were adjusted away
from the model. After fitting, the difference is also sub-
stantially reduced.
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FIG. 13. Gradient changes from the initial model, ∆K, ob-
tained with global fitting for BSY and LTU quadrupole pa-
rameters with forward or backward tracking. Also plotted is
the actual lattice model in operation when data were taken.
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FIG. 14. Fitted BPM gains for the BSY and LTU BPMs using
fitting with forward or backward tracking. Top: horizontal;
Bottom: vertical. Gains for BPM #50 are set to unity.

FIG. 15. Trajectory differences between measurements and
tracking before and after fitting for the BSY-LTU section us-
ing forward tracking. Top: horizontal trajectories; Bottom:
vertical trajectories.

Using the second pair of drift-separated BPMs, we can
also fit the trajectory data for the undulator section.
However, it is more difficult to resolve the quadrupole
errors in this section. The fitted quadrupole gradients
show a spurious zig-zag pattern with ∆K reaching the
±0.02 m−2 level, which indicates that the cross coupling
between the adjacent quadrupole parameters is causing
the fitting result to drift toward the under-constrained
directions [2]. The challenges of optics correction for the
undulator section and potential solutions are discussed
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in the subsection III D 3.

D. Simulation

1. L3 Linac

We performed simulation for the L3 linac section to
study the accuracy and the applicability requirements of
the global fitting method. In the simulation we mod-
ified the quadrupole strengths in the lattice model to
the values obtained with the global fitting method as
in FIG. 10. Particle tracking is used to generate sim-
ulated BPM data with initial phase space coordinates
distributed on 6 × 6 grid points similar to that of the
experimental data. BPM gain errors are inserted to the
data using values fitted with the actual data. Gaussian
white noise is added to the BPM data with the noise
sigma at each BPM given by the standard deviation of
the raw BPM data as shown in FIG. 7.

The global fitting method with backward tracking is
applied to the simulation data 10 times, each time with a
different random seed for BPM noise generation. The ini-
tial solution in the fitting is the design model. The fitted
BPM gains reproduce the target values, with a median
error sigma of 0.8% for the horizontal gains and 1.2% for
the vertical gains, where the error sigmas are estimated
with the standard deviations of the 10 fitting solutions.

The errors in the fitted quadrupole gradients are shown
in FIG. 16. The median of the error sigmas, σK , is
0.0052 m−2, and the median of σK

K is 1.4%. The error
sigmas can be reduced by increasing the trajectory scan
amplitude. If the scan amplitude is increased by a factor
of 5, to 1.5 mm, the error sigmas will be reduced by a
factor of 5.

A major cause of the large error sigmas for the
quadrupole gradients is the correlation between the adja-
cent quadrupoles, which can be mitigated with the con-
strained fitting scheme (see Eq. (11)). The correlation
problem is more severe with the undulator section. More
discussion on the use of constrained fitting is provided in
subsection III D 3.

2. BSY-LTU section

Simulation is also performed for the BSY-LTU sec-
tion using the same approach as done for the L3 Linac.
Quadrupole errors fitted with forward tracking are in-
serted to the model to generate simulation data (see
FIG. 13). BPM gain errors and random noise are added
to the data.

The fitting procedure is applied to the simulated data
with different random noise seeds for 10 times. The av-
erage values and the standard deviations for the fitted
quadrupole gradients are shown in FIG. 17. The error
bars for the last two quadrupoles are much larger than
the other quadrupole parameters because the distance
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FIG. 16. Differences between the fitted quadrupole gradients
and the target gradients in the L3 Linac simulation. Error
bars are the standard deviation of fitting results from 10 ran-
dom seeds.

between the last two BPMs is small. In the forward
tracking case, the last two quadrupoles are constrained
only be data from these BPMs; in the backward track-
ing case, these two quadrupoles are varied in fitting to
compensate the large angle coordinate noise due to the
small distance, resulting in big error bars. The error
sigma, σK , for the other quadrupole parameters has a
median value of 1.0 × 10−3 m−2 (with σK/K ≈ 0.20%)
and 1.3 × 10−3 m−2 (σK/K ≈ 0.26%) for the forward
and backward tracking cases, respectively. The error sig-
mas for quadrupole gradient in the BSY-LTU section are
smaller than the L3 Linac case because there are more
BPMs than quadrupole parameters.
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FIG. 17. Differences between fitted quadrupole gradients and
the target gradients in the BSY-LTU simulation. Error bars
are the standard deviation of fitting results from 10 random
seeds.

3. Undulator section

Simulation was also done for the undulator section.
This section consists of 33 quadrupoles, located between
undulators, with a separation of about 4 m between
two adjacent quadrupoles. Each quadrupole is accom-
panied by a BPM in the lattice. The betatron phase
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advances, [µx, µy], for the entire undulator section are
[0.696, 0.780]×2π, less than one betatron period for both
planes. The small phase advances between the adjacent
quadrupoles means the impact of gradient errors of these
quadrupoles to the linear optics are very similar, as indi-
cated by the correlation coefficients of the corresponding
columns of the Jacobian matrix of the quadrupole pairs
shown in FIG. 18. The high correlation cause difficulties
for the optics fitting method to resolve the contribution
of individual quadrupoles.
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FIG. 18. Correlation coefficients of Jacobian matrix columns
between adjacent quadrupole pairs (blue square) and second
neighbor pairs (red circle) in the Undulator section.

In the simulation we insert large gradient errors, at 5%
of the nominal values, to three quadrupoles and random
small errors, with rms of 0.5% to the other quadrupoles.
Trajectory scan data are generated using particle track-
ing with the amplitude of 300 µm. Random BPM noise
with rms value of 1 µm is added to the data on all BPMs.
The pair of BPMs with a separation of 6.6 m before the
undulator section are used to calculate the angle coordi-
nates for forward tracking.

Global fitting was performed 10 times with different
random seeds. The average fitted quadrupole gradients
are compared to the target values in FIG. 19, where the
error bars are standard deviations of the 10 data sets.
Because of the near degeneracy of the quadrupole pa-
rameters, the fitted gradients have large error bars, with
an average value for σK at 0.016 m−2. FIG. 20 shows
the beta beat in the undulator section before and after
the quadrupole errors in the lattice model are corrected.
With the quadrupole errors, the beta beat reaches 25%
for the horizontal plane and 20% for the vertical plane,
respectively. When the lattice errors are corrected, the
beta beat is reduced to below 2%, even for fitting so-
lutions that are substantially different from the target
values. This clearly indicates that the large variations
are mainly due to excursions of the solution toward the
under-constrained patterns which involve a lot of cancel-
lation between the quadrupole parameters [2].

By applying constraints to the quadrupole parameters,
we could derive an equivalent optics model that may dif-
fer from the target model in quadrupole gradient values,
yet with nearly the same optics functions [2]. FIG. 21
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FIG. 19. Comparison of fitted quadrupole gradients and the
target values for the LCLS undulator section, with trajectory
scan amplitude up to 300 µm and BPM noise signal of 1 µm.
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FIG. 20. Beta beat before (blue) and after correction (10
curves with various colors) in simulation for the undulator
section. Top: horizontal; bottom: vertical.

shows the fitting results for the same data sets as used
in FIG. 19 using constrained fitting. The average error
sigma for the gradient parameters are 1.9 × 10−3 m−2 ,
with the weight factors w = 0.02 for all quadrupoles (see
Eq. (11)). Even though the fitted gradient values are
significantly different from the target solution, the beta
beats of the corrected lattices are below 2%.

Simulation with the undulator section also shows that
increasing the trajectory scan amplitude and increasing
the distance between the two drift-separated BPMs in-
crease the capability of the fitting method to resolve
quadrupole errors. We also found that the trajectory
scan does not need to span a grid in the phase space as
the data we used in the analysis for LCLS. Populating the
trajectories uniformly on the design ellipse in the phase
space at the entrance point with the largest amplitude
has better performance in the resolution of quadrupole
errors.

IV. CONCLUSION

In this paper we proposed and demonstrated two meth-
ods to determine the focusing errors in one-pass systems
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FIG. 21. Fitted quadrupole gradients using constrained fit-
ting for the LCLS undulator section with the same simulated
data as in FIG. 19. Correction of the lattice model with the
fitted solutions reduces beta beat to below 2%.

such as linacs and transport lines. The thin-lens local
analysis method is applicable to special cases where one
quadrupole is always accompanied by one BPM with a
very small separation in between as compared to the dis-
tances between adjacent quadrupoles. This is the typical
case for long linacs with many repetitive cells. The sec-
ond method is a global fitting approach that fits trajec-
tory scan data to the lattice model by minimizing the dif-
ferences between the measured and tracked trajectories.
A pair of BPMs that are separated by a drift space are
needed to derive the phase space coordinates for tracking.

The first approach has the benefit of using local in-
formation only and not requiring a full lattice model.
However, it is sensitive to differences in BPM calibration
factors for the BPMs involved. Effects of energy changes,
finite lengths of quadrupoles, and distances between the
BPM-quadrupole pairs can be included in the formulas.

The second approach is more general. It requires a
lattice model and a pair of drift-separated BPMs. But
this should not be difficult to achieve. BPM calibration
errors, and even BPM rolls and quadrupole rolls can be
fitted, although small rolls are typically not important if
only the linear optics is concerned.

After the quadrupole errors are derived from the data,
they can be inserted into the model to evaluate the optics
errors in the machine. Corrections can be applied to the

machine to correct the linear optics errors.

Simulation shows that with a scan amplitude of 300 µm
and BPM noise sigmas around 5∼10 µm, the global fit-
ting method can retrieve the quadrupole errors with a
median accuracy of σK ≈ 0.005 m−2 (σK/K ≈ 1.4%)
for the L3 Linac and σK ≈ 0.001 m−2 (σK/K ≈ 0.2%)
for the BSY-LTU section. The error sigmas currently
achieved are higher than the quadrupole accuracy re-
quirements set for LCLS (0.5% for L2 and L3 linacs and
0.1%∼ 0.2% for BSY, LTU, and undulator sections). In-
creasing the signal to noise ratio in the data improves the
quadrupole calibration accuracy, which can be achieved
by either increasing the trajectory scan amplitude or re-
ducing BPM noise. And, even though the errors of in-
dividual quadrupoles cannot be determined to the de-
sired accuracy, the fitted solutions can still be used for
global optics corrections because usually a significant
fraction of the uncertainty is due to excursions along
under-constrained directions which have little impact to
the global optics. The constrained fitting scheme can be
used to find solutions with smaller excursions in K, which
are more suitable for optics correction.

For the global fitting approach, through simulation,
we have also found that a large distance between the
two drift-separated BPMs are important. The drift dis-
tance is preferred to be comparable to the average beta
function value in the beam line of concern. A pair of
drift-separated BPMs help determine the strengths of
quadrupoles located toward the end of the line for the
global fitting method. It is desirable to create multiple
pairs of BPMs separated by long drift spaces in a long
linac or transport line.

The global fitting method can also be used for op-
tics correction of storage rings during the commissioning
phase using BPM data of only one or a few turns.
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