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Abstract

We study the single-particle dynamics in a general and parameterized alternating-gradient cell

with zero chromaticity using the Lie Algebra method. To our surprise, the first-order perturbation

of the sextupoles largely determines the dynamics away from the major resonances. The dynamic

aperture can be estimated from the topology and geometry of the phase space. In the linearly

normalized phase space, it is scaled according to, Ā ∝ φ
√
L, where φ is the bending angle and L

the length of the cell. For the two degrees of freedom with equal betatron tunes, the analytical

perturbation theory leads us to the invariant or quasi-invariant tori, which play an important role

in determining the stable volume in the four-dimensional phase space.

SLAC-PUB-17251

This material is based upon work supported by the U.S. Department of Energy, 
Office of Science, under Contract No. DE-AC02-76SF00515.



I. INTRODUCTION

The linear motion of the particles in the modern storage rings was well understood by

Courant and Snyder in the theory of the alternating-gradient synchrotron [1]. But the

particle motion becomes nonlinear because of the sextupoles introduced for chromatic com-

pensations. In general, the nonlinearity in a periodic system like a storage ring generates

nonlinear resonances [2–4], which play an important role in the single-particle dynamics.

The resonances define the topology and geometry of the phase space. Most importantly, the

overlapping resonances [5] lead to chaotic motion.

The canonical perturbation theory [6, 7] has been widely used in the particle accelerators.

It has been successfully applied to the analysis of an isolated resonance [8, 9]. However, it

fails to describe all nonlinear resonances in general due to the so-called problem of the

small denominators resulting in the divergence of the perturbation series [10]. In particular,

the formal symplectic transformation [11] to the normal form [12] has to be divergent [13];

otherwise the system is integrable in general.

This issue is only partially resolved by the well-known Kolmogorov-Arnold-Moser (KAM)

theorem [14–16], moving away from the general solutions and focusing on the special ones,

namely invariant tori. It shows that the non-resonance tori in an integrable system will be

distorted but preserved, provided that the perturbation is sufficiently small. These survived

tori provide definitive boundary to general orbit with a constant energy in a two-dimensional

system and therefore ensure the orbit stability. For a three-dimensional system, the tori

may not provide the stability of the orbit because of Arnold’s diffusion [17]. Given the

sophisticated nature of the mathematics, a huge gap still exists between the theory and the

practical design of circular accelerators.

In this paper, we will try to bridge the gap by studying a periodical system that consists

of two dipole magnets, two alternating focusing quadrupoles, and two nonlinear sextupoles.

For simplicity, the sextupoles are set to make the chromaticity zero. The system is chosen to

be a good approximation of storage rings and yet simple enough to be studied analytically.

We will briefly introduce symplectic maps [18] of bending magnets and thin-lens elements

in section II. Continuing in section III, we will analyse the linear and chromatic optics [19] of

the alternating-gradient cell and then compensate the chromaticity. Nonlinear aberrations

will be derived in section IV by applying the Lie Algebra method [20]. To connect to the
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canonical perturbation theory, we introduce the effective Hamiltonian [21]. Most impor-

tantly, we will study the Hamiltonian dynamics in comparison to the tracking in V and VI

sections for one and two degrees of freedom respectively. Finally, in section VII, we will

make some concluding remarks.

II. SYMPLECTIC MAPS

It is well known [7] that the dynamics of a charged-particle in accelerators can be described

by its canonical coordinates z = (x, px, y, py, δ, `), where δ = (p− p0)/p0 is the relative

momentum deviation and ` = vt, v is the velocity of the particle, and t is the time of flight.

For a beamline that consists of a sequence of elements, its map can be computed by

concatenating the maps of the elements,

M =M1 ◦M2... ◦Mn, (1)

whereMi is the transfer map of the ith element and index 1 is for the first element seen by

the charged particle and n for the last. Here we have defined the concatenation of the map

by,

M1 ◦M2(z(s1)) ≡M2(M1(z(s1))), (2)

where z is the vector of phase space variables. Essentially, the concatenation of two maps is

a substitution of the first map to the second one. The order of the concatenation is chosen

because a map acts on the argument of functions.

For example, the transfer map of a short sector bend can be obtained by solving the

Hamiltonian’s equations with,

H =
p2
x + p2

y

2(1 + δ)
− xδ

ρ
, (3)

where ρ is the bending radius. The map can be written as,

M1 = x+
L

1 + δ
(px +

θδ

2
),

M2 = px + θδ,

M3 = y +
Lpy

1 + δ
,

M4 = py,

M5 = δ,

M6 = `+ θx+
L

2(1 + δ)2
[p2
x + p2

y + θ(1 + 2δ)(px +
θδ

3
)], (4)
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where L is the length and θ = L/ρ the bending angle of the dipole. Another type of useful

transfer maps is the kick, generated by a Hamiltonian that depends only on the transverse

positions x and y. For a combined thin quadrupole, and sextupole, the map is given by,

M1 = x,

M2 = px −
x

f
− κ

2
(x2 − y2),

M3 = y,

M4 = py +
y

f
+ κxy,

M5 = δ,

M6 = `, (5)

where f is the focusing (in the horizontal plane) length of the quadupole and κ is the

integrated strengths of the sextupole.

III. CELL OF ALTERNATING GRADIENT

We would like to illustrate how the scheme works using a periodic alternating-gradient

cell as an example. The cell is chosen because it contains the most essential ingredients in

storage rings. A schematic drawing of the alternating focusing and de-focusing cell (FODO)

is shown in Fig. 1. The quadrupoles and sextupoles are lumped together as a thin multipole

with a sector bending dipole in between. Here ff and fd are the focal lengths of the focusing

and de-focusing quadrupoles respectively. Also φ is the total bending angle and L the length

of the cell.

φ/2	 φ/2	

L/2	 L/2	

ff,	κf	 -fd,	-κd	 ff,	κf	

FIG. 1. A periodic focusing and de-focusing cell with dipole, quadrupole, and sextuploe magnets.
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A. Optics

The cell starts at the center of the first focusing (in the horizontal plane) quadrupole with

s = 0 and ends at the middle of the next focusing quadrupole with s = L. The transfer map

Mcell of the cell can be obtained by initializing an identity map and then concatenating it

through the maps of the elements. Here we use the explicit maps in Eqs. (4) and (5) for

the bends and kicks respectively. The computation is carried out using Mathematica [22].

Taking its Jacobian, we have the R-matrix [23],

Mc =



8d̄f̄−4d̄+4f̄−1
8d̄f̄

(4d̄+1)L

4d̄
0 0 (8d̄+1)φL

16d̄
0

(1−4f̄)(4d̄−4f̄+1)

16d̄f̄2L
8d̄f̄−4d̄+4f̄−1

8d̄f̄
0 0 (4f̄−1)(8d̄+1)φ

32d̄f̄
0

0 0 8d̄f̄+4d̄−4f̄−1
8d̄f̄

(4d̄−1)L

4d̄
0 0

0 0 (1+4f̄)(4d̄−4f̄−1)

16d̄f̄2L
8d̄f̄+4d̄−4f̄−1

8d̄f̄
0 0

0 0 0 0 1 0

(4f̄−1)(8d̄+1)φ

32d̄f̄

(8d̄+1)Lφ

16d̄
0 0 (32d̄+3)Lφ2

192d̄
1


, (6)

where d̄ = fd/L, f̄ = ff/L are the dimensionless focusing lengths of the quadrupoles, nor-

malized by the cell length L. Noting that there is no dependence on the sextupole strengths

κf,d. Comparing the R-matrix in Eq. (6) with the Courant-Synder matrix [1] of a periodical

system, we find that the betatron tunes, defined as the phase advances in unit of 2π, are

given by,

νx =
1

2π
cos−1(

8d̄f̄ − 4d̄+ 4f̄ − 1

8d̄f̄
),

νy =
1

2π
cos−1(

8d̄f̄ + 4d̄− 4f̄ − 1

8d̄f̄
). (7)

the focusing lengths can be obtained by solving these coupled equations and written as,

f̄ =
cos 2πνx − cos 2πνy +

√
(cos 2πνx − cos 2πνy)2 + 16(2− cos 2πνx − cos 2πνy)

8(2− cos 2πνx − cos 2πνy)
,

d̄ =
− cos 2πνx + cos 2πνy +

√
(cos 2πνx − cos 2πνy)2 + 16(2− cos 2πνx − cos 2πνy)

8(2− cos 2πνx − cos 2πνy)
. (8)

Moreover, we have the beta functions at s = 0,

βx =
(4d̄+ 1)L

4d̄ sin 2πνx
,

βy =
(4d̄− 1)L

4d̄ sin 2πνy
, (9)
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and the horizontal dispersion,

ηx =
f̄(8d̄+ 1)Lφ

2(4d̄− 4f̄ + 1)
. (10)

αx,y = 0 and ηpx = 0 due to the reflection symmetry. It it worth noting that when νx =

νy = ν, our results reduce to those in the standard reference [24].

B. Chromatic Compensation

In order to study the chromatic effects from sextupoles, we compute the map Mcell of

the cell with respect to a dispersive orbit,

M = Aη ◦Mcell ◦ A−1
η , (11)

where the dispersive map Aη is given by,

A1 = x+ ηxδ,

A2 = px + ηpxδ,

A3 = y,

A4 = py,

A5 = δ,

A6 = `+ ηpxx− ηxpx. (12)

For its inverse, we simply switch the sign of ηx and ηpx . Again, the map can be computed

with concatenation using Mathematica. In particular, a Taylor map [18] can be obtained

by starting with a scaled identity map with diagonal components: xτ, pxτ, yτ, pyτ, δτ, `τ and

then make a series expansion with respect to τ . Here, to apply the FODO cell, we use ηx in

Eq. (10) and ηpx = 0.

The chromatic optics is fully characterized by a R-matrix with dependence of δ, which

can be calculated using a Jacobian of the map [19],

M(δ) = J (M)|x=0,px=0,y=0,py=0,`=0. (13)

Then, the Courant-Synder parameters with δ dependence can be calculated using the matrix.

In particular, by computing the phase advances up to the first-order of δ, we derive the
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chromaticity,

ξx = ξx0 −
(1 + 12d̄+ 32d̄2)f̄ 2L2φκf − (1− 12f̄ + 32f̄ 2)d̄2L2φκd

4π(4f̄ − 4d̄− 1)
√

(4d̄+ 1)(4f̄ − 1)(4d̄− 4f̄ + 1)
,

ξy = ξy0 −
(1 + 4d̄− 32d̄2)f̄ 2L2φκf − (1− 4f̄ − 32f̄ 2)d̄2L2φκd

4π(4f̄ − 4d̄− 1)
√

(4d̄− 1)(4f̄ + 1)(4f̄ − 4d̄+ 1)
, (14)

where κf,d are the integrated strengths of the sextupoles and the natural chromaticity,

ξx0 =
4 + 24(d̄− f̄) + 32(d̄− f̄)2

4π(4f̄ − 4d̄− 1)
√

(4d̄+ 1)(4f̄ − 1)(4d̄− 4f̄ + 1)
,

ξy0 =
4 + 8(d̄− f̄)− 32(d̄− f̄)2

4π(4f̄ − 4d̄− 1)
√

(4d̄− 1)(4f̄ + 1)(4f̄ − 4d̄+ 1)
, (15)

Clearly, we can use the two sextupoles to zero out the natural chromaticity. Solving two

linear equations, we find the necessary strengths,

κf =
2(4d̄− 4f̄ + 1)

f̄ 2(8d̄+ 1)L2φ
,

κd =
2(4d̄− 4f̄ + 1)

d̄2(8f̄ − 1)L2φ
. (16)

With the formulas, we plot the strengths of the sextupoles in Fig. 2, which shows that the

FIG. 2. The settings of focusing (left) and de-focusing (right) sextupoles as a function of the

betatron tunes.

de-focusing sextupole is stronger and it can be significantly reduced by lowering the vertical

tune. Moreover, at these sextupole settings, we find the second-order dispersion,

η(1)
x =

f̄(32d̄f̄ − 32d̄2 − 8d̄+ 8f̄ − 1)Lφ

2(4d̄− 4f̄ + 1)2
, (17)

and η
(1)
px = 0.
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It is worth noting that the natural chromaticity can be further simplified by substituting

using Eq. (8) into Eq. (15) and written as,

ξx0 =
3 cos 2πνx + cos 2πνy − 4

4π sin 2πνx
,

ξy0 =
cos 2πνx + 3 cos 2πνy − 4

4π sin 2πνy
. (18)

When νx = νy = ν, they reduce to ξx0 = ξy0 = − 1
π

tanπν, which agrees with that in the

handbook [24].

IV. NONLINEARITY

In general, the nonlinear map with general settings of the sextupoles is very complicated

because of the two extra parameters. For simplicity, we use the settings in Eq. (16) for the

zero chromaticity as an approximation to the cell in particle accelerators. In order to study

the nonlinear effects of sextupoles, we again calculate the mapMcell of the cell with respect

to a dispersive orbit,

M = Aη ◦Mcell ◦ A−1
η , (19)

where the dispersive map Aη is more refined and given by,

A1 = x+ ηxδ +
1

2
η(1)
x δ2,

A2 = px + ηpxδ +
1

2
η(1)
px δ

2,

A3 = y,

A4 = py,

A5 = δ,

A6 = `+ (ηpx + η(1)
px δ)x− (ηx + η(1)

x δ)px. (20)

It is truncated to the second-order dispersion because we only study the Lie generators up

to third order in this paper. In particular, here we use ηx and η
(1)
x in Eq. (10) and Eq. (17)
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respectively, and ηpx = η
(1)
px = 0. Then, the mapM in Eq. (19) of the first-order is given by,

M1 =
(8d̄f̄ − 4d̄+ 4f̄ − 1)

8d̄f̄
x+

(4d̄+ 1)L

4d̄
px,

M2 =
(1− 4f̄)(4d̄− 4f̄ + 1)

16d̄f̄ 2L
x+

(8d̄f̄ − 4d̄+ 4f̄ − 1)

8d̄f̄
px,

M3 =
(8d̄f̄ + 4d̄− 4f̄ − 1)

8d̄f̄
y +

(4d̄− 1)L

4d̄
py,

M4 =
(1 + 4f̄)(4d̄− 4f̄ − 1)

16d̄f̄ 2L
y +

(8d̄f̄ + 4d̄− 4f̄ − 1)

8d̄f̄
py,

M5 = δ,

M6 = `+
(192d̄f̄ − 16d̄+ 16f̄ − 1)Lφ2

48(4d̄− 4f̄ + 1)
δ. (21)

We will note it as Mη. Once we have the linear map, we can represent the nonlinearity in

terms of a sequence of the Lie operators [20],

M =Mηe
:f3:e:f4:..., (22)

where fn is a nth order polynomial of the phase space variables. This form is commonly called

the Dragt-Finn factorization [25]. For the third-order Lie factor f3, we need to compute,

M−1
η ◦M = I2, (23)

up to the second order, indicated by its subscript. “I” indicates that its linear part is an

identity. Then f3 is given by

f3 =
1

3

3∑
k=1

[z2k−1(I2 − I)2k − z2k(I2 − I)2k−1], (24)

where I is the identity map and z = (x, px, y, py, δ, `) a phase space vector, its subscript

representing its corresponding component.

A. Chromatic Aberrations

Applying the procedure outlined previously and using Eqs. (23,24), we first derive the

Lie factor f3 as a third-order polynomial of the phase space variables, x, px, y, py, δ and then
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substitute them with the actions Jx,y and angles ψx,y variables [7]

x =
√

2Jxβx cosψx,

px = −
√

2Jx/βx sinψx,

y =
√

2Jyβy cosψy,

py = −
√

2Jy/βy sinψy. (25)

Here we have already used the fact that αx,y = 0 and βx,y is given by Eq. (9). In practice,

we can separate the polynomial into its chromatic and geometric parts, namely f3 = f
(c)
3 +

f
(g)
3 , indicated with their superscripts. After some straightforward algebra, we obtain the

chromatic aberration at the third-order,

f
(c)
3 = −δ[Jx sin 2πνx cos(2ψx − 2πνx) + Jy sin 2πνy cos(2ψy − 2πνy)]

+
δ3Lφ2[41− 10 cos 2πνx − 30 cos 2πνy − 6 cos 2πνx cos 2πνy + 4 cos 4πνx + cos 4πνy]

384(1− cos 2πνx)2
.

The chromaticity terms with linear dependence on δ and constant Jx,y have been eliminated

as expected because of the settings of the sextupoles we have chosen. The terms oscillating

at twice of the betatron frequencies are the generators of the first-order δ in beta functions

in the horizontal and vertical plane respectively. They cause the chromatic beta beating. It

can be shown that the beating, ∆βx,y = −βx,yδ, are rather small. The third-order δ3 term

does not affect dynamics since δ is a constant of motion.

B. Geometric Aberrations

It is also straightforward but tedious to compute the geometric part, which consists of

five resonance driving terms,

f
(g)
3 =

1

φ
√
L
{(C2100J

3/2
x + C1011J

1/2
x Jy) cos(ψx − πνx) + C3000J

3/2
x cos 3(ψx − πνx)

+J1/2
x Jy[C1020 cos(ψx + 2ψy − πνx − 2πνy) + C1002 cos(ψx − 2ψy − πνx + 2πνy)]}. (26)

It should be emphasized that the only dependence on the bending angle φ and the length L

of the cell is in a combination of φ
√
L in its denominator. We will see later that essentially,

this property leads to the scaling law of the dynamic aperture in the normalized coordinates.

Here the coefficients Cjklm are functions of the betatron tunes νx,y. Their subscripts indicate

the indices of power series in the complex variables.
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Two coefficients are selected to represent those with or without dependence on the vertical

amplitude. With the dependence, they are complicated functions of the betatron tunes as

shown on the left plot in Fig. 3. In general, they are regular in the middle and can become

singular near the boundaries. Without the dependence, as seen in the right plot, the 3νx

driving term has little variations with respect to the vertical tune. It increases rapidly

beyond νx = 1/4 and becomes infinite at 1/2. This property could explain why this type

of cell was widely used in the particle accelerators but seldom large than 900 in the phase

advance.

FIG. 3. The coefficients of resonance driving terms: νx + 2νy (left) and 3νx (right) as a function

of the betatron tunes.

The expressions of Cjklm are very lengthy and can be simplified significantly for equal

tunes, νx = νy = ν. In this case, the geometric aberration can be written as,

f
(g)
3 =

F
φ
√
L
{−3[7(Jx + 2Jy) + (Jx + 2Jy) cos 2πν + 2(Jx + 6Jy) sinπν]J

1/2
x cos(ψx − πν)

(cos πν
2

+ sin πν
2

)2

− (−2 + 9 cos 2πν + cos 4πν − 14 sinπν)J
3/2
x cos 3(ψx − πν)

(cos πν
2

+ sin πν
2

)2

+ 6(2− 6 cos 2πν − 10 sinπν + sin 3πν)J1/2
x Jy cos(ψx + 2ψy − 3πν)

+ 6(−4 + sin πν)J1/2
x Jy cos(ψx − 2ψy + πν)}, (27)

where F is an overall scaling factor,

F =
4 sin3 πν

√
2(1 + sin πν) csc 2πν

3(7 + cos 2πν)
, (28)

for all the third-order resonances driven by the sextupoles.
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C. Effective Hamiltonian

Following Chao [21] to make a connection to the Hamiltonian perturbation theory, we

introduce an effective HamiltonianH defined by, e−:H: =Mηe
:f3: and compute it by applying

the Cambell-Baker-Hausdorf (CBH) theorem to combine the Lie operators,

Mη = e−:(2πνxJx+2πνyJy− 1
2
λδ2):, (29)

and e:f3:. After some straightforward algebra, we obtain its geometric part at the first-order

approximation,

H(g)= 2πνxJx + 2πνyJy +
1

φ
√
L

[(h2100J
3/2
x + h1011J

1/2
x Jy) cosψx

+h3000J
3/2
x cos 3ψx + h1020J

1/2
x Jy cos(ψx + 2ψy) + h1002J

1/2
x Jy cos(ψx − 2ψy)]. (30)

This Hamiltonian should be interpreted as the first-order smooth approximation of the

periodical system. Note that the lack of any sine terms is due to the reflection symmetry.

We have defined,

h2100 = − πνx
sinπνx

C2100, h1011 = − πνx
sin πνx

C1011, h3000 = − 3πνx
sin 3πνx

C3000,

h1020 = − π(νx + 2νy)

sinπ(νx + 2νy)
C1020, h1002 = − π(νx − 2νy)

sin π(νx − 2νy)
C1002. (31)

Here we see the problem of the small denominators near the resonance conditions. Again,

for equal tunes, it can be simplified to,

H(g) = 2πν(Jx + Jy)−
F
φ
√
L

[−3πν(7 + cos 2πν + 2 sinπν)J
3/2
x cosψx

sin πν(cos πν
2

+ sin πν
2

)2

− 6πν(7 + cos 2πν + 6 sinπν)J
1/2
x Jy cosψx

sin πν(cos πν
2

+ sin πν
2

)2

− 3πν(−2 + 9 cos 2πν + cos 4πν − 14 sinπν)J
3/2
x cos 3ψx

sin 3πν(cos πν
2

+ sin πν
2

)2

+
18πν(2− 6 cos 2πν − 10 sinπν + sin 3πν)J

1/2
x Jy cos(ψx + 2ψy)

sin 3πν

+
6πν(−4 + sin πν)J

1/2
x Jy cos(ψx − 2ψy)

sinπν
]. (32)

The small denominator: sinπν in the driving terms of resonances νx and νx − 2νy is sup-

pressed by F which contains a factor of sin3 πν. Here we only see the problem of the small

denominators in the sum resonances: 3νx and νx + 2νy. And they will become dominant

when 3ν equals an integer.
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V. ONE DEGREE OF FREEDOM

For one degree of freedom, namely the horizontal motion, we know that there is little

variation with respect to the vertical tune as seen in the right plot of Fig. 3. Therefore it

is convenient to use νx = νy = ν without loss much of physics. So for simplicity, we will

assume that the tunes are equal in this section.

A. Single Resonance

We consider a single resonance 3νx near a third integer resonance, ν = 1/3 + ∆ν for very

small ∆ν. Taking its driving terms from f
(g)
3 in Eq. (27),

f
(r)
3 = −FJ

3/2
x (−2 + 9 cos 2πν + cos 4πν − 14 sinπν) cos 3(ψx − πν)

φ
√
L(cos πν

2
+ sin πν

2
)2

,

its corresponding term in the one-turn effective Hamiltonian in Eq. (32) becomes singular as

ν approaching to 1/3. Intuitively, we know that the particles inside three resonance islands

come back to the same island every three turns and therefore the three turns could lead

to a better periodical system. Here we consider another effective Hamiltonian defined by,

e−:3H: = (Mηe
:f

(r)
3 :)3. Again applying the CBH theorem and similarity transformations, we

obtain,

H = 2π∆νJx −
3π∆νFJ3/2

x (−2 + 9 cos 2πν + cos 4πν − 14 sinπν) cos 3ψx

φ
√
L sin(3π∆ν)(cos πν

2
+ sin πν

2
)2

. (33)

Now, the driving term becomes well behaved at the limit of ∆ν going to zero. Rewriting

it in terms of the normalized coordinates, x̄ =
√

2Jx cosψx and p̄x = −
√

2Jx sinψx, with

substitution of,

Jx =
1

2
(x̄2 + p̄2

x),

J3/2
x cos 3ψx =

1

2
√

2
x̄(x̄2 − 3p̄2

x), (34)

and F in Eq. (28), we have

H = π∆ν(x̄2 + p̄2
x) + kx̄(x̄2 − 3p̄2

x), (35)

where k is given by,

k = −
2π∆ν sin3 πν

√
(1 + sin πν) csc 2πν(−2 + 9 cos 2πν + cos 4πν − 14 sinπν)

φ
√
L sin(3π∆ν)(7 + cos 2πν)(cos πν

2
+ sin πν

2
)2

. (36)
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FIG. 4. Comparison of the contours (in blue color) of the effective Hamiltonian in Eq. (35) near

1/3 resonance with a deviation of ∆ν = 0.005 and the orbits (in red color) by the tracking using

the symplectic maps in Eqs. (4, 5) with the cell length L = 15 m and angle φ = π/96.

A stable region bounded by the separatrices is shown in Fig. 4. The contours including

the sepratrices agree with the results [6, 21] derived from the Hamiltonian theory or the

Lie algebra method. The tracking orbits and the contours from the theory are in excellent

agreement.

Here we have defined the scale of the region of stability: a = π∆ν/3k, by the position

of the perpendicular line of the separatrices. It is worth noting that the scale is inversely

proportional to k the driving term of the resonance.

B. None Resonance

When the tune ν is away from the third integer, the effective Hamiltonian for the hori-

zontal motion can be obtained simply by setting Jy = 0 in Eq. (32) and rewriting it in terms

of the normalized coordinates,

H = πν(x̄2 + p̄2
x) + κx̄(x̄2 − 3p̄2

x) + χx̄(x̄2 + p̄2
x), (37)
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where κ and χ is given by,

κ =
2πν sin3 πν

√
(1 + sin πν) csc 2πν(−2 + 9 cos 2πν + cos 4πν − 14 sinπν)

φ
√
L sin 3πν(7 + cos 2πν)(cos πν

2
+ sin πν

2
)2

,

χ =
2πν sin2 πν

√
(1 + sin πν) csc 2πν(7 + cos 2πν + 2 sinπν)

φ
√
L(7 + cos 2πν)(cos πν

2
+ sin πν

2
)2

. (38)

They are plotted as a function of the tune in Fig. 5. The driving term of 3νx, namely

κ, dominants in the entire range and becomes extremely large between 1/3 and 1/2. Its

singularity at 1/3 is clearly seen.
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FIG. 5. Resonance driving terms: 3νx in red color and νx in blue.

1. Separatrix

Since the Hamiltonian in Eq. (37) itself is an invariance of the particle motion, namely

the total energy E, the simplest way to see the orbit of the motion is to plot the contours

of E in the phase space: x̄ and p̄x as shown in Fig. 6. The separatrix is the contour that

includes the straight perpendicular line at x̄/a = −1, where we have introduced a scaling

factor: a = πν/(χ− 3κ). It can seen from Fig. 5 that it is positive when ν < 1/3.

We find the condition of the perpendicular line by first solving p̄x in Eq. (37),

p̄x = ±
√
κx̄3 + χx̄3 + πνx̄2 −H√

3κx̄− χx̄− πν
, (39)

and then detecting a singularity at x̄ = −a. Moreover, the point, (−a, 0), on the separatrix,

defines its value of the contour: Hs = 4κπ3ν3/(3κ − χ)3. Knowing this value, the entire

15



contour can be defined by analytical expressions. In particular, on the x̄ axis where p̄x = 0,

we have three points,

x̄ = −a, 2(κ+
√
−κχ)

(κ+ χ)
a,

2(κ−
√
−κχ)

(κ+ χ)
a. (40)
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FIG. 6. Topology of the phase space for the effective Hamiltonian in Eq. (37) at the betatron tunes:

ν = 0.194 (left) and ν = 0.28 (right).

Note the solution is valid only in the range of the betatron, 0.114205 < ν < 1/3, to keep

a positive value in the square root. Naturally, the averaged dynamic aperture Āx is given

the half distance between the first two points, namely,

Āx =
3κ+ χ+ 2

√
−κχ

2(κ+ χ)
a. (41)

It can be seen through the expression of the scaling factor a that it is proportional to φ
√
L

and the coefficient is a function of tune ν. The third point changes its sign near ν = 0.227328.

This change leads to two kinds of topology in the phase space as seen in Fig. 6. However,

in the most important region near the origin, the geometry is similar, bound by the straight

line, x̄ = −a, and two curved segments,

p̄x = ±a

√
4κ− 4κ( x̄

a
) + (κ+ χ)( x̄

a
)2

(3κ− χ)
. (42)

They intersect with the straight line at two saddle points (−a,±a
√

9κ+χ
3κ−χ).
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2. Persistence

To compare the theory to the tracking with the maps, we chose the betatron tunes

ν = 0.194 and ν = 0.28 to void the low-order resonances, 1/3, 1/4, and 1/5. The stable

orbits from the tracking are shown in Fig. 7 in comparison to the contours of the effective

Hamiltonian in Eq. (37).

FIG. 7. Comparison of the contours (blue color) of the effective Hamiltonian and the stable orbits

(red color) by tracking using the symplectic maps with ν = 0.194 (left) and ν = 0.28 (right).

The cell parameters used in the tracking are L = 15 m and φ = π/96. The initial

conditions are spaced at a/10 on the negative side of the x̄ axis with δ = 0. The tracking

is performed with 10, 000 in repetition for each initial condition. At small amplitudes,

the agreement is excellent. The deviation grows larger as the amplitude increases, which

is a manifestation of higher order perturbations. Although the large-amplitude orbits are

distorted significantly, but the tracked particle is mostly not lost, essentially retaining the

same stable scale a defined by the third-order Hamiltonian. In particular, at ν = 0.28, the

largest stable orbit in the tracking initiates at the separatrix, achieving more than 100% of

persistence. It is worth noting that it happens to be also the fractional part of the horizontal

tune for LHC.

When ν > 1/3, the straight perpendicular line in the separatrix switches to the positive

side of the x̄ as shown in the left plot of Fig. 8 with the positive scale factor defined as

a = πν/(3κ − χ). More importantly, the separatrix intersects with the x̄ axis only once,
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at the point (a, 0). As a result, The separatrix does not enclose a stable region like the

previous case when 0.114205 < ν < 1/3. There is an opening toward the negative side of

the x̄ axis, intrinsically resulting in a smaller stability region. Here, the averaged dynamic

aperture Āx ≈ a. The analysis is consistent with the tracking results shown in the right plot

of Fig. 8.
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FIG. 8. Open geometry in the phase space for the effective Hamiltonian in Eq. (37) on the left and

comparison to tracking on the right with betatron tune ν = 0.396.

We scan the dynamic aperture for three sets of cell parameters while holding φ
√
L to a

constant. The average of the dynamic aperture in the normalized phase space are plotted

in Fig. 9 in comparison to the theory. Since the theory is only up to the third order, it is

expected that it misses the dips at the higher order resonances: 1/4, 1/5, and 1/6. Away

from these resonances, the agreement is excellent except in the region ν < 0.114205 where

the separatrix does not enclose a stable region and perhaps the driving terms are too small

so that the perturbation by the higher order terms become dominant. A peculiar blip in the

tracking occurs near the point ν = 0.227328 where the topology of the phase space changes.

In summary of one degree of freedom, we have studied the nonlinear dynamics of on-

momentum particles in the cell with zero chromaticity. The first-order perturbation of the

sextupoles, or more precisely the third-order effective Hamiltonian, largely determines the

dynamics away from the other major resonances: 1/4, 1/5, 1/6, and 1/7. The higher-order

perturbations distorted the contours of the orbits but do not break them. As a result, the
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FIG. 9. Scan of the normalized dynamic aperture Āx as a function of the betatron tune in the

horizontal plane for three sets of the cell parameters with φ
√
L = constant.

dynamic aperture is estimated from the separatrix in the phase space. Among the resonance

driving terms, we find that the 3νx resonances plays the dominant role in determining the

dynamic aperture.

VI. TWO DEGREE OF FREEDOM

Now, we consider two dimensional system including the vertical motion. The particle

motion in the four-dimensional phase space is much more complicated. So we will focus on

the solvable problems, starting with simple and then move to more general ones.

A. Degenerate Resonance

Let us to consider both the 3νx and νx + 2νy resonances near the third integer resonance,

νx = νy = ν = 1/3 + ∆ν. The effective Hamiltonian is defined by two driving terms and

computed similarly as the case of the single resonance case. Introducing the normalized

coordinates, ȳ =
√

2Jy cosψy and p̄y = −
√

2Jy sinψy, in the vertical plane, we have

H = π∆ν[(x̄2 + p̄2
x) + (ȳ2 + p̄2

y)] + kx̄(x̄2 − 3p̄2
x) + q[x̄(ȳ2 − p̄2

y)− 2ȳp̄xp̄y], (43)
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where k is given in Eq. (36) and,

q =
12π∆ν sin3 πν

√
(1 + sin πν) csc 2πν(2− 6 cos 2πν − 10 sinπν + sin 3πν)

φ
√
L sin(3π∆ν)(7 + cos 2πν)

. (44)

Here in the system of two-degree of freedom, the Hamiltonian in Eq. (43) remains an

invariance of the motion, but it is not enough to determine the motion completely. We have

to look for an additional integral of the motion.

1. Invariant Tori

Given the Hamiltonian in Eq. (43), we can write the Hamilton equations as,

dx̄

dn
= 2π∆νp̄x − 2qȳp̄y − 6kx̄p̄x,

dp̄x
dn

= −2π∆νx̄+ q(p̄2
y − ȳ2) + 3k(p̄2

x − x̄2),

dȳ

dn
= 2π∆νp̄y − 2q(x̄p̄y + ȳp̄x),

dp̄y
dn

= −2π∆νȳ + 2q(p̄xp̄y − x̄ȳ). (45)

In general, they are nonlinear and coupled ordinary differential equations and can only

be solved numerically. To find a specific solution, we substitute, p̄y = c1x̄, ȳ = −c1p̄x, into

Eq. (45), and find,

dx̄

dn
= 2π∆νp̄x + 2(c2

1q − 3k)x̄p̄x,

dp̄x
dn

= −2π∆νx̄− (c2
1q − 3k)(p̄2

x − x̄2),

−c1
dp̄x
dn

= 2π∆νc1x̄+ 2c1q(p̄
2
x − x̄2),

c1
dx̄

dn
= 2π∆νc1p̄x + 4c1qx̄p̄x. (46)

Here we have assumed that c1 is a constant. To make the first equation consistent with the

fourth, and the second with the third, we obtain,

c1 = ±

√
2q + 3k

q
. (47)

As a result, the four equations are reduced two,

dx̄

dn
= 2π∆νp̄x + 4qx̄p̄x,

dp̄x
dn

= −2π∆νx̄− 2q(p̄2
x − x̄2). (48)
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They can be considered as the Hamilton equations with the Hamiltonian,

H1 = π∆ν(x̄2 + p̄2
x)−

2q

3
(x̄3 − 3x̄p̄2

x). (49)

FIG. 10. Invariant tori inside the separatrix in the 4D phase spaces near 1/3 resonance with a

deviation of ∆ν = 0.005. The red dots represent the orbits from tracking with cell length L = 15 m

and angle φ = π/96 and the blue lines are the contours derived from the Hamiltonian in Eq. (49).

It is the same as the Hamiltonian for the single resonance in Eq. (35) with the substitution

of k → −2q/3, resulting in a scale factor a = −π∆ν/2q that defines the position of the

vertical line in the separatrix. Numerically, it becomes smaller because of the coupled

motion in the vertical plane. This special solution is compared with tracking for a positive

c1 as shown in Fig. 10. The agreement is excellent. It is worth noting that the particle orbits

not only on the tori in the phase spaces, x and px or y and py, as expected but also in the

physical space, namely x and y.
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Similarly, we find another special solution of, ȳ = c2x̄, p̄y = c2p̄x, with a constant,

c2 = ±

√
2q − 3k

q
, (50)

and the reduced Hamiltonian,

H2 = π∆ν(x̄2 + p̄2
x) +

2q

3
(x̄3 − 3x̄p̄2

x). (51)

The contours in the x̄-p̄x plane generated by this Hamiltonian is a mirror image of the ones

in H1 in Eq. (49) with x → −x. This special solution is also compared with tracking for a

positive c2 as shown in Fig. 11. The orbits from tracking are significantly deviated from the

contours from the Hamiltonian in Eq. (51). The large difference is due to the nonlinearity,

perhaps the detuning from the larger vertical amplitudes seen from a comparison of the scale

of the right plot to the one on the left. In fact, to find the invariant tori in tracking, we have

to use a value of c2 50% higher than the one from Eq. (50).
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FIG. 11. A second set of invariant tori inside the separatrix in the 4D phase spaces near 1/3

resonance with a deviation of ∆ν = 0.005. The red dots represent the orbits from tracking with

cell length L = 15 m and angle φ = π/96 and the blue lines are the contours derived from the

Hamiltonian in Eq. (51).

The first set of invariant tori was found in tracking with various initial conditions in the

vertical plane while minimizing the width of the orbit in the horizontal phase space. The

analysis was done after knowing the linear relationships between x̄ and p̄y as well as ȳ and

p̄x. The reversed order was true for the second set, because of the large vertical nonlinearity,

we did not found them initially in the tracking.
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2. Stability

Given the invariant tori, how are they related to a general orbit? First, we plot a typical

orbit starting with a different value of c1 in Eq. (47) in comparison to the first kind of

tori with the same energy as shown in Fig. 12. The general orbit is more complicated and

oscillating around the invariant tori. More importantly, the general orbit is bounded by two

tori with different values of energy as expected from the KAM theory.
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FIG. 12. A typical orbit (in blue color) in comparison to an invariant tori (in red color) with the

same energy in the 4D phase spaces near 1/3 resonance with a deviation of ∆ν = 0.005.

FIG. 13. Hexagons: the region of stability in the 4D phase spaces near 1/3 resonance with a

deviation of ∆ν = 0.005.

According the KAM theory, the orbit inside the largest invariant tori should be stable.

Since we have four kinds of tori, the stable volume should be the common region covered by
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the largest tori from each kind. The result is illustrated in Fig. 13 as the black hexagons.

Indeed, the stable region is confirmed by tracking particles indicated by the green dots as

the initial condition based on a uniform random distribution. The 10% gap between the

green and black hexagons is necessary because of the effects of higher order perturbation.

B. Quasi-Invariant Tori

For simplicity, we continue to consider the special case of equal tunes in a two-dimensional

system away from the resonance. We start with rewriting the effective Hamiltonian in

Eq. (32) in terms of the normalized coordinates,

H = πν[(x̄2 + p̄2
x)) + (ȳ2 + p̄2

y)] + χx̄(x̄2 + p̄2
x) + ζx̄(ȳ2 + p̄2

y)

+ κx̄(x̄2 − 3p̄2
x) + θ[x̄(ȳ2 − p̄2

y)− 2ȳp̄xp̄y] + ξ[x̄(ȳ2 − p̄2
y) + 2ȳp̄xp̄y], (52)

where κ and χ are given in Eqs. (38), and

θ = −
12πν sin3 πν

√
(1 + sin πν) csc 2πν(2− 6 cos 2πν − 10 sinπν + sin 3πν)

φ
√
L(7 + cos 2πν) sin 3πν

,

ξ = −
4πν sin2 πν

√
(1 + sin πν) csc 2πν(−4 + sin πν)

φ
√
L(7 + cos 2πν)

. (53)
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FIG. 14. Resonance driving terms: 3νx in red color, νx in blue, νx + 2νy in green, and νx − 2νy in

black.

It turns out that the coefficients of the driving terms J
1/2
x Jy cosψx and J

1/2
x Jy cos(ψx+2ψy)

have a simple relation: ζ = 2ξ. The effective Hamiltonian in Eq. (52) is a generalization of

the Henon-Heiles [26] Hamiltonian and perhaps not integrable.
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To get a qualitative idea, we first plot the coefficients of the four driving terms as a

function of the betatron tune in Fig. 14. Clearly, the sum resonance terms 3νx and νx + 2νy

dominate. Hence, we can make a reasonable approximation with χ = ξ = 0. Under this

approximation, the Hamiltonian is reduced to the form in Eq. (43), with substitution of

∆ν → ν, k → κ, and q → θ. As a result, we can simply use the formulas derived in the

previous section as an approximation.

To search the tori by tracking, we start with the first type of solution, namely p̄y = c1x̄

and ȳ = −c1p̄x with,

c1 = ±
√

2θ + 3κ

θ
, (54)

and then vary the value of c1 to minimize the width of the line in the x̄ and p̄y plane.
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FIG. 15. Two sets of quasi-invariant tori in the normalized 4D phase spaces at the betatron tune:

ν = 0.28. The dots represent the orbits from tracking with cell length L = 15 m and angle φ = π/96.

The searching results are shown in the first row of Fig. 15. In the numerical search, we

start with c1 = 0.97 and end by c1 = 1.17 for small amplitudes and c1 = 1.45 for the largest
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one shown in the figure. Similarly, we search the second type of the tori with, ȳ = c2x̄ and

p̄y = c2p̄x, with,

c2 = ±
√

2θ − 3κ

θ
. (55)

The searching results with the starting value c2 = 1.75 and final value c2 = 0.94 for small

amplitudes and c2 = 0.89 for the largest one are shown in the second row in Fig. 15. These

orbits shown in the figure have a finite width as a contour and therefore they should be called

quasi-invariant tori. Most importantly, they define a stable volume in the 4D normalized

phase space and the dimension of the volume is given by, a = πν/2θ, where θ is the coefficient

of the driving term for the sum resonance νx + 2νy.

C. Dynamic Aperture

Finally, we consider the general case of a two-dimensional system away from the reso-

nances without assuming equal tunes. We start with rewriting the effective Hamiltonian in

Eq. (30) in terms of the normalized coordinates,

H = π[νx(x̄
2 + p̄2

x)) + νy(ȳ
2 + p̄2

y)] + χx̄(x̄2 + p̄2
x) + ζx̄(ȳ2 + p̄2

y)

+ κx̄(x̄2 − 3p̄2
x) + θ[x̄(ȳ2 − p̄2

y)− 2ȳp̄xp̄y] + ξ[x̄(ȳ2 − p̄2
y) + 2ȳp̄xp̄y], (56)

where the coefficients of the resonance driving terms are given by,

χ = − πνx

2φ
√

2L sin πνx
C2100, ζ = − πνx

2φ
√

2L sin πνx
C1011, κ = − 3πνx

2φ
√

2L sin 3πνx
C3000,

θ = − π(νx + 2νy)

2φ
√

2L sin π(νx + 2νy)
C1020, ξ = − π(νx − 2νy)

2φ
√

2L sin π(νx − 2νy)
C1002. (57)

In the design of storage rings, it is often required to have an adequate dynamic aperture

for off-axis injection. To compute the dynamic aperture, we track the particles with the

initial condition: p̄x = p̄y = 0 with different amplitudes as shown in Fig. 16. Similar to

the one degree of freedom in finding the boundary of stability, we first solve p̄x with a fixed

value of the Hamiltonian in Eq. (56) and find a singularity at,

x̄ =
πνx

3κ− χ
. (58)

This singularity defines a contour that leads to infinity in the direction of the momentum

p̄x. Along with the initial condition of p̄x = p̄y = 0, the contour defines a maximum value
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of the Hamiltonian or “energy”, with which we derive the entire contour that consists of a

straight line defined by Eq. (58) and two curves,

ȳ = ±

√
−4π2κν2

x + 4πκνx(−3κ+ χ)x̄− (κ+ χ)(−3κ+ χ)2x̄2

(θ + ξ + ζ)(−3κ+ χ)2
. (59)

1. Frequency Map

This contour is compared to the frequency map [27] obtained by tracking particles and

computing the amplitude change of the betatron tunes:
√

∆ν2
x + ∆ν2

y , within a thousand

turns as shown in Fig. 16. The tunes: νx = 0.28 and νy = 0.31, are chosen to avoid major

resonances and also coincide with the fractional parts of the betatron tunes of the LHC at

its injection energy. The particles in the yellow region are lost quickly within a thousand

turns. Up to a million turns, the particles get lost in those highlighted bands in the blue

region. As we can see clearly from the figure, the calculated dynamic aperture is in good

agreement with the one obtained using the frequency analysis or the long-term tracking,

which also confirms the scaling property shown previously in the horizontal plane.

FIG. 16. Comparison of the theory (magenta lines) at betatron tunes νx = 0.28, νy = 0.31 and

the frequency map by tracking using the symplectic maps with the cell length L = 15 m and angle

φ = π/96.

It is worth noting that two roots of x̄ for ȳ = 0 along with the singularity condition in

Eq. (58) are identical to the three roots in Eq. (40) from the 1D analysis. This implies that
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our analysis of dynamic aperture in the 1D case is valid here in the horizontal plane.

2. Tune Scan

To see the the resonance effects, we scan the dynamic aperture by tracking at various

betatron tunes. The averaged dynamic aperture, two points on the horizontal axis and one

on the vertical, in the normalized coordinates divided by φ
√
L is color coded on the right

map in Fig. 17. The high-order resonances: 1/4, 1/5, 1/6, and 1/7, are clearly seen as they

should be. For a comparison to the theory, the same averaged dynamic aperture is calculated

using the Eqs. (58, 59) and mapped on the left side in the figure. The numbers on the plots

are the labels of the contours. Aside from those high-order resonances, which should be in

higher-order perturbations, the calculation agrees with the tracking very well. The theory

captures the essence of the dynamical landscape in the tune planes.
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FIG. 17. A comparison of tune scan of the calculated (left) and simulated (right) dynamic apertures

in the normalized coordinates divided by φ
√
L.

VII. CONCLUSION

We have analytically solved the linear optics in a general alternating-gradient cell. The

cell can be completely characterized by four independent parameters: its betatron tunes

νx, νy, bending angle φ, and length L. Formulas of the lattice functions and natural chro-

maticity are derived. Two sextupoles are introduced to zero out the chromaticity.

28



After the chromatic compensation, we derive the complete third-order polynomials, in-

cluding chromatic and geometric aberrations in the form of Lie generator. The chromatic

aberration has been reduced to a minimum. The geometric aberration contains an explicit

overall factor of 1/φ
√
L, leading to an important scaling property in the normalized phase

space. An effective Hamiltonian is constructed from the Lie generator and then used to

analyze the dynamics in comparison to the tracking with good agreement.

In the two degrees of freedom with equal betatron tunes, the perturbation theory guides

us to find the invariant or quasi-invariant tori, which play an important role in determining

the stable region in the four-dimensional phase space. To prove rigorously that they are

indeed the survived tori based on the KAM theorem requires further investigation[28, 29].

Perhaps a technique called the interval arithmetic is necessary.

Most importantly, we have derived a formula of the dynamic aperture in the normalized

coordinates based on a constant-energy contour that has a path leading to the infinity of the

phase space. The formula gives a definitive relationship between the dynamic aperture and

the resonance driving terms. Also it qualitatively agrees with the results by conventional

particle tracking. More importantly, the theory predicts that the dynamic aperture in the

linearly normalized phase space should be scaled according to, Ā ∝ φ
√
L. The proportional

coefficient is about 0.2 to 1.6, depending only on the tunes. The scaling law is confirmed

precisely with the simulations.

It is obvious that our simplified model is far from realistic circular accelerators, especially

without the synchrotron oscillation in the third dimension. The model has to be extended

to include a straight section without any dispersion so that a RF cavity can be placed. A

double-bend achromat [30] could be a good choice for the next study, perhaps along with

an investigation of the Arnold’s diffusion in three degrees of freedom.
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