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Abstract
The next generation of storage ring light sources will have

significantly higher performance as multi-bend achromat
cell structures are made practical with strong quadrupole
and sextupole magnets. In principle the natural emittance
can be made ever smaller with stronger magnets and larger
rings until it reaches the true diffraction limit for hard X-rays.
By considering the scaling laws of linear optics, intra-beam
scattering, and nonlinear beam dynamics of storage rings and
technical challenges, we explore the potential performance
limit of future storage rings.

INTRODUCTION
The success of MAX-IV lattice design [1, 2] has intro-

duced a revolution in the storage ring light source community.
Since 2011, there have been a wave of storage ring upgrade
or new storage ring proposals with lattice designs based on
the multi-bend achromat (MBA) cell structure. The hori-
zontal emittances of the new designs are typically reduced
from the existing ring of the same size and beam energy by
a factor of 10∼50.
The substantial reduction of horizontal emittance comes

from the ability to pack many more focused optics dipoles
(i.e., dipoles located at waists of both horizontal beta and
dispersion), which was made possible by the use of high
gradient quadrupole magnets. For a given cell-type, the
natural emittance scales with beam energy and cell bending
angle θc by

ε x ∝ γ
2θ3c ∝

E2

N3
c

, (1)

where E is beam energy, Nc =
2π
θc

the number of cells. It
seems, as more cells are added to the circumference, the
emittance will be ever decreasing.
However, for a low emittance beam with low or medium

beam energy, intra-beam scattering (IBS) is known to in-
crease its momentum spread and emittance. How does IBS
affect the path to reach the desired low emittance goal?

In reaching lower emittance, the dispersion function will
naturally decrease, which in turn requires stronger sextupoles
to correct chromaticities. Stronger and more sextupoles will
cause more severe challenges in nonlinear beam dynamics.
Will the dynamic aperture and momentum aperture become
so small to prevent future storage rings to reach the desired
performance?

The goal of emittance reduction is to achieve high bright-
ness and high transverse coherence for undulator radiation.
For the ideal case, the electron beam is matched to the pho-
ton beam in both transverse planes, i.e, βx = βy = σr/σr ′ ,
∗ Work supported by DOE Contract No. DE-AC02-76SF00515
† xiahuang@slac.stanford.edu

where the Σ’s are rms photon beam sizes, σrσr ′ =
λ
4π is the

single photon emittance and λ is photon wavelength. We
also assume a round electron beam through full linear cou-
pling, i.e., with ε x = ε y = 1

2 εn , where εn is the storage ring
natural emittance. Then the transverse coherence is given
by

f⊥ ≡
σ2
rσ

2
r ′

ΣxΣx′ΣyΣy′
=

(
1 +

2πεn
λ

)−2
. (2)

We assume a future storage ring is aimed at delivering
high transverse coherence for a 100 keV photon beam and
the required natural emittance is 1 pm.

SCALING OF LINEAR OPTICS
To estimate the storage ring performance limit, it is neces-

sary to have a quantitative rule that properly scales with ring
circumference, beam energy, and the maximum quadrupole
gradient, B1 =

dBy

dx . The maximum quadrupole gradient is
a measure of the technological limitation, which is closely
related to the vacuum subsystem, aperture requirement, and
the impedance budget. The maximum gradient is about
20∼25 T/m for typical third generation light sources, 43 T/m
for MAX-IV, and up to 100 T/m for recent designs.

We notice that the linear optics features remain unchanged
if the element lengths and quadrupole strengths are scaled
while keeping

√
K L (where K1 =

B1
Bρ ) constant. In this case,

the phase advance at any point remains the same. In fact,
the linear lattice functions of a lattice cell with length L can
be scaled as follows

ŝ =
s
L
, η̂ =

η

Lθc
, β̂x,y =

βx,y

L
, (3)

ĥ =
hL
θc
=

L
ρθc

, k̂ = K L2, (4)

where η is dispersion, βx,y are beta function, h = 1
ρ is the

curvature of radius of bending magnets, and all ·̂ quanti-
ties are dimensionless. Then the equations for βx,y and η
becomes

1
2
β̂′′x + k̂x β̂x −

1
β̂x

(
1 +

1
4

( β̂′x )2
)
= 0, (5)

1
2
β̂′′y + k̂y β̂y −

1
β̂y

(
1 +

1
4

( β̂′y )2
)
= 0, (6)

η̂ ′′ + k̂x η̂ = ĥ, (7)

where k̂x = k̂ + ĥ2θ2c ≈ k̂, k̂y = −k̂, ′ and ′′ refer to first and
second order derivatives w.r.t. ŝ, respectively. The curvature
of bending radius is also normalized such that∫ 1

0
ĥ(ŝ)dŝ = 1. (8)
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Table 1: Scaling parameters for selected rings.

Ring E C εnat max B1 Fn

GeV km nm T/m nm·(T·km)1.5

GeV3.5

ALS 1.9 0.197 2.0 22 0.166
SPEAR3 3 0.234 9.8 22 0.277
APS 7 1.110 2.5 19 0.307
MAX-IV 3 0.528 0.24 43 0.213
ALS-U 2 0.200 0.109 105 0.083
APS-U 6 1.110 0.041 85 0.082

It is worth noting that the weak focusing effect from bending
magnets for a large ring can be neglected.

The maximum quadrupole strength requirement becomes

| k̂ | ≤ k̂m ≡ KmL2 =
eB1,mL2

γmc
, (9)

where B1,m is the maximum quadrupole gradient and m is
electron rest mass.
Dispersion invariant and radiation integrals can be simi-

larly defined in the dimensionless parameters. The emittance
and momentum spread will be

εnat = FεCqγ
2θ3c, σ2

δ = FδCqγ
2 θc

L
, (10)

where Fε and Fδ are form factors.
The normalized cell can be applied for rings with various

size, beam energy, and maximum quadrupole strengths. For
a ring of circumference C, we have

θc =
2πL
C
=

2π
C

(
k̂mγmc

eB1

)1/2
, (11)

which can be inserted to Eq. (10) to yield [3]

εnat = FεCq

(
k̂mmc

e

)1.5
γ3.5(2π)3

B1.5
1,mC3

= Fn
E3.5

B1.5
1,mC3

, (12)

where Fn ∝ Fε k̂1.5m . With large k̂m , more focused dipole can
be packed in one cell and hence Fε will be reduced. The net
effect is included in the form factor Fn . Parameters of some
existing and proposed rings are listed in Table 1 to illustrate
the above scaling law.

For the APS-U [7], the emittance is reduced by a factor of
61, of which (6/7)3.5 = 0.58 is from beam energy decrease,
(19/85)1.5 = 0.106 from the quadrupole gradient increase,
and the remaining factor is from the form factor Fn reduction,
which represents the increase of efficiency of the lattice cell
type toward lower emittance.

INTRA-BEAM SCATTERING
With IBS, the beam emittance and momentum spread will

grow as beam current increases. The IBS growth rates of
emittance momentum spread are related to beam energy and

beam sizes. Using the high energy approximation [4, 5], the
horizontal emittance growth rate is found to be

1
Tx
∝

NbHx

γ3ε5/2σz (βx βy )1/4
∝

NbB2.5
1,mC6

γ11.5
, (13)

where Nb is the number of electrons in the bunch, we used
Hx ∝ Lθ2c and

σz =
αT0E/e
|dVrf/dt |

σδ ∝
f (q)

δmax
√

q
γθ1/2c ∝ γθ1/2c , (14)

where f (q) =
(√

q2 − 1 − cos−1 1
q

)1/2
, and we assumed the

over voltage factor q = Vrf/U0 is chosen to keep the factor
before γθ1/2c constant. Note that since the number of dipoles
for a fixed cell type is Nd ∝ Nc =

2π
θc
, the empirical scaling

law of in Ref. [9] becomes

1
Tx
∝

N5.5
d

E8 , →
1

Tx
∝

C5.5B2.75
1,m

γ10.75

The difference from Eq. (13) is not big and could come from
different scaling assumptions, e.g., that of the RF parameters.
In choosing parameters to minimize the IBS effect it is

reasonable to assume that at the equilibrium the IBS growth
rate is equal to the radiation damping rate, which scales as

1
τx
∝ γ3L ∝ γ3.5B−0.51,m . (15)

At this condition the emittance doubles from IBS effects.
Therefore we should require

B1,mC2

γ5
=

B10,mC2
0

γ50
= const, (16)

where subscript “0” indicates a known case when Tx = τx
for the same cell type.
Applying Eq. (16) to Eq. (12), we obtain the scaling law

for achieving low emittance for the IBS dominated case,

εnat = εnat,0

(
E0
E

)4
, (17)

while keeping Eq. (16) satisfied, where εnat,0 and E0 are the
emittance and beam energy for the known case when IBS
growth rate is equal to radiation damping rate.
The use of damping wigglers [4, 6] is not considered in

the above scaling analysis. Damping wigglers require a lot
of straight section space and its contribution to emittance
reduction saturates due to the intrinsic dispersion. Most new
ring design do not include damping wigglers. Nonetheless,
the damping wiggler effects would impose only a small
change to the above scaling law.
Ref. [9] reported a 7-BA based lattice (TeV-USR) for a

ring of C = 6.21 km. At 9 GeV the natural emittance is
εnat = 3.0 pm and the emittance roughly doubles by IBS at
a beam current of 200 mA with full coupling. This gives us
a reference point for scaling with Eq. (17) (see Figure 1).
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Figure 1: Emittance scaling for IBS limited ring with critical
beam energy.

To scale the TeV-USR design to reach a natural emittance
of 1 pm, and to only allow the IBS to double the emittance
for a 200 mA beam, the beam energy needs to increase to
11.8 GeV. The combined factors of B1,mC2 should increase
by a factor of 3.87. If no increase of B1,m can be made, the
storage ring size needs to increase by a factor of 1.97, to
12.2 km.

We also note that at 4.5 GeV, the natural emittance should
be 48 pm. The PEP-X design has a lower natural emittance
of 29 pm and its IBS growth is at the critical condition (when
emittance doubles from IBS) at the same current [4]. The
difference is because of the use of damping wigglers of a
total length of 90 m which helps in both reducing natural
emittance and suppressing IBS.

SCALING OF NONLINEAR DYNAMICS
When the number of cells is increased to reduce emittance,

the dispersion function is naturally reduced. But the chro-
maticity contribution from the cell does not change. The
sextupole strengths required to correct the chromaticities
have to increase, according to

∆ξ = βη[K2L2] ∝ L2θc [K2L2], (18)

where [K2L2] is the integrated sextupole strength. Stronger
sextupoles will cause more severe challenges in nonlinear
beam dynamics by limiting the dynamic aperture (DA) and
local momentum aperture (LMA).
Although generally storage ring nonlinear dynamics is

complicated to predict, some optimistic estimates can be
made. For example, we can assume the lattice cell is de-
signed so that there is little nonlinear interaction between
cells to the second order (e.g, Ref. [4]). The remaining ef-
fects are the linear addition of contributions to the resonance
driving terms (RDTs) from the cells. Hence, the sextupole
driven tune shifts with amplitude from RDTs h22000, h11110
and h00220 will scale as

dν
dJ
∝ Nc [K2L2]2 ∝ (∆ξ)2

(
B1,m

E

)3.5
C3. (19)

If we assume such tune shifts are the limiting factors (tune
shifts are usually limited to <∼ 0.2) for DA and LMA, the
dynamic acceptance will be

JDA ≡
A2

β
≈
∆νlim
dν/dJ

∝
E3.5

B3.5
1,mC3

∝
εnat

B2
1,m

, (20)

and the dynamic aperture will thus scale as [3]

A ∝
√
βεnat

B1,m
∝
ε1/2nat E1/4

B5/4
1,m

. (21)

We note that when the maximum quadrupole gradient is
increased for emittance reduction, there is an additionally
penalty factor of 1/B2

1,m in the dynamic acceptance. This
is because with increased B1,m , the cell length decreases
and hence both beta function and dispersion scales down,
forcing sextupole strengths to go up.

SCALING OF ORBIT AND OPTICS
ERRORS

Random misalignment and magnetic field errors cause
orbit and optics distortions, which can be statistically esti-
mated. The rms orbit errors scales with

〈∆x〉rms ∝
√

N β〈K1Lu〉rms ∝
√

N ∝
E1/3

ε1/6nat
, (22)

where u is the rms misalignment offset and in the last step
we used Eq. (12). Similarly, the rms beta beat scales with

〈
∆β

β
〉rms ∝

√
N β〈∆K1L〉rms ∝

√
N ∝

E1/3

ε1/6nat
. (23)

For the IBS dominated critical case (Eq. (17) satisfied), the
scaling rule becomes

〈∆x〉rms ∝
1
ε1/4nat

, 〈
∆β

β
〉rms ∝

1
ε1/4nat

. (24)

These are weak dependence on the natural emittance.

SUMMARY
By normalizing the linear optics of a lattice cell with cell

length and using it for scaling, we obtained a scaling rule of
natural emittance as a function of beam energy, ring circum-
ference, and maximum quadrupole gradient. Including the
scaling property of the IBS effect, we derived an optimal
strategy to choose beam energy for a certain low emittance
design target. For the optimistic assumption that the nonlin-
ear dynamics effects of the cells are only linearly additive,
we obtained a scaling rule of dynamic aperture vs. emit-
tance. Scaling properties of rms orbit and optics distortions
by random alignment and field errors are also obtained.
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