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Abstract

A novel method using high-power laser as a circular deflector is proposed for
the measurement of femtosecond (fs) and sub-fs electron beam. In the scheme,
the electron beam interacts with a laser pulse operating in a radially polarized
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two angular kicks makes the beam form a ring after a propagation section with
appropriate phase advance, which can reveal the current profile of the electron
beam. Detailed theoretical analysis of the method and numerical results with
reasonable parameters are both presented. It is shown that the temporal reso-
lution can reach up to ∼ 100 attosecond, which is a significant improvement for
the diagnostics of ultrashort electron beam.
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A novel method using high-power laser as a circular deflector is proposed for the mea-
surement of femtosecond (fs) and sub-fs electron beam. In the scheme, the electron beam
interacts with a laser pulse operating in a radially polarized doughnut mode (TEM01∗) in
a helical undulator, generating angular kicks along the beam in two directions at the same
time. The phase difference between the two angular kicks makes the beam form a ring after
a propagation section with appropriate phase advance, which can reveal the current profile
of the electron beam. Detailed theoretical analysis of the method and numerical results with
reasonable parameters are both presented. It is shown that the temporal resolution can reach
up to ∼ 100 attosecond, which is a significant improvement for the diagnostics of ultrashort
electron beam.

I. INTRODUCTION

Ultrashort electron beams with few femtosec-
ond (fs) and sub-fs bunch length, have been gen-
erated and applied in various fields, such as beam
injection studies in laser-plasma wakefield accel-
erator (LWFA) [1] and producing ultrashort X-
ray pulses in free-electron lasers (FELs) [2]. In
these applications, the precise measurement of
the overall bunch length and characterization of
the current profile are essential for performance
optimization and understanding of the physics
inside, but extremely challenging. For exam-
ple, in LWFAs, the ability of precisely control-
ling the current profile makes it possible to op-
timize the beam loading and minimizing the en-
ergy spread of the injected electron bunch [3]. As
for FELs, ultrashort and temporal well-defined
X-ray pulses are critical and highly desired for
user experiments, e.g. molecular imaging [4] and
nanocrystallography [5]. At present, one of the
most promising methods is to infer the X-ray
temporal structure from the electron beam di-
agnostics [6, 7].

Some methods have been proposed and
studied to measure the ultrashort electron
beam, which can be distinguished into different
classes [8]. Coherent methods use the spectrum
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of the light emitted from the beam by some co-
herent radiation process to infer the temporal
profile [9, 10], or detect the Coulomb field travel-
ing with the beam by electro-optic methods [11].
The unknown phase information in the spectrum
method needs to be recovered, leaving ambigu-
ity in the reconstructed pulse shape. In these
methods, the temporal resolution depends on
the spectral bandwidth and response function of
the detection system. Phase space manipulation
methods, including transverse deflector [12, 13]
and rf zero-phasing [14], map the time coordi-
nate onto a transverse dimension and reveal the
beam temporal profile directly. Their tempo-
ral resolution relies on the induced correlation
strength and the transverse measurement reso-
lution. For the deflector method, increasing the
deflecting voltage and reducing the wavelength
are two ways for improving the resolution [7].

With the development of laser techniques, we
can streak the electron beam at optical frequen-
cies. As the wavelength is reduced by 4 to 5
orders from rf to laser frequency, the resolution
can be dramatically improved to fs, or even at-
tosecond (as) level. It usually requires a sec-
tion of undulator resonant at the laser wave-
length to introduce the interaction with the elec-
tron beam. In one proposed optical streaking
scheme [15], if the electron beam is located at
the slope region of intensity envelop, the energy
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modulation grows in amplitude along the beam.
When the laser power is sufficiently high, it is
possible to make the energy difference between
two adjacent cycles larger than the beam’s in-
trinsic energy spread so that a clear modulation
in the projected energy distribution can be ob-
served. Since the oscillation period of the energy
distribution is related to the laser wavelength,
the temporal profile can be determined from the
modulation. Another scheme of optical streak-
ing is the combination of a transverse mode laser
and a rf deflecting cavity [16]. The streak from
the rf deflecting cavity is orthogonal with the
angular modulation from the laser so that the
beam distribution at different cycles can be sep-
arated. The usable laser wavelength is limited
by the resolution of the rf deflecting cavity. It
should be noted that in the both schemes above,
the temporal resolution is not uniform along the
beam due to the sinusoidal modulation from the
laser, which may have implications for retrieval
of complex temporal profiles. In addition, it is
also proposed in LWFA recently to utilize the
interaction between the electron and the back of
the driver laser in plasma to retrieve the beam’s
current profile [17, 18].
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FIG. 1. Illustration of the optical circular deflector
(not to scale).

II. THEORETICAL ANALYSIS

In this paper, a novel scheme using high-
power laser as a circular deflector with con-
stant as-level resolution is proposed for the lon-
gitudinal diagnostics of fs and sub-fs electron
beam. The scheme exploits the interaction of
an ultrashort electron beam with a laser op-
erating in a higher-order transverse mode and

a helical undulator resonant at the laser fre-
quency, which is illustrated in Fig. 1. The en-
ergy and angular modulations with the linear
polarized Hermite-Gaussian TEM10 laser in a
planar undulator have been studied by Zho-
lents and Zolotorev [19]. In the helical undula-
tor interaction, we adopt the so-called doughnut
mode TEM01∗ , which is a superposition of two
Laguerre-Gaussian TEM10 modes with 90 ◦ rota-
tion with respect to one another [20]. The trans-
verse intensity distribution and the polarization
direction of the laser are illustrated in Fig. 2.

(a) (b)

FIG. 2. (a) The transverse intensity distribution
and (b) radial polarization of the doughnut mode
TEM01∗ .

The laser polarization is radial and the elec-
tric field can be expressed as

Ex(y) =
E0

1 + (z/z0)2
2x(y)

w0
sin (k(z − ct) + ψ)G , (1)

and the factor G denotes the effects of the laser
longitudinal and transverse distribution with

G = e
− (z/c−t+s/c)2

4σ2τ e
− x2+y2

w2
0(1+(z/z0)

2) . (2)

Here E0 is the field amplitude, k = 2π/λ is the
wave vector, λ is the wavelength, z0 = kw2

0/2 is
the Rayleigh length, w0 is the waist size which
is assumed to be in the center of the undulator,
ψ = ψ0−2 tan−1(z/z0)+k(x2+y2)/2R, ψ0 = ks
is the phase of the wave at the beginning of the
interaction at the the entrance of the undulator,
s is the electron coordinate within the electron
bunch, R = (z2 +z20)/z, and στ is the rms width
of the laser pulse. For brevity, we assume that
the laser pulse is long enough and the electron
beam size σx,y � w0 so that G = 1 in the fol-
lowing derivations. Note that the laser and the
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electron motion in helical undulator are both cir-
cularly symmetric, so the definition of x and y
directions is arbitrary here.

For electron motion inside the helical undu-
lator, the velocity components are given by

βx =
K

γ
cos(kuz) , (3)

βy =
K

γ
sin(kuz) , (4)

where ku = 2π/λu, λu is the undulator period,

K = eB0/kumc, B0 is the peak magnetic field,
and γ is the relativistic factor. Then the energy
gain/loss obtained by the electron in its interac-
tion with the laser field can be found by solving
the equation

dγ

dt
= − e

mc
(Ex ·βx + Ey ·βy) . (5)

Plugging Eqs. (1), (3) and (4), the energy change
can be written as

〈
dγ

dt

〉
=

e

mc

KE0

γw0 (1 + (z/z0)2)

(
x sin

(
kuz

2δγ

γr
+ φ

)
− y cos

(
kuz

2δγ

γr
+ φ

))
, (6)

where the symbol 〈 · 〉 means averaging over one
undulator period. Here we also define the res-
onance electron energy as γ2r = k

2ku
(1 + K2)

and δγ represents the energy deviation. Tak-
ing the dimensionless variables: ẑ = ct/Lu, ν =

N2δγ/γr and q = Lu/z0, qẑ = z/z0, where
Lu = Nuλu is the length of the undulator with
Nu periods, and replacing the field E0 by the
laser power PL = E2

0πw
2
0/2µ0c, the energy mod-

ulation becomes

〈
dγ

dẑ

〉
=

√
2K

γ

√
PL
P0
kq

(
x sin

(
2πνẑ − 2 tan−1(qẑ) + ks

)
− y cos

(
2πνẑ − 2 tan−1(qẑ) + ks

))
1 + (qẑ)2

, (7)

with P0 = IAmc
2/e and the Alfvén current IA.

By using the Panofsky-Wentzel theorem [21],

∂∆x′

∂s
=

∂

∂x

(
∆γ

γ

)
,
∂∆y′

∂s
=

∂

∂y

(
∆γ

γ

)
, (8)

we can obtain the angular kicks due to the inter-
action with the laser [19]. By integrating ẑ from
-0.5 to 0.5 (over the undulator distance), the an-
gular kicks on the electron beam after passing
through the undulator can be formulated as

∆x′ = −
√

2K

γ2

√
PL

P0
f(q, ν) cos(ks+ φ) , (9)

∆y′ = −
√

2K

γ2

√
PL

P0
f(q, ν) sin(ks+ φ) , (10)

where φ is an arbitrary phase and

f(q, ν) = q

∫ 0.5

−0.5

cos(2πνẑ − 2 tan−1(qẑ))

1 + (qẑ)2
dẑ . (11)

In Eqs. (9) and (10), it is founded that there
is a phase difference, π/2, between the kicks of
the two directions, leading to the relations

∆r′ =
√

(∆x′2 + ∆y′2) =

√
2K

γ2

√
PL

P0
f(q, ν) , (12)

θ = arctan(∆y′/∆x′) = ks+ φ , (13)

which mean that the kick strength along the
beam is uniform (ignore the energy spread here)
and the kick angle only linearly depends on
the electron’s longitudinal position within the
bunch. It could further conclude that if the
beam size is dominant by the induced kicks, then
after propagation with π/2 phase advance, the
beam will form a ring on the screen (see Fig. 1).
The radius of the ring is determined by the kick
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strength and independent of the longitudinal co-
ordinate. The distribution along the polar an-
gle on the screen can be used to reconstruct the
beam’s temporal profile, which is similar with an
rf deflecting cavity, so we can call it as a circular
deflector.

To consider the temporal resolution of the
proposed circular deflector, we assume the beam
has an initial rms angular spread σx′ and define
the normalized kick strength as

R =
∆r′

σx′
. (14)

Here R can also represent the radius of the ring
on the screen normalized by the unperturbed
rms beam size after beam propagation with π/2
phase advance. Then the resolution of the polar
angle is σθ = 1/R, and according to Eq. (13), the
corresponding temporal resolution of the circu-
lar deflector is

σt =
σθ
kc

=
1

kcR
=

1

2πR
· λ
c
, (15)

where λ is the adopted laser wavelength. The
equation above shows a great potential to
achieve very high temporal resolution. For ex-
ample, using ∼ 1µm wavelength laser and R ≈
10, the temporal resolution can reach up to
∼ 50 as.

Note that the function f(q, ν) in Eq. (11) does
not include the effects of the finite pulse length
and transverse size of the laser pulse. However,
it is possible to generalize the expression to the
case with these effects included. The general ex-
pression of f(q, ν, στ , s, w0, z0) can be found in
Ref. [19] although it was for the interactions in
a planar undulator. The degradation of f(q, ν)
will reduce the kick strength for electrons, but
has little effects on the beam distribution along
the polar angle. We will adopt the general ex-
pression in the following numerical calculations.

III. NUMERICAL RESULTS

In this section, we present some numerical re-
sults and application examples of the circular de-
flector with reasonable parameters. The choice
of the laser wavelength should be based on the

requirement of temporal resolution and measure-
ment range. Smaller wavelength makes it easier
to achieve higher resolution, but also limits the
available measurement range. In the following
examples, we use the laser of 4µm for the cir-
cular deflector. The high-power 4µm laser can
be generated by optical parametric chirped pulse
amplification [22, 23] from 800 nm laser systems,
which have been widely used in modern acceler-
ator facilities and LWFA experiments.

For the design of a circular deflector, we first
need to determine the parameters of the helical
undulater and the laser. We use 4µm laser and
1 GeV electron beam as an example. The undu-
lator period λu = 10.3 cm and the correspond-
ing K = 17.3. Through scanning the undulator
period Nu, laser waist size w0 and detune ν, we
choose the parameters Nu = 2, w0 = 300µm and
ν = 0.72, where the function f(q, ν) = 1.9. The
maximum value of f(q, ν) can be up to ∼ 2.4,
but in this case it requires more undulator peri-
ods and smaller laser waist size.

The electron beam parameters we adopt are
as follows: the normalized emittance is 0.1µm
and the full width at half maximum (FWHM)
of the beam profile is ∼ 6 fs . In order to test
the resolution, we add complex structures onto
the current profile as shown in Fig. 3 (b). There
is also an energy chirp on the beam, which
scales ∼ 3% over the whole bunch. These num-
bers above are reasonable in LWFA. The rms
beam size at the deflector is 20µm, which can
be matched by the phase space matching tech-
nique in LWFA [24]. In this case the laser pulse
length is much larger than the electron bunch
length, so we can ignore the power envelop and
slippages in the undulator.

Figure 3 presents the results of the circular
deflector. Here we take two kinds of laser power,
100 GW and 20 GW for comparison. According
to Eqs. (14) and (15), the temporal resolution is
∼ 130 as for 100 GW (R = 16.2) and ∼ 300 as
for 20 GW (R = 7.2). The ring pattern of the
beam at the final screen is shown in Fig. 3 (a).
Projecting along the polar angle, the temporal
profile can be reconstructed in Fig. 3 (b). It can
be seen that even at 20 GW laser power, the re-
constructed profile agrees well with the pre-set
profile. Compared with the result of 100 GW
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case, the contrasting structures in the profile,
e.g. narrow peaks and valleys, become gentle
due to the relative lower temporal resolution at
20 GW. In addition to the temporal profile, if we
assume the laser power is uniform, we can also
estimate the energy chirp of the beam by the av-
erage radius of the ring pattern along the polar
angle. In Fig. 3 (c), from the head to tail, there
is ∼ 7% difference in the radius R, which is a bit
larger than the twice of the 3 % energy chirp of
the beam. This is because the kick strength is
proportional to the inverse square of the energy
and the offset of the detune will reduce the kick
strength further.

FIG. 3. Circular deflector results: (a) ring pattern
at the final screen when the laser power is 100 GW;
(b) actual and reconstructed beam current profiles
with laser power 100 GW and 20 GW; (c) the average
ring radius along the beam time coordinate with laser
power 100 GW. The shadow is the rms width of the
radius.

In the examples above, we limit the electron
bunch length less than the adopted laser wave-
length. In this case, the dynamic range of the
deflector is 2πR. In order to measure the bunch
length which is longer than the laser wavelength,
especially several times of the wavelength, we
can synchronize the beam with the laser at the
slope region of the intensity envelope, and the
difference in the kick strength can distinguish the
adjacent rings to form a spiral. Using the same
current profile, we scale the time coordinates of
all electrons by 3 times and the FWHM of the
beam becomes ∼ 18 fs. The laser pulse length
is rms 30 fs and the laser power is increased to
300 GW to provide enough kick difference for the
adjacent rings. The electron beam is delayed by
40 fs to lie at the large slope of the intensity en-
velope. The other parameters of laser and undu-
lator are kept the same with the previous cases.
The results are given in Fig. 4. From the top
plot (a), it can be seen clearly that the adjacent
rings of the spiral are separated by the circular
deflector. This can be verified from Fig. 4 (c) as
well, where the average radius and its rms width
along the polar angle are given. The separation
between the adjacent rings is ∼ 6 times of the
rms width. Expanding the spiral along the polar
angle, we can reconstruct the temporal profile,
as shown in Fig. 4 (b). The temporal resolution
in this case is 120 fs (R = 18), which is enough
to reveal every detailed structures in the profile.

IV. DISCUSSIONS

In this section, we discuss some advantages
of the proposed optical circular deflector. Com-
pared with the usual RF deflector, besides the
higher temporal resolution, the measurement of
optical circular deflector is self-calibrated. For
RF deflector, it is necessary to do calibration,
since the mapping from longitudinal coordinate
to transverse position is determined by the kick
strength of the deflector and the transfer matrix
of the beam propagation section. However, in
the optical circular deflector, the temporal pro-
file is obtained from the polar angle distribution,
where one circle (360 ◦) corresponds to one laser
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FIG. 4. Circular deflector results for longer electron
beam: (a) spiral pattern at the final screen when the
laser power is 300 GW; (b) actual and reconstructed
beam current profiles with laser power 300 GW (R =
18); (c) the average ring radius along the polar angles.
The shadow is the rms width of the radius.

wavelength. The kick strength and the transfer
matrix after the deflector will change the tempo-
ral resolution, but have little effect on this cali-
bration coefficient.

In addition, the proposed optical circular de-
flector method is suitable for wide range of beam
energy. Here we give a scaling law of temporal
resolution. If we keep the peak magnetic field of
the undulator, according to the resonant equa-
tion, K ∝ γ2/3. If we further assume the beam
size at the deflector and the normalized trans-
verse emittance are kept the same, the initial
angular spread σx′ ∝ γ−1. Then the scale law of

temporal resolution can be written as

σt ∝
1

R
∝
KP

1/2
L

γ2σx′
∝
P

1/2
L

γ1/3
. (16)

It means that for different beam energy, if we
want to keep the same temporal resolution, the
laser power should be PL ∝ γ2/3. In the previ-
ous examples, the beam energy is 1 GeV. If we
increase it to 4 GeV, the laser power needs to be
increased by a factor of 2.5 to maintain the tem-
poral resolution, which is still very reasonable.

V. SUMMARY

In this paper, a novel method for the ultra-
short electron beam measurement, optical circu-
lar deflector, has been proposed. The scheme
takes advantages of the interactions of the elec-
tron beam with a laser operating in doughnut
mode in a helical undulator to generate uni-
form circular kicks in the transverse dimensions.
Since the laser wavelength is much shorter than
the rf wavelength, the temporal resolution can be
improved up to as level. In the paper, we have
presented some examples with 4µm laser with
temporal resolution approaching ∼ 100 as. The
method still works for other wavelengths, for ex-
ample, 800 nm and 10µm. The choice of the
laser wavelength should depend on the require-
ment of resolution and the bunch length range of
the electron beam. The measurement range can
be increased by several times through locating
the electron beam at the slope of the intensity
envelop. The proposed method is self-calibrated
and it is easy to scale to higher energy. In sum-
mary, the proposed method provides a powerful
tool for the diagnostics of the fs and sub-fs elec-
tron beam. It is of great potentials to apply
in LWFA experiments and FEL facilities, where
high-power laser systems are readily available.
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