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The Principle of Maximal Conformality (PMC) provides a rigorous method for eliminating renor-
malization scheme-and-scale ambiguities for perturbative QCD predictions. The PMC uses the
renormalization group equation to fix the S-pattern of each order in an arbitrary pQCD approxi-
mant, and it then determines the optimal renormalization scale by absorbing all 8 terms into the
running coupling at each order. The resulting coefficients of the pQCD series match the scheme-
independent conformal series with § = 0. As in QED, different renormalization scales appear at
each order; we call this the multi-scale approach. In this paper, we present a novel single-scale
approach for the PMC, in which a single effective scale is constructed to eliminate all non-conformal
B-terms up to a given order simultaneously. The PMC single-scale approach inherits the main
features of the multi-scale approach; for example, its predictions are scheme-independent, and the
pQCD convergence is greatly improved due to the elimination of divergent renormalon terms. As
an application of the single-scale approach, we investigate the e™e™ annihilation cross-section ratio
R.+.- and the Higgs decay-width T'(H — bb), including four-loop QCD contributions. The result-
ing predictions are nearly identical to the multi-scale predictions for both the total and differential
contributions. Thus in many cases, the PMC single-scale approach PMC-s, which requires a simpler
analysis, could be adopted as a reliable substitution for the PMC multi-scale approach for setting
the renormalization scale for high-energy processes, particularly when one does not need detailed
information at each order. The elimination of the renormalization scale uncertainty increases the

precision of tests of the Standard Model at the LHC.

PACS numbers: 12.38.-t, 12.38.Bx, 11.10.Gh

A primary requirement of renormalization group in-
variance (RGI) is that a valid prediction for a physical
observable from quantum field theory must be indepen-
dent of the choice of renormalization scheme, such as the
minimum-subtraction MS or MOM schemes. Conven-
tional predictions based on a truncated perturbation se-
ries do not automatically satisfy this requirement, leading
to scheme-and-scale ambiguities. For example, perturba-
tive QCD predictions, where the renormalization scale
and its range are simply guessed, lead to an unphysical
dependence on the choice of renormalization scheme.

The renormalization group equation (RGE) provides
a rigorous basis for determining the running behavior of
the coupling constant and hence the setting of the renor-
malization scale. It determines the running of the strong
coupling from the analytic properties of the S-function:
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where a perturbative expansion of the S-function in terms
of & = ay/4m is assumed. The “Principle of Maximal
Conformality” (PMC) [1-4] utilizes the RGE recursively
to unambigously identify the occurrence and pattern of
nonconformal {f;} terms at each order in a pQCD ex-
pansion. The PMC then determines the optimal renor-
malization scales by absorbing all occurrences of the {5;}
terms into the scales of the running coupling at each or-
der of perturbation theory. The coefficients of the result-
ing pQCD series then match the “conformal” series with

B = 0. Given one measurement which sets the value of
the coupling at a scale, the resulting PMC predictions
are independent of the choice of renormalization scheme.
Thus the PMC scale setting eliminates an unnecessary
theoretical uncertainty.

The elimination of the renormalization scale uncer-
tainty for pQCD is important since it increases the pre-
cision of tests of the Standard Model at the LHC. The
scales predicted by the PMC are physical — they reflect
the virtualities of the gluon propagators at each given or-
der, as well as setting the effective number of active fla-
vors ny. Specific renormalization scales and values of ny
appear for each skeleton graph. The QCD scales deter-
mined by the PMC can thus be considered as the relevant
physical scales for observables, in analogy to QED. In
fact, the PMC method reduces in the Abelian limit to the
standard Gell Mann-Low method for setting the renor-
malization scale for precision predictions in QED [5].

In practice, the PMC multi-scale method requires con-
siderable theoretical analysis. In this letter, we introduce
a new all-orders single-scale approach “PMC-s” which
makes the implementation and automation of PMC scale-
setting simpler and more transparent. In effect, the
PMC-s provides a mean value for the PMC multi-scales,
while retaining its central predictions. We also find that
the single PMC-s scale shows stability and convergence
with increasing order in pQCD.

As we have shown in our previous papers [3, 4, 6], the
{B:}-dependence of any pQCD expression occurs with
a specific “degeneracy” pattern dictated by the RGE.
Specifically, one finds
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where 71, is the tree-level term and p is the power of
the coupling associated with the tree-level term, p is the
initial renormalization scale, and @ represents the kine-
matic scale. The pattern of {#;} terms from one order
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to the next are general properties of non-Abelian gauge
theory for any physical observable.

The pQCD expansion for p(Q) can be reorganized into
the following compact form:
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As a further step, we can explicitly identify the scale
dependence of the non-conformal coefficients r; j(>1) as

J
Tij = ZC;‘Cka’ifk,jfk; (4)
k=0

where L = In(p?/Q?), #i; = rijlu—o, and the combi-
natorial coefficients are CJ’»C = jl/kN(j — k)!. The con-
formal coefficients are free from scale dependence; i.e.,
ri,0 = Ti,0. By substituting Eq.(4) into Eq.(3), we obtain
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Following the PMC procedure, all non-conformal terms
should be resummed into the running coupling. In the
case of the multi-scale approach, one can do this recur-
sively, leading to a scale-fixed scheme-independent con-
formal series [3, 4]:

p(Q) = 3 Froal(@u)" P, (6)

n>1

where @Q,, are the PMC scales appearing at each orders.
The PMC scales depend on the choice of renormalization
scheme; however, once the value of a,(Q) is determined
in the chosen scheme at a specific physical kinematic scale
Q, the resulting PMC predictions are independent of the
scheme choice.

Jjzk

In the following, we shall show that by introducing a
single universal renormalization scale @4, one can also
obtain a scheme-independent conformal series, i.e.

p(Q) = Fnoa(Q)PL (7)
n>1
This can be achieved by replacing the scale p in Eq.(5)
as @, whose value is determined by requiring all non-
conformal terms vanish. The solution of In Q2 /Q? can be
written as a power series in a(Q), i.e.
Qi _ 2
1D@—T0+T104(Q)+T204 @)+, (8)
where T; are process-dependent coefficients. The coef-
ficients T; (i = 0,1,---,n) can be fixed by a N**'LO



pQCD calculation. For example, for a N®LO calculation,
J

we can get a N°LLO Q*, whose three coefficients are
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It is interesting that different orders of the perturbative
series for the PMC scale have an identical form; e.g.,
the coefficients of (p + i + 1)B;a*1(Q) are the same.
Moreover, the effective scale @, is explicitly indepen-
dent of the choice of initial choice of the renormalization
scale p at any fixed order. It thus has universal proper-
ties. It also converges rapidly as shall be shown below;
thus any residual scale dependence due to uncalculated
higher-order terms is greatly suppressed. Another impor-
tant feature is that the single-scale approach avoids the
problem of very small arguments of the running coupling
appearing at a specific order; e.g., when a soft gluon car-
ries the momentum flow. An example of this appears in
the analysis of the Bjorken sum rule [7]. On the other
hand, in some leading-twist processes such as single spin
asymmetries in deep inelastic scattering [8] or the dou-
ble Boer-Mulders effect in lepton pair production [9], the
scale of the running coupling at specific orders will be soft
since these processes involve gluonic initial-state or final-
state interactions at small momentum transfer. A related
single-scale approach has been suggested in Refs.[10, 11]
by applying the Brodsky-Lepage-Mackenzie scale-setting
approach [12] *. However, in these analysis an n s-power
series was used to set the effective scale without distin-
guishing whether the n;-terms are specific to the {8;}
terms; thus one cannot confirm the scheme-independence
of the resultant pQCD series. However, if one improves
this method, taking care that only the nonconformal n -
terms associated with coupling constant renormalization
are used to set the scale, one will obtain the same effec-
tive scale as that of Eq.(8).

Example I : eTe~ — hadrons. The annihilation of an
electron and positron into hadrons provides one of the

! In those two references, only two-loop expressions are given, but
we have found that such an approach can be extended to all
orders. A detailed discussion on this point is in preparation.

most precise platforms for testing the running behavior
of the QCD coupling. The R-ratio is defined as

o (eTe™ — hadrons)
R — =
ete (Q) 0’(€+€7 N [L+,LL7)

=3 el[1+R(Q)], (12)

where Q@ = +/s. The pQCD approximant for R(Q)
up to (n 4 1)-loop level can be written as, R,(Q) =
Yo Ci(Q, )t (). The expansion coefficients in the
MS-scheme up to four-loop level can be found in Refs.[13~
16]. In order to apply the PMC, one first transforms
the calculated non-conformal ng-power series into the
{Bi}-series and applies the standard PMC multi-scale or
single-scale procedures.
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FIG. 1. The determined PMC scale Q. for R(Q) up to N°LLO
accuracy. Qil) is at the LLO accuracy, ) is at the NLLO
accuracy and QﬁB) is at the N2LLO accuracy. Q = 31.6 GeV.

By using Eq.(8), the PMC scale Q. for R(Q) up to
N2LLO precision can be determined using the four-loop



pQCD prediction for R(Q). The result is:

2
In % = 0.2249 + 1.636904(Q) + 1.555902(Q).

Numerical results are shown in Fig.(1), in which QM

is computed at LLO, Qg) is for NLLO and Qf’) is
for N2LLO. For the numerical predictions, we have
assumed the value for QCD mass scale A% = 210
MeV, determined using the as-running at fourlvfoops with

o, 35(M;) = 0.1181 [17]. The results show a monotonic

increase of the PMC-s single scale: Qil) < Q?) < Qig),
and the difference between the two nearby values be-
comes smaller and smaller when more loop-terms are in-
cluded. The rapid pQCD convergence of the scale Q.
indicates that the single PMC scale converges as more
loop corrections are included.

R R2 R3 K1 K2 K3
Conv. 0.04763 0.04648 0.04617 7.36% —2.43% —0.66%
PMC  0.04745 0.04649 0.04619 6.96% —2.03% —0.64%
PMC-s 0.04745 0.04635 0.04619 6.96% —2.33% —0.34%

TABLE I. Results for R,, and k,, with various loop corrections
for three scale-setting approaches. Ry = 0.04437 for all scale-
settings. @ = 31.6 GeV and p = Q.

LO NLO N2LO N3LO  Total
Conv. 0.04482 0.00283 -0.00115 -0.00033 0.04617
PMC  0.04275 0.00350 -0.00004 -0.00002 0.04619

PMC-s 0.04292 0.00339 -0.00008 -0.00004 0.04619

TABLE II. The value of each loop-term (LO, NLO, N?LO or
N3LO) for the four-loop prediction R3(Q) under three scale-
setting approaches. @ = 31.6 GeV and p = Q.

We compare the results of R, (Q = 31.6 GeV) up to
the four-loop level in Table I using conventional scale-
setting with the fixed scale @ (labeled Conv.), the PMC
multi-scale approach (PMC), and the PMC single-scale
approach (PMC-s). We also give the results for the ra-
tio Kk, = (Rp — Rn—1)/Rn—1 which indicates how the
“known” estimate is altered by each “newly” available
one-order-higher correction.

In Table II, we present the values of each loop-terms
for the four-loop approximant R3(Q). Tables I and II
show the PMC and PMC-s predictions are close to each
other for either the total or the separate loop terms, thus
the PMC-s is a perfect substitute for PMC.

Example II: H — bb. The pQCD prediction for decay
width of the Higgs decay to a pair of bottom quarks H —
bb can be written as

3GFMH7’TL§(/L) ~

I'(H — bb) = o 1+ R(w)], (13)

where G is the Fermi constant, p is the renormaliza-
tion scale, and my () is the b-quark MS running mass.
The pQCD prediction for R takes the form R, (p) =
S, Cia’t (). At present, R, has been calculated up
to four-loop level; e.g., Ref.[18] gives the result, taking
= My, which can be run to any required perturbative
scale using the RGE. We take My = 126 GeV for the
Higgs mass.
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FIG. 2. The determined PMC scale @, for H — bb up to
N2LLO accuracy. Qil) is at the LLO accuracy, Qﬁz) is at the
NLLO accuracy and Q,(f) is at the N?’LLO accuracy. p = Mpg.

By using Eq.(8), the PMC-s scale Q, for I'(H — bb)
up to N2LLO accuracy can be determined using four-loop
prediction on R(Mp ), which reads,

Qo _ 2
In ik —1.4389 — 1.1847avs(Mpy) + 3.8753a5(Mpr).

2
H

As shown in Fig.(2), the single PMC scale Q, shows rapid
convergence as more loop corrections are included. In
contrast to R.+.—, the perturbative series for In QE/MEI
oscillates, leading to Qil) > QQ) and QQ) < Qf’). How-
ever, similar to the case of R.+.—, the absolute difference

between two nearby values becomes smaller as more loop
corrections are included.

Pq RQ R‘; R1 K2 K3
Conv. 0.2406 0.2425 0.2411 18.2% 0.8% —0.6%
PMC 0.2482 0.2404 0.2402 22.0% —3.2% —0.1%
PMC-s 0.2482 0.2422 0.2401 22.0% —2.4% —0.86%

TABLE III. Results for Rn and k, with v~arious loop correc-
tions for three scale-setting approaches. Ry = 0.2035 for all
scale settings. = mpq.

We present the results for R, up to four loop level un-
der various scale-setting approaches in Table ITI, where
the ratio &, = (Rn - Rn,l)/én,l. The contributions
from each loop-term to the four-loop prediction Rs(Mp)
are presented in Table IV. Negative N2LO or N3LO val-
ues for PMC and PMC-s approaches indicate the confor-



LO NLO N2LO N°LO total
Conv. 0.2031 0.0374 0.0019 -0.0014 0.2411
PMC  0.2260 0.0247 -0.0093 -0.0012 0.2402
PMC-s 0.2282 0.0219 -0.0089 -0.0011 0.2401

TABLE IV. The value of each loop-term (LO, NLO, N?LO
or N®LO) for the four-loop prediction Rs(Mjz) under three
scale-setting approaches. = Mpg.

mal coefficients for higher-orders are negative. At four-
loop level, the predictions for the decay width T'(H — bb)
are consistent with each other due to the excellent pQCD
convergence of these scale-setting approaches.

Summary. The PMC satisfies renormalization group
invariance [19, 20] and all the other self-consistency con-
ditions required by the renormalization group [21]. The
PMC eliminates a major systematic scale uncertainty for
pQCD predictions, thus greatly improving the precision
of empirical tests of the Standard Model and their sen-
sitivity to new physics. It eliminates the need to guess
the renormalization scale and its range. For example, the

: : : +1.0%
conventional approach assigns an uncertainty of (7 30172) ,

(f?:g;‘;) or (fgég‘g) to the two-loop, three-loop, and the

four-loop approximants of R(Q = 31.6GeV) by assuming
the range 1/2Q < p < 2Q), respectively; this uncertainty
is eliminated using the PMC.

In its original multi-scale approach, the PMC sets the
scales order-by-order; the individual scales reflect the
varying virtuality of the amplitudes at each order. In
this letter, to make the scale-setting procedures simpler
and easier to be automatized, we have introduced a new
single-scale approach (PMC-s) which achieves many of
the same goals of the PMC. The PMC-s scale is a sin-
gle effective scale which effectively replaces the individual
PMC scales in the sense of a mean value theorem.

The PMC-s fixes the renormalization scale by directly
requiring all the RG-dependent non-conformal terms up
to a given order to vanish, thus it inherits most of the
features of the mutli-scale approach: Its predictions are
also scheme-independent due to the resulting conformal
series, and the convergence of the pQCD expansion is
greatly improved due to the elimination of divergent
renormalon terms. As seen explicitly in Tables I, 11, IIT
and IV, the resulting PMC and PMC-s predictions are ef-
fectively same for both total and differential observables.
Thus the PMC-s approach, with its much simpler scale-
setting procedure, can be adopted as a reliable substitute

for the PMC multi-scale approach, especially when one
does not need detailed information at each order.
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