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Abstract

A fundamental problem in hadron physics is to obtain a relativistic color-

confining, first approximation to QCD which can predict both hadron spectroscopy

and the frame-independent light-front wavefunctions underlying hadron dynamics.

The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical

theory is conformally invariant. Thus a fundamental problem is understand how

the mass gap, and ratios of masses such as mρ/mp—- can arise in chiral QCD. de

Alfaro, Fubini, and Furlan have made an important observation that a mass scale

can appear in the equations of motion without affecting the conformal invariance

of the action if one adds a term to the Hamiltonian proportional to the dilatation

operator or the special conformal operator and rescales the time variable. If one

applies the same procedure to the light-front Hamiltonian, it leads uniquely to a

confinement potential κ4ζ2 for mesons, where ζ2 is the LF radial variable conjugate

to the qq̄ invariant mass squared. The same result, including spin terms, is ob-

tained using light-front holography – the duality between light-front dynamics and

AdS5, the space of isometries of the conformal group – if one modifies the action

of AdS5 by the dilaton eκ
2z2 in the fifth dimension z. When one generalizes this

procedure using superconformal algebra, the resulting light-front eigensolutions

predict a unified Regge spectroscopy of meson, baryon, and tetraquarks, including

remarkable supersymmetric relations between the masses of mesons and baryons

of the same parity. One also predicts observables such as hadron structure func-

tions, transverse momentum distributions, and the distribution amplitudes defined

from the hadronic light-front wavefunctions. The mass scale κ underlying confine-

ment and hadron masses can be connected to the parameter ΛMS in the QCD

running coupling by matching the nonperturbative dynamics to the perturbative
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QCD regime. The result is an effective coupling αs(Q
2) defined at all momenta.

The matching of the high and low momentum transfer regimes also determines

a scale Q0 which sets the interface between perturbative and nonperturbative

hadron dynamics. The use of Q0 to resolve the factorization scale uncertainty for

structure functions and distribution amplitudes, in combination with the princi-

ple of maximal conformality (PMC) for setting the renormalization scales without

scheme-independence, can greatly improve the precision of perturbative QCD pre-

dictions for collider phenomenology. Even though many quarks and gluons are

produced in intermediate states in a high energy collision, only hadrons appear in

the final on-shell final state due to color confinement. AdS/QCD also gives insight

into the hadronization of jets into the observed final states at the amplitude level..

The absence of vacuum excitations of the causal, frame-independent front-form

vacuum also has important consequences for the cosmological constant.
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1 Introduction

One of the most elegant features of quantum field theory is supersymmetry – a theory

where the fermionic and bosonic eigensolutions have the same mass. As I will discuss

here, the observed hadronic spectrum of SU(3)C QCD exhibits the supersymmetric

features predicted by superconformal algebra. The phenomenological Regge trajectories

M2
h ∝ LH for both mesons and baryons are observed to have parallel slopes despite

the fact that baryons are bound states of three quarks. Remarkably supersymmetry

predicts that the observed hadronic masses match when one compares mesons with

orbital angular momentum LM with baryons with orbital angular momentum LB =

LM − 1. This is illustrated for ρ and ∆ trajectories in Fig. 1. The matching states also

have matching twist 2 + LM = 3 + LB. As we shall see, these phenomena are predicted

by superconformal algebra and light-front holography.
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Figure 1: Comparison of the ρ/ω meson Regge trajectory with the J = 3/2 ∆ baryon
trajectory. Superconformal algebra predicts the degeneracy of the meson and baryon
trajectories if one identifies a meson with internal orbital angular momentum LM with
its superpartner baryon with LM = LB + 1. See Refs. [1, 2].
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A fundamental problem in hadron physics is to obtain a color-confining first ap-

proximation to QCD which can predict both the hadron spectrum and the LFWFs

underlying hadron phenomenology. The QCD Lagrangian with zero quark mass has no

explicit mass scale; the classical theory is conformally invariant. A profound question

is then to understand how the proton mass and other hadronic mass scales – the mass

gap – can arise even when mq = 0. In fact, chiral QCD has no knowledge of units such

as MeV . However, a remarkable principle, first demonstrated by de Alfaro, Fubini and

Furlan (dAFF) [3] in 1 + 1 quantum mechanics, is that a mass scale can appear in a

Hamiltonian without affecting the conformal invariance of the action. The essential step

of DAFF is to add to the conformal Hamiltonian H0 terms proportional to the dila-

tion operator D and the special conformal operator K. The coefficients introduce the

mass scale κ, and the result is H = H0 + V , where V a harmonic oscillator potential

V (x) = κ2x2. The action remains conformal when one changes to a new time variable.

De Téramond, Dosch, and I [4] have shown that a mass gap and a fundamental color con-

finement scale appear when one extends the dAFF procedure to light-front Hamiltonian

theory.

The conformal group has an elegant 2× 2 Pauli matrix representation called super-

conformal algebra, originally discovered by Haag, Lopuszanski, and Sohnius [5]. The

conformal Hamiltonian operator and the special conformal operators can be represented

as anticommutators of Pauli matrices H = 1/2[Q,Q†] and K = 1/2[S, S†]. As shown by

Fubini and Rabinovici, [6], a nonconformal Hamiltonian with a mass scale and universal

confinement can then be obtained by shifting Q → Q + ωK, the analog of the dAFF

procedure. In effect one has generalized supercharges of the superconformal algebra [6].

Thus the conformal algebra can be extended even though ω has dimension of mass.

The result of this shift of the Hamiltonian is a color-confining harmonic potential in the

equations of motion. Remarkably the action remains conformally invariant, and only

one mass parameter appears.

As shown by Guy de Téramond, Günter Dosch and myself, the bound-state equations

of superconformal algebra are, in fact, Lorentz invariant, frame-independent, relativistic

light-front Schrodinger equations and the resulting eigensolutions are the eigenstates of

a light-front Hamiltonian obtained from AdS5 and light-front holography. Light-front

quantization at fixed light-front time τ = t+z/c provides a physical, frame-independent

formalism for hadron dynamics and structure. When one makes a measurement such

as in deep inelastic lepton-proton scattering `p → `′X, the hadron is observed along a

light-front (LF) – in analogy to a flash photograph – not at a fixed time t. This is the
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Figure 2: The LF Schrödinger equations for baryons and mesons for zero quark mass
derived from the Pauli 2 × 2 matrix representation of superconformal algebra. The
ψ± are the baryon quark-diquark LFWFs where the quark spin Szq = ±1/2 is parallel
or antiparallel to the baryon spin Jz = ±1/2. The meson and baryon equations are
identical if one identifies a meson with internal orbital angular momentum LM with its
superpartner baryon with LB = LM − 1. See Refs. [1, 2, 8].

underlying principle of Dirac’s “front form” [7].

Superconformal algebra leads to effective QCD light-front bound-state equations for

both mesons and baryons [1, 2, 8]. The resulting set of bound-state equations for confined

quarks are shown in Fig. 2. The supercharges connect the baryon and meson spectra

and their Regge trajectories to each other in a remarkable manner: the superconformal

algebra predicts that the bosonic meson and fermionic baryon masses are equal if one

identifies each meson with internal orbital angular momentum LM with its superpartner

baryon with LB = LM − 1; the meson and baryon superpartners then have the same

parity, Since 2+LM = 3+LB, the twist dimension of the meson and baryon superpartners

are also the same. As I mentioned before, the comparison between the meson and baryon

masses of the ρ/ω Regge trajectory with the spin-3/2 ∆ trajectory is shown in Fig. 1.
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The eigensolutions of the supersymmetric conformal algebra have a 2×2 Pauli matrix

representation, where the upper-left component corresponds to mesonic qq̄ color-singlet

bound states, the two off-diagonal eigensolutions ψ± correspond to two Fock components

of baryonic quark-plus color diquark states with equal weight, where the quark spin

is parallel or antiparallel to the baryon spin, respectively, and the fourth component

corresponds to diquark anti-diquark (tetraquark) bound states. The resulting frame-

independent color-confining bound-state LF eigensolutions can be identified with the

hadronic eigenstates of confined quarks for SU(3) color. In effect, two of the quarks of

the baryonic color singlet qqq bound state bind to a color 3̄C diquark bound state, which

then binds by the same color force to the remaining 3C quark. As shown by t’Hooft in

a string model [9], the Y configuration of three quarks is unstable – and reduces to the

quark-diquark configuration. The matching of the meson and baryon spectra is thus due

to the fact that the same color-confining potential binds two quarks to a diquarks which

binds a quarks to an antiquark.

Note that the same slope controls the Regge trajectories of both mesons and baryons

in both the orbital angular momentum L and the principal quantum number n. Only

one mass parameter κ = ω2 appears; it sets the confinement scale and the hadron mass

scale in the chiral limit, as well as the length scale which underlies hadron structure. We

will also use the notation λ = κ2. In addition to the meson and baryon eigenstates, one

also predicts color singlet tetraquark diquark-antidiquark bound states with the same

mass as the baryon.

The LF Schrödinger Equations for baryons and mesons derived from superconformal

algebra are shown in Fig. 2. Thus as explained above, the baryons on the proton (Delta)

trajectory are bound states of a quark with color 3C and scalar (vector) diquark with

color 3̄C The proton eigenstate labeled ψ+ (parallel quark and baryon spins) and ψ−

(anti parallel quark and baryon spins) have equal Fock state probability – a feature of

“quark chirality invariance”. Predictions for the static properties of the nucleons are

discussed in Ref. [10].

Superconformal algebra also predicts that the LFWFs of the superpartners are re-

lated, and thus the corresponding elastic and transition form factors are related. The re-

sulting predictions meson and baryon timelike form factors can be tested in e+e− → HH̄ ′

reactions.

As illustrated in Fig. 3, the hadronic eigensolutions of the superconformal algebra are

themselves 2×2 matrices connected internally by the supersymmetric algebra operators.

One can generalize these results to heavy-light [Q̄q] mesons and [Q[qq]] baryons [11]. The
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Superconformal Algebra

• quark-antiquark meson (LM = LB+1))

• quark-diquark baryon (LB)

• quark-diquark baryon (LB+1)

• diquark-antidiquark tetraquark (LT = LB)

• Universal Regge slopes

2X2 Hadronic Multiplets
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Figure 1: The supersymmetric quadruplet {�M ,  B+,  B�, �T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2 ⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2�

�m2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

de Tèramond, Dosch, Lorce, sjb

&%
'$ue &%

'$e ee
�M , LB + 1  B+, LB

-R†
�

&%
'$e ee
 B�, LB + 1

&%
'$e eu u
�T , LB

-R†
�

Figure 1: The supersymmetric quadruplet {�M ,  B+,  B�, �T }. Open circles represent
quarks, full circles antiquarks. The tetraquark has the same mass as its baryon partner in the
multiplet. Notice that the LF angular momentum of the negative-chirality component wave
function of a baryon  B� is one unit higher than that of the positive-chirality (leading-twist)
component  B+.

spinor wavefunction  B+ and  B�, plus two bosonic wave functions, namely the meson

�B and the tetraquark �T . These states can be arranged as a 2 ⇥ 2 matrix:

 
�M(LM = LB + 1)  B�(LB + 1)

 B+(LB) �T (LT = LB)

!
, (21)

on which the symmetry generators (1) and the Hamiltonian (17) operate 9.

According to this analysis, the lowest-lying light-quark tetraquark is a partner of

the b1(1235) and the nucleon; it has quantum numbers I, JP = 0, 0+. The partners of

the a2(1320) and the �(1233) have the quantum numbers I = 0, JP = 1+. Candidates

for these states are the f0(980) and a1(1260), respectively.

2.4 Inclusion of quark masses and comparison with experiment

We have argued in [11] that the natural way to include light quark masses in the

hadron mass spectrum is to leave the LF potential unchanged as a first approximation

and add the additional term of the invariant mass �m2 =
Pn

i=1
m2

i

xi
to the LF kinetic

energy. The resulting LF wave function is then modified by the factor e�
1
2�

�m2
, thus

providing a relativistically invariant form for the hadronic wave functions. The e↵ect of

the nonzero quark masses for the squared hadron masses is then given by the expectation

value of �m2 evaluated using the modified wave functions. This prescription leads to

9It is interesting to note that in Ref. [20] mesons, baryons and tetraquarks are also hadronic states
within the same multiplet.

12

masses strongly break the conformal symmetry [18].

The structure of the hadronic mass generation obtained from the supersymmetric

Hamiltonian GS, Eq. (17), provides a frame-independent decomposition of the quadratic

masses for all four members of the supersymmetric multiplet. In the massless quark limit:

M2
H/� =

contribution from 2-dim

light-front harmonic oscillator
z }| {
(2n + LH + 1)| {z }

kinetic

+ (2n + LH + 1)| {z }
potential

+

contribution from AdS and

superconformal algebra
z }| {
2(LH + s) + 2� . (25)

Here n is the radial excitation number and LH the LF angular momentum of the hadron

wave function; s is the total spin of the meson and the cluster respectively, � = �1 for the

meson and for the negative-chirality component of the baryon (the upper components

in the susy-doublet) and � = +1 for the positive-chirality component of baryon and

for the tetraquark (the lower components). The contributions to the hadron masses

squared from the light-front potential �2⇣2 and the light-front kinetic energy in the LF

Hamiltonian, are identical because of the virial theorem.

We emphasize that the supersymmetric features of hadron physics derived here from

superconformal quantum mechanics refers to the symmetry properties of the bound-

state wave functions of hadrons and not to quantum fields; there is therefore no need to

introduce new supersymmetric fields or particles such as squarks or gluinos.

We have argued that tetraquarks – which are degenerate with the baryons with the

same (leading) orbital angular momentum– are required to complete the supermulti-

plets predicted by the superconformal algebra. The tetraquarks are the bound states

of the same confined color-triplet diquarks and anti-diquarks which account for baryon

spectroscopy.

The light-front cluster decomposition [32, 33] for a bound state of N constituents

–as an “active” constituent interacting with the remaining cluster of N �1 constituents–

also has implications for the holographic description of form factors. As a result, the

form factor is written as the product of a two-body form factor multiplied by the form

factor of the N � 1 cluster evaluated at its characteristic scale. The form factor of the

N�1 cluster is then expressed recursively in terms of the form factor of the N�2 cluster,

and so forth, until the overall form factor is expressed as the N � 1 product of two-body

form factors evaluated at di↵erent characteristic scales. This cluster decomposition is

in complete agreement with the QCD twist assignment which leads to counting-rule

scaling laws [34, 35]. This solves a previous problem with the twist assignment for

15

+ <
X

i

m2
i

xi
>

�(mesons) = �1 �(baryons, tetraquarks) = +1

Figure 3: The eigenstates of superconformal algebra have a 2× 2 representation of mass
degenerate bosons and fermions: a meson with LM = LB + 1, a baryon doublet with
LB, LB + 1 components and a tetraquark with LT = LB. The breakdown of LF kinetic,
potential, spin, and quark mass contributions to each hadron is also shown. The virial
theorem predicts the equality of the LF kinetic and potential contributions.

7



Regge slopes is found to increase for heavy mQ as expected from heavy quark effective

field theory; however, the supersymmetric connections between the heavy-light hadrons

is predicted to be maintained.

2 Light-Front Physics

Measurements of hadron structure such as deep inelastic lepton-proton scattering

are made at fixed light-front time τ = t + z/c, like a flash photograph not at a single

“instant time”. As shown by Dirac [7], boosts are kinematical in the ”front form”. Thus

the front form can be formulated so it is independent of the observer’s motion [12] .

The eigenfunctions of the light-front Hamiltonian HLF = P+P− − ~P 2
⊥ derived from

the QCD Lagrangian represents the hadronic mass spectrum, for both individual hadrons

and multi-hadrons continuum eigenstates. The eigenvalues of the LF Hamiltonian are

the squares of the hadron masses M2
H : HLF |ΨH >= M2

H |ΨH > [12]. Here P− =

i d
dτ

is the LF time evolution operator, and P+ = P 0 + P z and ~P⊥ are kinematical.

The eigenfunctions of HLF provide hadronic LF Fock state wavefunctions (LFWFs):

ψHn (xi, ~k⊥i, λi) =< n|ΨH >, the projection of the hadronic eigenstate on the free Fock

basis. The constituents’ physical momenta are p+
i = xiP

+, and ~p⊥i = xi ~P⊥ + ~k⊥i, and

the λi label the spin projections Szi .

The LFWFs are Poincare’ invariant: they are independent of P+ and P⊥ and are

thus independent of the motion of the observer. Since the LFWFs are independent of

the hadron’s momentum, there is no length contraction [13, 14]. Structure functions are

essentially the absolute square of the LFWFs. One thus measures the same structure

function in an electron-ion collider as in an electron-scattering experiment where the

target hadron is at rest.

Light-front wavefunctions thus provide a direct link between the QCD Lagrangian

and hadron structure. Since they are defined at a fixed τ , they connect the physical on-

shell hadronic state to its quark and gluon parton constituents, not at off-shell energy, but

off-shell in invariant mass squaredM2 = (
∑

i k
µ
i )2. They thus control the transformation

of the quarks and gluons in an off-shell intermediate state into the observed final on-shell

hadronic state. See Fig. 4.

The LFWFs thus play the same role in hadron physics as the Schrödinger wave-

functions which encode the structure of atoms in QED. The elastic and transition form

factors of hadrons, weak-decay amplitudes and distribution amplitudes are overlaps of

LFWFs; structure functions, transverse momentum distributions and other inclusive
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mentum
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Figure 4: The meson LFWF connects the intermediate qq̄ state, which is off the P−

energy shell and thus off-the-invariant mass shellM2 > m2
H to the physical meson state

with M2 = m2
H . The q and q̄ can be regarded as effective dressed fields

.
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observables are constructed from the squares of the LFWFs. In contrast one cannot

compute form factors of hadrons or other current matrixelements of hadrons from over-

lap of the usual “instant” form wavefunctions since one must also include contributions

where the photon interacts with connected but acausal vacuum-induced currents. The

calculation of deeply virtual Compton scattering using LFWFs is given in Ref. [15]. One

can also compute the gravitational form factors of hadrons. In particular, one can show

that the anomalous gravitomagnetic moment B(q2 = 0) vanishes identically for any LF

Fock state [16], in agreement with the equivalence theorem of gravity [17, 18].

The hadronic LFWFs predicted by light-front holography and superconformal alge-

bra are functions of the LF kinetic energy ~k2
⊥/x(1− x) – the conjugate of the LF radial

variable ζ2 = b2
⊥x(1 − x) – times a function of x(1 − x); they do not factorize as a

function of ~k2
⊥ times a function of x. The resulting nonperturbative pion distribution

amplitude φπ(x) =
∫
d2~k⊥ψπ(x,~k⊥) = (4/

√
3π)fπ

√
x(1− x), see Fig. 5, which controls

hard exclusive process, is consistent with the Belle data for the photon-to-pion transition

form factor [19]. The AdS/QCD light-front holographic eigenfunction for the ρ meson

LFWF ψρ(x,~k⊥) gives excellent predictions for the observed features of diffractive ρ

electroproduction γ∗p→ ρp′, as shown by Forshaw and Sandapen [20]

3 Light-Front Holography

Five-dimensional AdS5 space provides a geometrical representation of the confor-

mal group. The color-confining light-front equation for mesons of arbitrary spin J can

be derived [21] from the holographic mapping of the “soft-wall model” modification of

AdS5 space for the specific dilaton profile e+κ2z2 , where one identifies the fifth dimen-

sion coordinate z with the light-front coordinate ζ. Remarkably , AdS5 is holograph-

ically dual to 3 + 1 spacetime at fixed light-front time τ = t + z/c. The holographic

dictionary is summarized in Fig. 6 The combination of light-front dynamics, its holo-

graphic mapping to AdS5 space, and the dAFF procedure provides new insight into the

physics underlying color confinement, the nonperturbative QCD coupling, and the QCD

mass scale. A comprehensive review is given in Ref. [22]. The qq̄ mesons and their

valence LF wavefunctions are the eigensolutions of the frame-independent relativistic

bound state LF Schrödinger equation – the same meson equation that is derived using

suoerconformal algebra. The mesonic qq̄ bound-state eigenvalues for massless quarks

are M2(n, L, S) = 4κ2(n + L + S/2). The equation predicts that the pion eigenstate

n = L = S = 0 is massless at zero quark mass. The Regge spectra of the pseudoscalar

10



Prediction from AdS/QCD: Meson LFWF
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Figure 5: Prediction from AdS/QCD and Light-Front Holography for meson LFWFs
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S = 0 and vector S = 1 mesons are predicted correctly, with equal slope in the principal

quantum number n and the internal orbital angular momentum L. A comparison with

experiment is shown in Fig. 7.

Light-Front Holography not only predicts meson and baryon spectroscopy success-

fully, but also hadron dynamics, including vector meson electroproduction, hadronic

light-front wavefunctions, distribution amplitudes, form factors, and valence structure

functions. The application to the deuteron elastic form factors and structure functions

is given in Ref. [23, 24]

4 Color Confinement from LF Holography

Remarkably, the light-front potential using the DAFF procedure has the unique

form of a harmonic oscillator κ4ζ2 in the light-front invariant impact variable ζ where

ζ2 = b2
⊥x(1− x). The result is a single-variable frame-independent relativistic equation

of motion for qq̄ bound states, a “Light-Front Schrödinger Equation” [25], analogous to

the nonrelativistic radial Schrödinger equation in quantum mechanics. The same result,

including spin terms, is obtained using light-front holography – the duality between the

front form and AdS5, the space of isometries of the conformal group – if one modifies the

action of AdS5 by the dilaton eκ
2z2 in the fifth dimension z. The Light-Front Schrödinger

Equation incorporates color confinement and other essential spectroscopic and dynamical

features of hadron physics, including a massless pion for zero quark mass and linear

Regge trajectories with the same slope in the radial quantum number n and internal

orbital angular momentum L. When one generalizes this procedure using superconformal

algebra, the resulting light-front eigensolutions predict a unified Regge spectroscopy of

meson, baryon, and tetraquarks, including remarkable supersymmetric relations between

the masses of mesons and baryons of the same parity.

It is interesting to note that the contribution of the ‘H’ diagram to QQ̄ scattering

is IR divergent as the transverse separation between the Q and the Q̄ increases [26].

This is a signal that pQCD is inconsistent without color confinement. The sum of such

diagrams could sum to the confinement potential κ4ζ2 dictated by the dAFF principle

that the action remains conformally invariant despite the appearance of the mass scale

κ in the Hamiltonian. The κ4ζ2 confinement interaction between a q and q̄ will induce

a κ4/s2 correction to Re+e− , replacing the 1/s2 signal usually attributed to a vacuum

gluon condensate.

It should be emphasized that the value of the mass scale κ is not determined ab-
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solutely by QCD. Only ratios of masses are determined, and the theory has dilation

invariance under κ → Cκ, In a sense, chiral QCD has an “extended conformal invari-

ance.” The resulting new time variable which retains the conformal invariance of the

action, has finite support, conforming to the fact that the LF time between the interac-

tions with the confined constituents is finite.

The finite time difference ∆τ between the LF times τ of the quark constituents of the

proton could be measured using positronium-proton scattering [e+e−]p→ e+e−p′. This

process, which measures double diffractive deeply virtual Compton scattering for two

spacelike photons, is illustrated in Fig. 8 One can also study the dissociation of relativistic

positronium atoms to an electron and positron with light front momentum fractions x

and 1 − x and opposite transverse momenta in analogy to the E791 measurements of

the diffractive dissociation of the pion to two jets [27] The LFWF of positronium in the

relativistic domain is the central input. One can produce a relativistic positronium beam

using the collisions of laser photons with high energy photons or by using Bethe-Heitler

pair production below the e+e− threshold. The production of parapositronium via the

collision of photons is analogous to pion production in two-photon collisions and Higgs

production via gluon-gluon fusion.

.

4.1 Light-Front Theory and QCD

One can derive the exact from of the HLF directly from the QCD Lagrangian and

avoid ghosts and longitudinal gluonic degrees of freedom by choosing to work in the

light-cone gauge A+ = 0. The quark masses appear in the LF kinetic energy as
∑

i
m2

xi
.

This can be derived from the Higgs theory quantized using LF dynamics. The confined

quark field ψq couples to the background Higgs field gΨq
< H > Ψq via its Yukawa scalar

matrix element coupling gq < H > ū(p)1u(p) = mq × mq
x

= m2

x
.

PQCD factorization theorems and the DGLAP [28, 29, 30] and ERBL [31, 32, 33, 34]

evolution equations can also be derived using the light-front Hamiltonian formalism [32].

In the case of an electron-ion collider, one can represent the cross section for e − p

colisions as a convolution of the hadron and virtual photon structure functions times

the subprocess cross-section in analogy to hadron-hadron colisions. This nonstandard

description of γ∗p → X reactions gives new insights into electroproduction physics –

physics not apparent in the usual infinite-momentum frame description, such as the

dynamics of heavy quark-pair production. Intrinsic heavy quarks at high x also play an

important role [35].
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The LF Heisenberg equation can in principle be solved numerically by matrix di-

agonalization using the “Discretized Light-Cone Quantization” (DLCQ) [36] method.

Anti-periodic boundary conditions in x− render the k+ momenta discrete as well as

limiting the size of the Fock basis. In fact, one can easily solve 1 + 1 quantum field the-

ories such as QCD(1 + 1) [37] for any number of colors, flavors and quark masses using

DLCQ. Unlike lattice gauge theory, the nonpertubative DLCQ analysis is in Minkowski

space, is frame-independent, and is free of fermion-doubling problems. AdS/QCD,

based on the AdS5 representation of the conformal group in five dimensions, maps to

physical 3+1 space-time at fixed LF time; this correspondence, “light-front hologra-

phy” [25], is now providing a color-confining approximation to HQCD
LF for QCD(3+1).

This method gives a remarkable first approximation to hadron spectroscopy and hadronic

LFWFs. A new method for solving nonperturbative QCD “Basis Light-Front Quantiza-

tion” (BLFQ) [38], uses the eigensolutions of a color-confining approximation to QCD

(such as LF holography) as the basis functions, rather than the plane-wave basis used

in DLCQ, thus incorporating the full dynamics of QCD. LFWFs can also be determined

from the covariant Bethe-Salpeter wavefunction by integrating over k− [39]. A review

of the light-front formalism is given in Ref. [12].

5 Calculations using LF-Time-Ordered Perturbation

Theory and Hadronization at the Amplitude Level

LF-time-ordered perturbation theory can be advantageous for perturbative QCD

calculations. An excellent example of LF-time-ordered perturbation theory is the com-

putation of multi-gluon scattering amplitudes by Cruz-Santiago and Stasto [42]. In

this method, the propagating particles are on their respective mass shells: kµk
µ = m2,

and intermediate states are off-shell in invariant mass; i.e., P− 6= ∑
k−i . Unlike in-

stant form, where one must sum n! frame-dependent amplitudes, only the τ -ordered

diagrams where each propagating particle has positive k+ = k0 +kz can contribute. The

number of nonzero amplitudes is also greatly reduced by noting that the total angular

momentum projection Jz =
∑n−1

i Lzi +
∑n

i S
z
i and the total P+ are conserved at each

vertex. In a renormalizable theory, the change in orbital angular momentum is limited

to ∆Lz = 0,±1 at each vertex [43].

A remarkable advantage of LF time-ordered perturbation theory (LFPth) is that the

calculation of a subgraph of any order in pQCD only needs to be done once; the result
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positronium-proton scattering [e+e−]p → e+e−p′. One can also measure double deep
inelastic scattering and elastic positronium-proton scattering. One can also create a
beam of “true muonium” atoms [µ−µ−] [40, 41] using Bethe-Heitler pair production just
below threshold.
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can be stored in a “history” file. This is due to the fact that in LFPth the numerator

algebra is independent of the process; the denominator changes, but only by a simple

shift of the initial P−. Another simplification is that loop integrations are three dimen-

sional:
∫
d2~k⊥

∫ 1

0
dx. Unitarity and explicit renormalization can be implemented using

the “alternate denominator” method which defines the required subtraction countert-

erms [44].

The new insights into color confinement given by AdS/QCD suggest that one could

compute hadronization at amplitude level [45] using the confinement interaction and the

LFWFs predicted by AdS/QCD and Light-Front Holography. For example, as illustrated

in Fig. 4, the meson LFWF connects the off-the-invariant mass shell quark and antiquark

to the on-shell asymptotic physical meson state.

One can postulate that the invariant mass of a color-singlet clusterM is the variable

which separates perturbative and nonperturbative dynamics. For example, consider

e+e− annihilation using LF τ - ordered perturbation theory. At an early stage in LF

time the annihilation will produce jets of quarks and gluons in an intermediate state

that are off the P− energy shell. If a color-singlet cluster of partons in a jet satisfies

M2−M2
H < κ2, the cluster constituents are effective degrees of freedom will be ruled by

the κ4ζ2 color-confinement potential. At this stage, the LFWF ψH converts the off-shell

partons to the asymptotic states, the on-shell hadrons. IfM2 > κ2 one can apply pQCD

corrections; e.g. from DGLAP and ERBL evolution [31, 32, 33, 34] .

A model for the two stages of hadronization and evolution is illustrated in Fig. 9. In

the off-shell domain M2 −M2
H > κ2, the intermediate quarks and gluons obey DGLAP

and ERBL evolution.

Thus quarks and gluons can appear in intermediate off-shell states, but only hadrons

are produced asymptotically. Thus the AdS/QCD Light-Front Holographic model sug-

gests how one can implement the transition between perturbative and nonperturbative

QCD. For a QED analog, see Refs. [40, 41].

6 The Light-Front Vacuum

It is important to distinguish the LF vacuum from the conventional instant-form

vacuum. The eigenstates of the instant-form Hamiltonian describe a state defined at

a single instant of time t over all space, and they are thus acausal as well as frame-

dependent. The instant-form vacuum is defined as the lowest energy eigenstate of the

instant-form Hamiltonian. As discussed by Zee [46], the cosmological constant is of
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Figure 9: A. A model for evolution starting with a nonperturbative hadronic LFWF. B.
Hadronization and evolution ending with a hadronic LFWF. The intermediate quark and
gluon states are off the P− energy shell and thus off-the-invariant mass shellM2 > m2

H

In the off-shell domain M2 −M2
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meson LFWF connects the intermediate qq̄ state, which is off of the P− energy shell and
thus off-the-invariant mass shellM2 > m2

H to the physical meson state withM2 = m2
H .

The LF angular momentum Jz is conserved at every vertex [43]
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order 10120 times larger than what is observed if one computes the effects of quantum

loops from QED. Similarly, QCD instantons and condensates in the instant-form vacuum

give a contribution of order 1042. The contribution of the Higgs VEV computed in the

instant form vacuum is 1054 times too large.

In contrast, the vacuum in LF Hamlitonian theory is defined as the eigenstate of HLF

with lowest invariant mass. It is defined at fixed LF time τ within the causal horizon, and

it is frame-independent; i.e., it is independent of the observer’s motion. Vacuum loop

diagrams from quantum field theory do not appear in the front-form vacuum since the

+ momenta are positive: k+
i = k0

i + kzi ≥ 0, and the sum of + momenta is conserved at

every vertex. The creation of particles cannot arise from the LF vacuum since
∑

i k
+i 6=

P+
vacuum = 0. Since propagation with negative k+ does not appear, the LF vacuum is

trivial up to possible k+ = 0 “zero” modes. The physics associated with quark and gluon

QCD vacuum condensates of the instant form are replaced by physical effects contained

within the hadronic LFWFs in the hadronic domain. This is referred to as “in-hadron”

condensates [47, 48, 49]. In the case of the Higgs theory, the traditional Higgs vacuum

expectation value (VEV) is replaced by a “zero mode”, analogous to a classical Stark or

Zeeman field [50]. The Higgs LF zero mode [50] has no energy-momentum density, so it

also gives zero contribution to the cosmological constant.

The universe is observed within the causal horizon, not at a single instant of time.

The causal, frame-independent light-front vacuum can thus provide a viable match to

the empty visible universe [49]. The huge contributions to the cosmological constant

thus do not appear if one notes that the causal, frame-independent light-front vacuum

has no quantum fluctuations – in dramatic contrast to to the acausal, frame-dependent

instant-form vacuum; the cosmological constant arising from quantum field theory thus

vanishes if one uses the front form. The observed nonzero value could could be a property

of gravity itself, such as the “emergent gravity” postulated by E. Verlinde [51]. It is also

possible that if one solves electroweak theory in a curved universe, the Higgs LF zero

mode would be replaced with a field of nonzero curvature which could give a nonzero

contribution to the cosmological constant.

7 The QCD Coupling at all Scales

The QCD running coupling αs(Q
2) sets the strength of the interactions of quarks

and gluons as a function of the momentum transfer Q. The dependence of the coupling

Q2 is needed to describe hadronic interactions at both long and short distances. The

20



QCD running coupling can be defined [52] at all momentum scales from a perturbatively

calculable observable, such as the coupling αsg1(Q
2), which is defined from measurements

of the Bjorken sum rule. At high momentum transfer, such “effective charges” satisfy

asymptotic freedom, obey the usual pQCD renormalization group equations, and can be

related to each other without scale ambiguity by commensurate scale relations [53].

The dilaton e+κ2z2 soft-wall modification of the AdS5 metric, together with LF

holography, predicts the functional behavior of the running coupling in the small Q2 do-

main [54]: αsg1(Q
2) = πe−Q

2/4κ2 . Measurements of αsg1(Q
2) are remarkably consistent [55]

with this predicted Gaussian form; the best fit gives κ = 0.513±0.007 GeV . See Fig. 10

Deur, de Teramond, and I [54, 56, 57] have also shown how the parameter κ, which

determines the mass scale of hadrons and Regge slopes in the zero quark mass limit,

can be connected to the mass scale Λs controlling the evolution of the perturbative

QCD coupling. The high momentum transfer dependence of the coupling αg1(Q2) is

predicted by pQCD. The matching of the high and low momentum transfer regimes

of αg1(Q2) – both its value and its slope – then determines a scale Q0 = 0.87 ± 0.08

GeV which sets the interface between perturbative and nonperturbative hadron dynam-

ics. This connection can be done for any choice of renormalization scheme, such as

the MS scheme, as seen in Fig. 10. The result of this perturbative/nonperturbative

matching is an effective QCD coupling defined at all momenta. The predicted value

of ΛMS = 0.339 ± 0.019 GeV from this analysis agrees well the measured value [58]

ΛMS = 0.332 ± 0.019 GeV. These results, combined with the AdS/QCD superconfor-

mal predictions for hadron spectroscopy, allow us to compute hadron masses in terms

of ΛMS: mp =
√

2κ = 3.21 ΛMS, mρ = κ = 2.2 ΛMS, and mp =
√

2mρ, meeting a

challenge proposed by Zee [59]. The value of Q0 can be used to set the factorization

scale for DGLAP evolution of hadronic structure functions and the ERBL evolution of

distribution amplitudes. Deur, de Téramond, and I have also computed the dependence

of Q0 on the choice of the effective charge used to define the running coupling and the

renormalization scheme used to compute its behavior in the perturbative regime. The

use of the scale Q0 to resolve the factorization scale uncertainty in structure functions

and fragmentation functions, in combination with the scheme-indepedent principle of

maximum conformality (PMC ) [60] for setting renormalization scales, can greatly im-

prove the precision of pQCD predictions for collider phenomenology.
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8 Is the Momentum Sum Rule Valid for Nuclear

Structure Functions?

Sum rules for deep inelastic scattering are usually analyzed using the operator prod-

uct expansion of the forward virtual Compton amplitude, assuming it depends in the

limit Q2 →∞ on matrix elements of local operators such as the energy-momentum ten-

sor. The moments of structure functions and other distributions can then be evaluated

as overlaps of the target hadron’s light-front wavefunction, as in the Drell-Yan-West

formulae for hadronic form factors [61, 62, 63, 64]. The real phase of the resulting

DIS amplitude and its OPE matrix elements reflects the real phase of the stable target

hadron’s wavefunction.

The “handbag” approximation to deeply virtual Compton scattering also defines

the “static” contribution [65, 66] to the measured parton distribution functions (PDF),

transverse momentum distributions, etc. The resulting momentum, spin and other sum

rules reflect the properties of the hadron’s light-front wavefunction. However, final-state

interactions which occur after the lepton scatters on the quark, can give non-trivial

contributions to deep inelastic scattering processes at leading twist and thus survive

at high Q2 and high W 2 = (q + p)2. For example, the pseudo-T -odd Sivers effect [67]

is directly sensitive to the rescattering of the struck quark. Similarly, diffractive deep

inelastic scattering (DDIS) involves the exchange of a gluon after the quark has been

struck by the lepton [68]. In each case the corresponding DVCS amplitude is not given by

the handbag diagram since interactions between the two currents are essential. These

“lensing” corrections survive when both W 2 and Q2 are large since the vector gluon

couplings grow with energy. Part of the final state phase can be associated with a

Wilson line as an augmented LFWF [69] which does not affect the moments.

The Glauber propagation of the vector system V produced by the DDIS interaction

on the nuclear front face and its subsequent inelastic interaction with the nucleons in the

nuclear interior V +Nb → X occurs after the lepton interacts with the struck quark. The

corresponding DVCS amplitude is not given by the handbag diagram since interactions

between the two currents are essential. Because of the rescattering dynamics, the DDIS

amplitude acquires a complex phase from Pomeron and Regge exchange; thus final-state

rescattering corrections lead to nontrivial “dynamical” contributions to the measured

PDFs; i.e., they are a consequence of the scattering process itself [70]. The I = 1

Reggeon contribution to DDIS on the front-face nucleon then leads to flavor-dependent

antishadowing [71, 72]. This could explain why the NuTeV charged current measurement
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µA→ νX scattering does not appear to show antishadowing, in contrast to deep inelastic

electron-nucleus scattering as discussed in Ref. [73].

Diffractive deep inelastic scattering is leading-twist. and it is an essential compo-

nent of the two-step amplitude which causes shadowing and antishadowing of the nuclear

PDF. It is important to analyze whether the momentum and other sum rules derived

from the OPE expansion in terms of local operators remain valid when these dynamical

rescattering corrections to the nuclear PDF are included. The OPE is derived assuming

that the LF time separation between the virtual photons in the forward virtual Compton

amplitude γ∗A → γ∗A scales as 1/Q2. However, the propagation of the vector system

V produced by the DDIS interaction on the front face and its inelastic interaction with

the nucleons in the nuclear interior V + Nb → X are characterized by a non-vanishing

LF time interval in the nuclear rest frame. Note also that shadowing in deep inelastic

lepton scattering on a nucleus involves nucleons facing the incoming lepton beam. The

geometrical orientation of the shadowed nucleons is not a property of the the nuclear

LFWFs used to evaluate the matrix elements of local currents. Thus leading-twist shad-

owing and antishadowing appear to invalidate the sum rules for nuclear PDFs. The

same complications occur in the leading-twist analysis of deeply virtual Compton scat-

tering γ∗A → γ∗A on a nuclear target. Thus the leading-twist multi-nucleon processes

which produce shadowing and antishadowing in a nucleus are not accounted for using

the Q2 →∞ OPE analysis.

9 Summary

Light-Front Quantization provides a physical, frame-independent formalism for hadron

dynamics and structure. Observables such as structure functions, transverse momen-

tum distributions, and distribution amplitudes are defined from the hadronic light-front

wavefunctions. One obtains new insights into the hadronic spectrum, light-front wave-

functions, and the e−
Q2

4κ2 Gaussian functional form of the QCD running coupling in the

nonperturbative domain using light-front holography – the duality between the front

form and AdS5, the space of isometries of the conformal group.

In addition, superconformal algebra leads to remarkable supersymmetric relations

between mesons and baryons of the same parity. The mass scale κ underlying confine-

ment and hadron masses can be connected to the parameter ΛMS in the QCD running

coupling by matching the nonperturbative dynamics, as described by the effective con-

formal theory mapped to the light-front and its embedding in AdS space, to the pertur-
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bative QCD regime. The result is an effective coupling defined at all momenta. This

matching of the high and low momentum transfer regimes determines a scale Q0 which

sets the interface between perturbative and nonperturbative hadron dynamics. The use

of Q0 to resolve the factorization scale uncertainty for structure functions and distribu-

tion amplitudes, in combination with the principle of maximal conformality (PMC) for

setting the renormalization scales [60], can greatly improve the precision of perturba-

tive QCD predictions for collider phenomenology. The absence of vacuum excitations

of the causal, frame-independent front form vacuum has important consequences for

the cosmological constant. I have also discussed evidence that the antishadowing of

nuclear structure functions is non-universal; i.e., flavor dependent, and why shadowing

and antishadowing phenomena may be incompatible with sum rules for nuclear parton

distribution functions.
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