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ABSTRACT
Empirical methods for connecting galaxies to their dark matter halos have become essential for interpreting measurements

of the spatial statistics of galaxies. In this work, we present a novel approach for parameterizing the degree of concentration
dependence in the abundance matching method. This new parameterization provides a smooth interpolation between two com-
monly used matching proxies: the peak halo mass and the peak halo maximal circular velocity. This parameterization controls
the amount of dependence of galaxy luminosity on halo concentration at a fixed halo mass. Effectively this interpolation scheme
enables abundance matching models to have adjustable assembly bias in the resulting galaxy catalogs. With the new 400Mpch−1

DarkSky Simulation, whose larger volume provides lower sample variance, we further show that low-redshift two-point cluster-
ing and satellite fraction measurements from SDSS can already provide a joint constraint on this concentration dependence and
the scatter within the abundance matching framework.

Keywords: dark matter — galaxies: halos — methods: analytical — methods: numerical

1. INTRODUCTION

Understanding the connection between galaxies and their
dark matter halos is at the heart of modern cosmology and as-
trophysics. Galaxies are our primary tool to probe the spatial
distribution of dark matter and its evolution, both of which
are being mapped at increasingly high precision with cosmo-
logical surveys (see, e.g., the Sloan Digital Sky Survey, the
Dark Energy Survey, the Dark Energy Camera Legacy Sur-
vey, and the Large Synoptic Survey Telescope). However,
because galaxies are biased tracers of this distribution, taking
full advantage of these measurements requires accurate and
flexible models for modeling the connection between galax-
ies and their dark matter halos. In addition, understanding the
statistical mapping between galaxies and halos provides key
insights into the physical processes responsible for galaxy
formation.

The effects of assembly bias, in particular, remain a sig-
nificant uncertainty in modeling the galaxy–halo connection
(Zentner et al. 2014). In dark-matter-only cosmological sim-
ulations, it has been shown that halo concentration, along
with other properties of the halos and their assembly histo-
ries, can have an impact on halo clustering, generally known

as halo assembly bias (e.g., Wechsler et al. 2001; Gao et al.
2005; Wechsler et al. 2006; Croton et al. 2007). Despite a
series of studies on the possible observational evidence for
assembly bias (Yang et al. 2006; Tinker et al. 2012; Lin et al.
2016; Miyatake et al. 2015; More et al. 2016), the extent to
which halo assembly bias results in observable bias in the
galaxy population remains highly uncertain.

Thus it is critical to characterize the assembly bias inher-
ited through the galaxy–halo connection. For hydrodynamic
simulations and semi-analytic models (SAMs), galaxy as-
sembly bias is an end product rather than a controlled pa-
rameter, as these two methods attempt to incorporate the mi-
croscopic physics of galaxy formation. (For the latest large-
scale hydrodynamic simulations, see, e.g., Vogelsberger et al.
2014; Crain et al. 2015; Schaye et al. 2015; for SAMs,
see e.g., Bower et al. 2006; Croton et al. 2006; Somerville
et al. 2008; see also Somerville & Davé 2015 for a re-
view of galaxy formation models.) In principle, one can
directly characterize the assembly bias for each set of pa-
rameter values used in these methods. Practically, hydro-
dynamic simulations are computationally expensive, even
when used to produce a handful of realizations. With SAMs,
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while it is possible to generate many different realizations,
the large number of parameters makes it challenging (though
not impossible, see, e.g., Lu et al. 2014; Henriques et al.
2015) to explore and statistically constrain the full parameter
space. Also, neither hydrodynamic simulations nor SAMs
have been shown to reproduce the detailed clustering prop-
erties of observed galaxies at the accuracy with which they
have been measured, partly due to our incomplete under-
standing of star formation and feedback mechanisms.

On the other hand, the widely used, conventional halo oc-
cupation distribution (HOD) models prescribe the probability
that a halo of a given mass M hosts N galaxies above a given
luminosity threshold, P(N|M), commonly with a parameter-
ized functional form (Peacock & Smith 2000; Seljak 2000;
Scoccimarro et al. 2001; Berlind & Weinberg 2002; Cooray
& Sheth 2002; Bullock et al. 2002). In this fashion, the HOD
approach erases much of the halo assembly bias, as it ex-
plicitly assumes that the galaxy population in a halo depends
only on its mass. Recently, some HOD models incorporate
dependence on other parameters (e.g., Paranjape et al. 2015;
Hearin et al. 2016). In particular, Hearin et al. (2016) param-
eterize the assembly bias in an HOD-like model (“Decorated
HOD”), and later Zentner et al. (2016) and Vakili (2016) fur-
ther constrain the assembly bias parameters in the Decorated
HOD model with SDSS data. The essence of their work is
closely related to this work, but with the HOD framework,
which makes a different set of assumptions than we do here.

In this work, we characterize the assembly bias in another
commonly used empirical model of the galaxy–halo connec-
tion: the abundance matching technique (or subhalo abun-
dance matching, SHAM). Abundance matching is a fairly
generic scheme for linking galaxies with dark matter halos,
without a full description of baryonic physics (Kravtsov et al.
2004; Vale & Ostriker 2004, 2006; Conroy et al. 2006). The
basic assumption of abundance matching is that galaxies live
in halos, and one particular galaxy property (typically lumi-
nosity or stellar mass) is approximately monotonically re-
lated to a halo property (typically virial mass, Mvir, or maxi-
mum circular velocity, vmax), by matching their “abundance”
(i.e., matching at fixed number densities).

A major strength of abundance matching is the fact that
it uses the full predictive power of the cosmological model,
including the predictions for the number and properties of
substructures and their relation to their host halos. Certain
abundance matching models have been shown to reproduce
the observed two-point correlation function with surprising
accuracy, with only a very small number of parameters (Con-
roy et al. 2006; Trujillo-Gomez et al. 2011; Reddick et al.
2013), as well as three-point statistics, galaxy–galaxy lens-
ing, and the Tully–Fisher relation (e.g., Marín et al. 2008;
Tasitsiomi et al. 2004; Desmond & Wechsler 2015). Similar
models have also been shown to reproduce a wide range of
other statistics of the galaxy distribution (Hearin et al. 2013,
2014).

The abundance matching parameters that have typically
been considered are the scatter in the galaxy–halo relation,
usually in terms of the standard deviation of the galaxy lumi-

nosities or stellar masses at a fixed value of the halo property,
and the choice of halo property. Commonly used halo prop-
erties (or proxies) include the halo mass (Mvir or variants),
the maximum circular velocity vmax, and these two properties
evaluated at different epochs. For example, Reddick et al.
(2013) perform a systematic search for a best-fit model to
spatial clustering and the conditional luminosity function and
find that using the peak value of vmax throughout all timesteps
(i.e., vpeak) as the proxy with a scatter of ∼ 0.2 dex gives the
best predictions. Other studies obtain similar results (e.g.,
Chaves-Montero et al. 2016; Guo et al. 2016b).

Although different proxies have different physical mean-
ings attached to them, abundance matching is only sensitive
to the relative rankings of halos when they are ranked by
the proxy in consideration. Hence, the seemingly distinct
choices of using proxies based on vmax or Mvir are merely
different ways to rank the halos. For instance, ranking ha-
los by vmax is similar to ranking by Mvir, except that more
concentrated halos are given a higher rank, since at a fixed
Mvir, more concentrated halos have larger vmax (Klypin et al.
2011). As a result, this choice influences the dependence
of galaxy luminosity or stellar mass on halo concentration
at a given halo mass. Our current understanding of galaxy
formation physics is not yet sophisticated enough to quan-
tify this concentration dependence, and hence it is natural
to parametrize this dependence on concentration by contin-
uously interpolating the rankings that different proxies give.
Furthermore, such a parametrization also provides a natural
way to control how halo assembly bias propagates to galaxy
assembly bias in an observed population.

This work is the first to present results on the cluster-
ing statistics using abundance matching with a continu-
ous parameter controlling the matching proxy, and hence
the amount of concentration dependence and assembly
bias. This work is also one of the first studies to com-
pare the observed two-point clustering with a cosmolog-
ical box of (400Mpch−1)3 at a mass resolution of better
than ∼ 108 M�h−1 (from the “Dark Sky” Simulations). The
large volume of this box yields much tighter constraints on
abundance matching parameters, which provide further in-
sight into the amount of galaxy assembly bias present. (See
also Guo et al. 2016b,a for the study of spatial correlation
functions using the “SMDPL” simulation, which has similar
volume and resolution as this Dark Sky 400Mpch−1 box.)

Note that this work differs from the recent development
on the two-parameter abundance matching technique (com-
monly known as conditional abundance matching, CAM),
which attempts to match two halo proxies with two galaxy
properties (Hearin et al. 2014; Kulier & Ostriker 2015). The
model we propose in this work, by contrast, still matches one
halo proxy with one galaxy property, yet the halo proxy in
consideration is a linear combination of two different halo
properties. The proposed technique to combine distinct halo
properties into one matching proxy can still apply to other
variants of abundance matching, including CAM.

This paper is organized as follows. In Section 2 we de-
scribe the simulations and the observed catalogs used in
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this study, and also describe the procedure for generating
mock galaxy catalogs and the covariance. In Section 3 we
present this novel model of concentration-dependent abun-
dance matching and explore how the new parameter affects
the galaxy clustering, the satellite fraction, and the assembly
bias. In Section 4 we compare the galaxy clustering signals
from this model and from observations to constrain the model
parameters. We then discuss some detailed aspects of our re-
sults in Section 5, and summarize this paper in Section 6.

2. SIMULATIONS AND GALAXY CATALOGS

2.1. Simulations

This study uses several cosmological boxes, as listed in
Table 1. The c250-2048 box comes from the “Chin-
chilla” suite, run with the L-GADGET code, a variant of
GADGET (Springel 2005). The “Chinchilla” suite spans a
wide range of box sizes and resolutions with the same cos-
mology (M. R. Becker et al. 2016, in preparation; some
boxes in this series were described in Mao et al. 2015 and
were also used in Desmond & Wechsler 2015). Bolshoi
and BolshoiP have the same box size and resolution as
c250-2048, but have different cosmologies and were run
with the ART N-body code (Klypin et al. 2011). MDPL is
part of the “MultiDark” suite (Klypin et al. 2016), and was
also run with GADGET. The three DarkSky boxes of dif-
ferent sizes are smaller boxes that accompany the 8Gpch−1

box from the “Dark Sky” Simulations (Skillman et al. 2014),
run with the 2HOT code (Warren 2013). Here we re-
fer to these boxes as DarkSky-250 (ds14_j_2560),
DarkSky-400 (ds14_i_4096), and DarkSky-Gpc
(ds14_b). The particles used to build the halo catalogs
and merger trees for the DarkSky-Gpc box were down-
sampled (1/32 particles) from a high-resolution box run with
102403 particles.

For each of these boxes, we use the halo catalog generated
by the ROCKSTAR halo finder (Behroozi et al. 2013a) and
the CONSISTENT TREES merger tree builder (Behroozi et al.
2013b). We use the virial overdensity (∆vir) as our halo mass
definition (Bryan & Norman 1998).

2.2. Mock Galaxy Catalogs

The mock galaxy catalogs used in this work are generated
with the abundance matching technique. We follow the pro-
cedure of Behroozi et al. (2010) and Reddick et al. (2013) in
order to implement abundance matching with scatter in lu-
minosity at fixed halo proxy. First, we deconvolve the scatter
from the luminosity function. We then abundance match lu-
minosity with the halo proxy, producing a catalog of galaxy
luminosities. Finally, we replace the scatter by adding a log-
normal scatter to the catalog.

We make measurements of the projected two-point correla-
tion function, wp(rp), from the mock catalogs as follows. We
use the plane-parallel approximation in redshift-space and in-
tegrate along one of the axes (i.e., the line of sight), with
an integration depth of 2zmax = 80Mpch−1. Redshift-space
distortions are applied along the integration axis before inte-
gration. We account for the periodic boundary conditions of

the cosmological boxes when computing the projected cor-
relation function, and hence we can evaluate the expected
number of uniformly random pairs explicitly without using
an estimator.

2.3. SDSS Galaxy Catalogs

In this study, we use the luminosity function (for abun-
dance matching) and the two-point clustering measurements
(for comparison) extracted by Reddick et al. (2013). These
measurements were made on the volume-limited samples
from the New York University Value Added Galaxy Catalog
(NYU-VAGC; Blanton et al. 2005), based on Data Release 7
from the Sloan Digital Sky Survey (Padmanabhan et al. 2008;
Abazajian et al. 2009). We note that these measurements
are quite consistent with the measurements of Zehavi et al.
(2011), but here a consistent sample was used to determine
both the luminosity function and clustering measurements.
We refer the readers to Section 2 and Appendix C of Red-
dick et al. (2013) for details on these measurements. In this
work, we focus primarily on constraining our models with
galaxies of luminosity ∼ L∗ and brighter in order to be con-
servative about the resolution requirements for the complete
halo and subhalo samples needed for abundance matching,
but we present results from dimmer samples in Section 4.4.

2.4. Calculating the Covariance

In Section 4, when we compare the SDSS data to the pre-
dicted wp(rp) obtained from the mock catalogs with a χ2

statistic, we need to take the covariance matrix into account.
The covariance matrix has three contributions: (1) the sam-
ple variance (jackknife covariance) of the SDSS data, (2) the
sample variance (jackknife covariance) of the mock catalog,
and (3) the covariance due to the stochastic scatter in the
mock catalog. We sum up these three contributions quadrat-
ically to obtain the final covariance matrix.

First, the sample variance in the SDSS measurements is es-
timated by jackknifing the SDSS data set, as detailed in Red-
dick et al. (2013). Second, we estimate the sample variance
in the predictions of abundance matching due to the finite
volume of the N-body simulations used in this work. We em-
ploy a jackknife procedure in order to estimate the contribu-
tion to the covariance matrix from this effect. Each N-body
box is divided into smaller square “sky areas.” Each patch
has side lengths of 25Mpch−1, 25Mpch−1, and the original
box side length. We then omit one patch at a time in the
jackknifing process (i.e., omitting everything along the line
of sight in the square patches), and compute the jackknife
covariance. Thirdly, the final contribution to the covariance
comes from the scatter in abundance matching. Since we ap-
ply log-normal random scatter in luminosity directly to the
catalogs, multiple catalogs generated with the same abun-
dance matching parameters produce slightly different predic-
tions for wp(rp). Thus, from each set of abundance match-
ing parameters, we generate 40 catalogs, compute wp(rp) for
each, and calculate the covariance on wp(rp) due to this ran-
dom variation.
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Table 1. Cosmological and Simulation Parameters for Boxes Used in This Study

Box Name Side Length Particle h ΩM ns σ8 Particle Mass Code

[Mpch−1] number [M�h−1]

c250-2048 250 20483 0.7 0.286 0.96 0.82 1.44×108 L-GADGET

Bolshoi 250 20483 0.7 0.27 0.95 0.82 1.35×108 ART

BolshoiP 250 20483 0.678 0.295 0.968 0.823 1.49×108 ART

MDPL 1000 38403 0.678 0.307 0.96 0.823 1.51×109 L-GADGET

DarkSky-250 250 25603 0.688 0.295 0.968 0.834 7.63×107 2HOT

DarkSky-400 400 40963 0.688 0.295 0.968 0.834 7.63×107 2HOT

DarkSky-Gpc 1000 102403 a 0.688 0.295 0.968 0.834 4.88×109 b 2HOT

aHalo catalogs and merger trees are constructed with 1/32 of the total particle number.
bEffective mass of the down-sampled particles.

We note that the estimate of the covariance of the mock
wp(rp) has a direct impact on the goodness of fit, and hence
on the derived constraints on the abundance matching pa-
rameters. Nevertheless, Norberg et al. (2009) find that the
jackknife method does not typically underestimate the co-
variance.

3. ABUNDANCE MATCHING WITH ADJUSTABLE
CONCENTRATION DEPENDENCE

3.1. Interpolating between Abundance Matching Proxies

A key simplifying assumption in the abundance matching
framework is that some galaxy property (for both centrals
and satellites) is tightly correlated with some dark matter
(sub)halo property. Physically, this halo property should be
connected to, for example, the mass, velocity, or potential of
the dark matter halo. However, at present, we do not under-
stand the details of galaxy formation well enough to specify
the exact connection. Hence, in practice, the halo proxy used
in abundance matching could be a function of multiple halo
properties instead of a single halo property.

In particular, to test whether, or how strongly, galaxy prop-
erties within halos at a fixed mass should be dependent on
halo concentration or assembly history, here we present an
interpolation scheme that generalizes the conventional abun-
dance matching model to allow continuously adjustable con-
centration dependence. To build such a scheme, we adopt
the parameterization used in Mao et al. (2015), defining a
new generalized proxy to be used in abundance matching:

vα := vvir

(
vmax

vvir

)α

, (1)

where vmax is the maximal circular velocity and

vvir :=
(

GMvir

Rvir

)1/2

=
(

4π
3

∆virρcritG3
)1/6

M1/3
vir , (2)

102

vvir(ampeak)

102

v
m

a
x
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p

e
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k
)

α = 0.0

α = 0.5

α = 1.0

Figure 1. Relation between the two halo properties vvir and vmax

(both evaluated at ampeak) and abundance matching rankings. Each
point represents a host halo (blue) or a subhalo (black). The total
number of halos is down-sampled for illustration purposes. Each
arrow shows the direction of decreasing abundance matching rank
when a particular value of α is used (from light to dark: vα=0 = vvir,
vα=0.5, and vα=1 = vmax). The figure indicates how the choice of
proxy impacts both the fraction of subhalos that are included in the
sample, as well as the concentration of the included halos, which
will impact their clustering properties.

with ∆vir being the virial overdensity and ρcrit the critical
density.
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This generalized proxy captures the continuously varying
dependence on concentration through the parameter α be-
cause the ratio vmax/vvir can be viewed as a proxy for halo
concentration. In principle, this ratio can be replaced by f (c)
with a general function f . Nevertheless, using this ratio fa-
cilitates comparisons with other proxies that have been used
in the literature. In particular, when α = 0, the dependence on
concentration is turned off, as vα=0 = vvir ∝ M1/3

vir , and when
α = 1, this proxy reduces to the maximal circular velocity
vα=1 = vmax.

Note that Equation (1) can be written as

logvα = α logvmax + (1 −α) logvvir. (3)

Hence, this new proxy can be considered as a linear com-
bination of logvmax and logvvir on a logarithmic scale. As
illustrated in Figure 1, on a log–log plot of vmax and vvir, the
value of α affects the direction of the halo ranking. In this
figure, the arrow represents the direction of descending rank
when the halos are ranked by vα, and the slope of the arrow
is α/(1 −α). Hence, different values of α effectively rank
the halos with different slopes. As a result, at a given num-
ber density, different values of α select out different halos.
In particular, a larger value of α selects out more low-mass,
high-concentration halos, and also more subhalos.

We note that the specific choice of the parameterization of
the concentration dependence should not impact our results
significantly, as the essence of our model is to vary how much
we weight the concentration of halos when ranking halos by
their masses in the abundance matching procedure. How-
ever, one could instead weight other halo properties, such
as halo formation time, in order to study the dependence on
other properties in abundance matching. In this work, we
only study the dependence on concentration. Nevertheless,
we expect that qualitatively similar results would also apply
to other proxies that are highly correlated with concentration.

3.2. Evaluating the Proxy at the Epoch of Peak Mass

So far, we have only discussed how to model the concen-
tration dependence in our new proxy. In abundance match-
ing, the choice of epoch at which the ranking proxy is eval-
uated also significantly impacts the results (Reddick et al.
2013; Chaves-Montero et al. 2016). For example, if the proxy
is evaluated at the present day, subhalos are usually ranked
lower due to stripping, and the resulting mock catalog is less
clustered. Conroy et al. (2006) argues that the time at which
a subhalo enters the virial radius of its parent halo is a natu-
ral time at which to set proxies. Reddick et al. (2013) further
uses the peak values of those proxies (e.g., Mpeak and vpeak)
throughout history. In this work, we limit our discussion to a
single choice of epoch. We evaluate the value of vα for each
halo at the epoch when Mvir reaches its peak value, and let v̂α
denote this quantity. In follow-up work, we will explore this
choice of proxy epoch in detail.

Since v̂α is evaluated at the time of peak mass for each
halo, ranking with v̂α=0 and v̂α=1 is equivalent to ranking
with Mpeak and vmax at Mpeak respectively. (However, the for-
mer is only approximately true in our case because ∆vir in

Equation (2) has a weak dependence on the scale factor, and
for different halos, Mpeak occurs at different scale factors.)
Our choice of evaluating the abundance matching proxy at
the scale when Mpeak rather than when vpeak occurs was moti-
vated by the finding that halos at the largest circular velocities
may be out of dynamical equilibrium (Ludlow et al. 2012);
e.g. Behroozi et al. (2014) showed that vpeak is commonly set
by major mergers, and hence may not represent the physical
time at which the subhalo started to be stripped. Evaluating
the proxy at the scale factor of Mpeak then avoids this un-
physical epoch probed by vpeak, and is similar to using the re-
laxation criterion proposed by Chaves-Montero et al. (2016).
Nevertheless, for the purpose of abundance matching, the dif-
ference between matching to vpeak and to vmax(ampeak) is mini-
mal, as the rank orders are very similar when halos are ranked
by these two proxies. As a result, the clustering signals with
these two proxies are also similar.

3.3. Impact of α on Clustering

We first demonstrate the impact of α, as defined in Sec-
tion 3.1, on clustering. Figure 2 shows the wide range of
clustering predictions that can be produced by varying α. We
find that changing α can significantly change the clustering,
and that a higher value of α produces a more clustered cata-
log.

There are two effects that contribute to this result. First, at
a given halo mass, on average, subhalos have higher concen-
trations than host halos. Hence, when a higher value of α is
used, subhalos are more likely to make it through the thresh-
old cut, resulting in a more clustered sample. Effectively, in-
creasing α increases the difference between the luminosity–
halo mass relation of host halos and that of subhalos. This
effect impacts both the one- and two-halo terms, and also
boosts the satellite fraction.

Second, when we use a higher value ofα, high-concentration
halos are ranked higher in the catalog and are more likely to
make it through the threshold cut. Since, in this mass regime,
high-concentration halos are more clustered due to halo as-
sembly bias (Wechsler et al. 2006), the resulting catalog is
also more clustered. This effect impacts mostly the two-
halo term, and is less significant in brighter samples. In the
sections below, we discuss these two effects in detail.

It is known that increasing the scatter in abundance match-
ing would decrease clustering strength because it brings in
lower-mass halos (e.g., Reddick et al. 2013). Thus, there ex-
ists a degeneracy between α and the scatter. This degener-
acy is demonstrated in Figure 3, which shows the correlation
function for several values of α and scatter. The clustering
strength decreases with decreasingα and also with increasing
scatter. Nevertheless, the scatter has a stronger effect on the
brighter samples, while α has a stronger effect on the fainter
samples. This implies that samples of different thresholds
are likely to give different constraints on α and scatter, and
might be able to break the degeneracy between α and scatter.

3.4. Impact of α on the Satellite Fraction
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Figure 2. Dependence of galaxy clustering on the abundance matching proxy. Top row shows wp(rp) for three thresholds (Mr < −20.5, −21,
and −21.5; from left to right) in the DarkSky-400 box. Lines of different colors show different values of α (−10, 0, 0.5, 1, 10; from light
to dark). Larger values of α correspond to stronger concentration dependence. The gray band shows the SDSS measurements and the errors
combined with mock errors. Bottom row shows the relative difference in wp(rp) with respect to v̂α=0.5.
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Here, we define the satellite fraction to be the fraction of
satellites in bins of luminosity. In this study, we did not apply

a group finder on the mock galaxies, so galaxies labeled as
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Figure 4. Satellite fraction as a function of luminosity, for three
values of α (0, 0.5, and 1.0; from light to dark), computed
with zero scatter (solid) and 0.15-dex scatter (dashed), using the
DarkSky-400 box. Error bars show the jackknifing error. Cir-
cles show the satellite fraction measured from SDSS groups (Red-
dick et al. 2013), and the gray band indicates the sum of the error
from SDSS data and the estimated systematic error introduced by
the group finder (see the text of ?? for details).

satellites are exactly the same as those labeled as subhalos
in the initial halo catalog. That is, the satellite fraction we
measured here is actually the fraction of galaxies assigned to
subhalos in each luminosity bin. A subhalo is defined as any
halo whose center falls within another larger halo. We refer
to a halo that is not a subhalo as a host halo.

Figure 4 shows the satellite fraction as a function of lumi-
nosity for several values of α. As expected, increasing α in-
creases the satellite fraction, since subhalos are, on average,
more concentrated than host halos of the same mass; hence,
subhalos are ranked higher when α is larger. This is espe-
cially true at the faint end because the ratio vmax/vvir differs
more between subhalos and host halos for low-mass halos.

Applying scatter to abundance matching increases the
satellite fraction at the bright end because more satellites in
the fainter luminosity bins are scattered up to the brighter lu-
minosity bins. Applying scatter does not significantly change
the satellite fraction for samples fainter than Mr = −21.

Another way to demonstrate this change in the satellite
fraction is to look at the difference between the luminosity–
halo mass relation of host halos (central galaxies) and that of
subhalos (satellite galaxies). Previous studies have explored
the case in which the stellar mass–halo mass relations of cen-
tral and satellite galaxies differ from each other (e.g., Neis-
tein et al. 2011; Rodríguez-Puebla et al. 2012, 2013). Here,
using the α parameter, we can evaluate this difference quan-
titatively. Figure 5 shows the luminosity–halo mass (L − Mh)

relations for all halos, only host halos, and only subhalos,
for different values of α. We see that changing α changes
the overall L − Mh relations very little, but changes the differ-
ence between the halo and subhalo L − Mh relation. Specif-
ically, increasing α effectively more strongly differentiates
the L − Mh relations for halos and subhalos, while maintain-
ing the overall L − Mh relation.

In Figure 4, we also compare our results with the observed
satellite fraction. The observed satellite fraction measure-
ments are taken from Reddick et al. (2013), who used a group
finder (Tinker et al. 2011) applied to the same sample used to
make the clustering measurements. Since we did not apply
the same group finding procedure on our mock catalogs, this
comparison is subject to the systematic errors introduced by
the group finder. The gray band shown in Figure 4 is the sum
of the error from SDSS data and the estimated systematic er-
ror introduced by the group finder; the latter was estimated
by taking the one-sided difference between the satellite frac-
tions before and after the catalog was processed with a group
finder, shown in the left panel of Figure 21 in Reddick et al.
(2013). We see that these systematic errors increase signifi-
cantly at the bright end, due to the fact that the group finder
does not always select the right galaxy as the central. How-
ever, both scatter and group finding have much smaller im-
pacts at luminosities dimmer than Mr = −21, which is also
where α has a larger impact. Up to the systematic errors, the
observed satellite fraction agrees well with the model predic-
tion when α ∼ 0.5. We show in Section 4.2 that this is also
consistent with the inference from galaxy clustering.

3.5. Impact of α on Assembly Bias

In our model, α also controls how much halo assembly bias
can manifest in the mock catalogs as galaxy assembly bias.
To quantify this, we need to separate the effects of the satel-
lite fraction and halo assembly bias. To that end, we shuffle
our mock catalogs to remove halo assembly bias, but leave
the satellite fraction intact. Here we adopt the same shuffling
procedure as described by Zentner et al. (2014). We divide
the catalogs into bins of halo masses, with a bin width of
0.1 dex. For each bin, we first shuffle the central galaxies,
and then independently shuffle the satellites (while retaining
their relative positions to the central galaxies). This proce-
dure preserves the halo occupation and the satellite fraction
in the catalogs by construction.

Figure 6 shows the relative difference in wp(rp) between
the shuffled and unshuffled catalogs. Since the shuffling pro-
cedure preserves the satellite fraction, the difference seen in
this figure comes from halo assembly bias alone. We see
that the difference is larger for fainter samples and for larger
values of α. This behavior is expected: halo assembly bias
impacts the fainter samples more strongly, and catalogs with
a larger value of α have stronger halo assembly bias and
are more clustered. We note here that although models with
more concentration dependence have stronger assembly bias,
there is still some assembly bias in the models with α = 0,
because the relationship between Mvir and Mpeak has some
dependence on formation time and/or halo concentration.
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Figure 6 also shows the scale dependence of assembly bias
for each value of α. We find that halo assembly bias impacts
both the two-halo term and the transition regime around 1–
2Mpch−1, in agreement with the findings of Sunayama et al.
(2016). At the smallest scales, the original catalog and the
shuffled catalog exhibit similar clustering, since the cluster-
ing at small scales is dominated by the change in satellite
fraction. This implies that our v̂α model is distinct from
merely introducing halo assembly bias to a non-biased cat-
alog (e.g., modeling the HOD). In particular, varying α si-

multaneously changes the amount of halo assembly bias and
the satellite fraction.

4. CONSTRAINING THE
CONCENTRATION-DEPENDENT MODEL

4.1. Jointly Constraining α and Scatter

In the previous section, we present how this α parame-
ter, which controls the concentration dependence in abun-
dance matching, affects the clustering signals in the mock
catalog. Given this finding, here we investigate whether the
current galaxy clustering measurement can already provide
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constraints on the this α parameter. Since the effect of the α
parameter on the clustering signals and that of the scatter in
abundance matching are degenerate, here we present the joint
constraints on α and scatter using the SDSS galaxy catalog.

We compute the χ2 statistic to evaluate the goodness-of-fit
for a set of values in the (α,scatter) parameter space for each
threshold. We also compute the χ2 statistic for several differ-
ent cosmological boxes to determine whether the constraint
on (α,scatter) varies significantly between boxes using dif-
ferent cosmologies and codes.

The χ2 statistic is computed as

χ2 =
∑

i

∑
j

d(ri
p)d(r j

p)C−1(ri
p,r

j
p), (4)

where d(rp) := wmock
p (rp) − wSDSS

p (rp), C(ri
p,r

j
p) is the covari-

ance, and i, j denote the indices of the bins of rp. Note that
here C already includes the covariance from the SDSS data,
as well as the covariance from jackknifing the mock catalog
and from multiple realizations of abundance matching.

Note that in our analysis, we compute the p-value using
the χ2 test independently for each set of parameter values.
Hence the p-values presented in the figures below are not
comparisons between different parameter values, but always
are with respect to the null hypothesis.

Figure 7 shows the constraints from the three DarkSky
boxes and the MDPL box for four different luminosity thresh-
olds separately. Note that the two 1Gpch−1 boxes do not have
the resolution to generate a complete sample below roughly
Mr = −21, and hence we omit the lowest luminosity panels for
these boxes in Figure 7. We will discuss detailed resolution
requirements for abundance matching in upcoming work.

We see several interesting features here. First, the degen-
eracy between α and scatter is most visible in the samples of
Mr < −21.5 and −21. In both cases, we see the degeneracy
as expected: a larger α requires a larger scatter to balance
the additional clustering since more highly concentrated ha-
los are included.

Second, as expected, larger boxes provide stronger con-
straints, indicating that the constraining power of most pre-
vious studies, which have almost exclusively used boxes of
∼ 250Mpch−1 on a side, have been dominated by sample
variance. This is especially true for the brighter samples be-
cause the numbers of galaxies in those samples are small.
While the sample of Mr < −22 from DarkSky-250 and
-400 provide little constraint on α and scatter, the samples
from the 1Gpch−1 boxes give clear constraints on scatter, and
exclude zero scatter in this range of α at p< 0.001.

Third, on the faint end, we obtain a much stronger con-
straint on α. The luminosity dependence of halo bias is
significantly weaker in this regime, and thus these galaxies
do not provide strong constraints on scatter. However, with
DarkSky-400, this sample excludes both α = 0 and 1 at
p< 0.001.

4.2. Combining Constraints from Different Thresholds

If we assume that α and scatter are constant with respect
to luminosity, then the samples at different thresholds can be

combined to produce an overall constraint on α and scatter.
Here, we also assume that the constraints from samples at
different thresholds are independent. This assumption is only
approximately correct for two reasons. First, although the
sample at each threshold is dominated by the fainter galaxies,
it does include galaxies from higher thresholds. Second, for a
given simulation, the clustering signals at different thresholds
are also correlated. Here we assume the independence for
simplicity, and because the effects are both small, we do not
expect that they will significantly impact our conclusions.

The combined constraint from four thresholds (Mr <
−20.5, −21, −21.5, and −22) for DarkSky-400 is shown in
Figure 8. This combined constraint excludes both α = 0 (re-
sembling Mpeak) and 1 (resembling vpeak) at p < 0.001, and
also excludes zero scatter at p < 0.001. The best-fit values
for DarkSky-400 are α = 0.57+0.20

−0.27 and scatter = 0.17+0.03
−0.05

dex. This value of α is consistent with the value that best
matches the observed satellite fraction shown in ??.

The wp(rp) corresponding to this best-fit model is shown
in Figure 9. We find that, with this new v̂α proxy, we can
reproduce the wp(rp) observed in the SDSS data at all four
luminosity thresholds very closely, with a fixed value of α
and scatter. In the same figure, the best-fit wp(rp) for MDPL
is also shown. The large size of the MDPL box results in much
smaller errors on the mock wp(rp), yet we still obtain excel-
lent agreement with observations. We note that the agree-
ment is good down to the small scales measured by Zehavi
et al. (2011).

4.3. Consistency between Different Simulations

We repeat our study on the clustering with the other sim-
ulations listed in Table 1 to test the robustness of our results
and to investigate their cosmology dependence. We use four
250Mpch−1 boxes with approximately the same mass reso-
lution but with different cosmologies, three different N-body
codes, and different initial conditions.

Figure 10 shows the p > 0.05 regions in (α,scatter) from
these four boxes, and also DarkSky-400 for reference.
Despite the difference between these boxes, the p = 0.05
contours agree with one another very well, and the best-fit
points are all in proximity in this parameter space. This result
demonstrates the robustness of our analysis. It also suggests
that, within the range of cosmologies tested here (all modern
ΛCDM cosmologies but with a range of values of, e.g., ΩM
and σ8), the cosmology dependence is weak enough that it
cannot be distinguished in these 250Mpch−1 boxes.

4.4. Application to Dimmer Galaxy Samples

Since abundance matching models are based on the halo
catalogs of N-body simulations, they suffer from the same
limitations due to finite resolution. Particularly, for dimmer
samples, abundance matching models tend to underpredict
small-scale clustering (Guo et al. 2016b). To avoid possi-
ble impact of the limited resolution and to obtain unbiased
constraints on α and scatter, we only used galaxy samples
brighter than Mr = −20.5 in the main results. We demonstrate
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that α can already be constrained even with only the bright
samples.

Nevertheless, the model presented here can also provide
good fits to dimmer galaxy samples given its flexibility. Even
with the best-fit values of α and scatter used in Figure 9 (i.e.,
solely from the bright samples), we can obtain reasonably
good matches to the clustering of dimmer samples, as shown
in Figure 11. We note that for these four dimmer samples
with Mr > −20.5, observed galaxies are more clustered at
small scales and less so at large scales when compared to

the model prediction with these particular parameter values.
This hints at larger values of both α and scatter, and hence
at the mass dependence of α and scatter. However, this hint
could be a result of the bias due to resolution limit, and sim-
ulations of higher resolution are needed to obtain a definitive
conclusion on this possible mass dependence of α and scat-
ter.

5. DISCUSSION

5.1. Consistency with Previous Work
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−0.27; scatter = 0.17+0.03
−0.05 dex).

We note that Reddick et al. (2013) are able to get reason-
able fits to the clustering measurements by abundance match-
ing to vpeak. However, the amount of scatter required in the
vpeak case is large (0.22 dex) compared to other constraints
in the literature (e.g., More et al. 2009). Additionally, this
vpeak model requires the exclusion of subhalos whose current
mass is less than some fraction of the peak mass (using the
parameter µcut := Mvir,now/Mpeak), and we do not find this to
be required with v̂α. Furthermore, the vpeak model did not
provide a good fit to the brightest samples when matching
to luminosity (see the top left panel of Figure 26 of Reddick
et al. 2013), nor did it fit the satellite fraction without exclud-
ing halos of low Mvir,now/Mpeak (i.e., with µcut = 0 in Reddick
et al. 2013, Figure 22).

The analysis in our present paper uses a larger box with
about four times the volume, and thus provides more con-
straining power. In Figure 10, one can see that given the
degeneracy between scatter and α, the smaller Bolshoi box
does allow for a region with α = 1 (corresponding to vpeak)
with higher scatter (& 0.2). This region is consistent with the
best-fit result of Reddick et al. (2013), but is ruled out here
with the larger DarkSky-400 box.

5.2. Flexibility of the Abundance Matching Framework

The core idea of abundance matching is two key assump-
tions: (1) all galaxies live in dark matter density peaks, and
(2) galaxy properties are well correlated with halo proper-
ties. However, abundance matching should not be viewed
as a “parameter-free” model, but instead, can be viewed as

a flexible description of the galaxy–halo connection whose
parameters can be constrained by observations.

By introducing this new interpolation scheme with the
parameter α, we demonstrate that the abundance matching
technique is more flexible than the version that was origi-
nally proposed. This interpolation scheme also provides a
novel interpretation of the matching proxy. Traditionally,
when we compare the performance of two abundance match-
ing proxies, we tend to overemphasize the physical meaning
of the proxy that performs better. With this α parameter, we
demonstrate that, under the framework of abundance match-
ing, there is indeed nothing special about the maximal circu-
lar velocity. It is only that observations of clustering statistics
favor more concentration dependence than using simply halo
mass as a proxy.

On a different note, the α parameter affects the galaxy clus-
tering in the resulting catalog by changing the satellite frac-
tion and the amount of assembly bias. However, we also note
that, within the framework of abundance matching, these two
effects (assembly bias and satellite fraction) are linked in the
specific way when one changes the parameter α. This link is
physically justified if all galaxies live in resolved halos and if
galaxy and halo properties can be effectively rank matched
with one of the proxies considered. On the contrary, the
model in Hearin et al. (2016) do not assume this link, and the
two effects can be adjusted separately. Nevertheless, with
the clustering statistics we tested here, there is no evidence
that this link, implicitly assumed when one uses abundance
matching, needs to be broken.

This linked feature also enables us to constrain α with
only the two-halo clustering. In fact, when we exclude small
scales in our analysis, we obtain a consistent, though weaker,
constraint on α. This is promising due to the more difficult
nature of modeling the smallest scales, which can be im-
pacted by fiber collisions in the data, and by resolution and
baryonic effects in the simulations. At present, our best con-
straint on α still comes from scales in the one-halo regime,
but stronger large scale constraints will be possible as data
samples become larger. This result suggests that many of the
key details of the galaxy–halo connection may be constrained
even without the smallest scales.

It is also important to note that, in addition to the concen-
tration dependence discussed in this work, there is still a rich
set of parameters that can potentially be included in abun-
dance matching without breaking the core assumptions men-
tioned above, such as using non-constant or non-Gaussian
scatter, evaluating the matching proxy at different epochs,
and adopting different treatments for central and satellite
galaxies. With future simulations that have larger volumes
and higher resolutions, we can constrain these potential abun-
dance matching parameters, and in return obtain insights on
the physical processes of galaxy formation.

5.3. Constraining Power from Other Statistics

Several other probes can provide complementary con-
straining power on the α parameter. Although in this paper
we have not completed a full analysis of satellite fractions,
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Figure 4 already demonstrates that the satellite fraction as a
function of luminosity can provide independent constraints
on α. Similarly, other group statistics, such as the condi-
tional luminosity function, should also provide additional
constraints on α and scatter.

As an example, R. M. Reddick et al. (2016, in preparation)
have studied the conditional luminosity function of galaxies
in the redMaPPer cluster sample (Rykoff et al. 2014). This
sample consists of a very large number of photometrically
identified clusters, and hence allows for very small statisti-
cal errors on the parameters. This work finds that for mod-
els with lower scatter, data require a stronger anti-correlation
between satellite occupation and central luminosity. Since
satellite occupation is also anti-correlated with host halo con-
centration (Zentner et al. 2005; Mao et al. 2015), the result of
R. M. Reddick et al. (2016, in preparation) implies an anti-
correlation between scatter and α (i.e., the concentration de-
pendence of luminosity). This result would then be com-
plementary to the clustering results presented here, since the
latter finds a positive correlation between scatter and α, pro-
vided that the correlation between scatter and α behaves the
same in both luminosity-selected and redMaPPer samples.

Although we do not investigate this directly here, mea-
surements of galaxy voids may be able to put further con-
straints on the amount of assembly bias (Tinker et al. 2008;
Tinker & Conroy 2009). Combining clustering results with
measurements of galaxy–galaxy lensing may be able to put
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further limits on the scatter and on the concentration depen-
dence (e.g., Tasitsiomi et al. 2004; Mandelbaum et al. 2006;
Neistein & Khochfar 2012). In addition, data that have more
information on redshift dependence, such as the pseudo-
multipole correlation function, can provide more constraints
on these parameters (Reid et al. 2014; Guo et al. 2016b; Saito
et al. 2016).

Another way to put a physical prior on the parameters in
empirical models is to compare the model predictions with
hydrodynamic simulations. For example, Chaves-Montero
et al. (2016) evaluated the galaxy–halo connection in the EA-
GLE simulation with various abundance matching models
with different epochs at which the matching proxy is eval-
uated. In this work, we establish that the galaxy luminosity
has at least some dependence on halo concentration. It will
be interesting to fully understand whether and to what ex-
tent such a luminosity dependence arises in modern hydrody-
namic simulations, and what physical parameters it depends
on.

6. SUMMARY

We introduce a generalization of abundance matching that
allows adjustable concentration dependence. In particular,
we propose a model that abundance matches to a parameter
v̂α, which smoothly interpolates between vvir (when α = 0)
and vmax (when α = 1), both of which are evaluated at the
peak value of the mass accretion histories.

Within the framework of abundance matching, the param-
eter α controls the concentration dependence of luminosity
at given halo mass. Hence, α impacts both the satellite frac-

tion and the assembly bias in the resulting mock galaxy cata-
log. Both effects lead to larger clustering for higher values of
α, but the satellite fraction primarily increases clustering at
small scales (the one-halo term), while assembly bias primar-
ily increases clustering at larger scales (the two-halo term).
This model is the first to introduce a continuously adjustable
assembly bias within the abundance matching framework.

We further demonstrate that the current clustering mea-
surements from SDSS already have constraining power on
this parameter α. SDSS data prefer a range of α in the region
between 0 and 1, i.e., with v̂α between vvir, peak and vmax, peak.
Our best-fit value is α = 0.57+0.20

−0.27, with a scatter value of
0.17+0.03

−0.05 dex. With the high-resolution 400Mpch−1 box,
DarkSky-400, we show that the halo parameters Mvir, peak
and vmax, peak, which have been previously used in the litera-
ture are both ruled out at p < 0.001 when the various lumi-
nosity thresholds are combined.

In conclusion, the more general abundance matching
model we present here is an important step in the quest
for precise and accurate models of galaxy clustering down to
small scales, which will be essential to take full advantage of
the next generation of cosmological surveys.
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