
Prepared for submission to JHEP

Brown–HET–1705

DESY 16–242

SLAC–PUB–16894

Heptagons from the Steinmann Cluster Bootstrap

Lance J. Dixon,1 James Drummond,2 Thomas Harrington,3 Andrew J. McLeod,1

Georgios Papathanasiou1,4 and Marcus Spradlin3

1 SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
2 School of Physics & Astronomy, University of Southampton

Highfield, Southampton, SO17 1BJ, United Kingdom
3 Department of Physics, Brown University, Providence, RI 02912, USA
4 DESY Theory Group, DESY Hamburg, Notkestraße 85, D-22607 Hamburg, Germany

Abstract: We reformulate the heptagon cluster bootstrap to take advantage of the Stein-

mann relations, which require certain double discontinuities of any amplitude to vanish. These

constraints vastly reduce the number of functions needed to bootstrap seven-point amplitudes

in planarN = 4 supersymmetric Yang-Mills theory, making higher-loop contributions to these

amplitudes more computationally accessible. In particular, dual superconformal symmetry

and well-defined collinear limits suffice to determine uniquely the symbols of the three-loop

NMHV and four-loop MHV seven-point amplitudes. We also show that at three loops, relax-

ing the dual superconformal (Q̄) relations and imposing dihedral symmetry (and for NMHV

the absence of spurious poles) leaves only a single ambiguity in the heptagon amplitudes.

These results point to a strong tension between the collinear properties of the amplitudes and

the Steinmann relations.
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1 Introduction

The desire to construct general scattering amplitudes from their analytic and physical prop-

erties has been a goal since the birth of the analytic S-matrix program (see e.g. ref. [1]).

More recently, such a procedure has been applied in a perturbative context and referred to

as bootstrapping. Aspects of this approach have been applied to theories such as quantum

chromodynamics at one loop [2, 3, 4] and more recently at two loops [5, 6, 7]. However, the

most powerful applications to date have been to the planar limit of N = 4 super-Yang-Mills

(SYM) theory in four dimensions [8, 9]. Fueled by an increased understanding of the classes

of analytic functions appearing in amplitudes in general quantum field theories, as well as

the stringent constraints obeyed by amplitudes in planar N = 4 SYM, it has been possible to

advance as far as five loops [10, 11, 12, 13, 14, 15]. These results in turn provide a rich mine

of theoretical data for understanding how scattering amplitudes behave.

The planar limit of a large number of colors in N = 4 SYM has received a great deal

of attention because of the remarkable properties it exhibits. In addition to superconformal

symmetry it respects a dual conformal symmetry [16, 17, 18, 19, 20], and amplitudes are

dual to polygonal light-like Wilson loops [16, 21, 22, 23, 24, 25, 26]. Dual (super)conformal

symmetry fixes the four-point and five-point amplitudes uniquely to match the Bern-Dixon-

Smirnov (BDS) ansatz [27], which captures all the infrared divergences of planar scattering

amplitudes. Starting at six points, the BDS ansatz receives corrections from finite functions

of dual conformal invariants [25, 26, 28, 29]. The correction to the maximally helicity vi-

olating (MHV) amplitude has traditionally been expressed in terms of a (BDS) remainder

function [10, 12, 25, 26, 30], while the correction to the next-to-maximally helicity violating

(NMHV) amplitude has traditionally been expressed in terms of the infrared-finite NMHV

ratio function [11, 31, 32, 33, 34, 35].

The cluster bootstrap program is built on the idea that certain scattering amplitudes can

be determined order by order in perturbation theory using a set of basic building blocks known

as cluster coordinates [36, 37]. Inspired by the results of refs. [38, 39], the bootstrap approach

developed in refs. [10, 11, 12, 13, 14, 15] assumes that the MHV and NMHV amplitudes at

each loop order belong to a particular class of iterated integrals, or generalized polylogarithms.

More specifically, the L-loop contribution to the remainder and ratio functions is expected to

lie within the space spanned by polylogarithms of weight 2L [40] whose symbols can be written

in terms of cluster A-coordinates. A further constraint on the relevant space of functions

comes from the restriction that only physical branch cuts can appear in the remainder and

ratio functions [41].

To make use of this expectation, in the bootstrap program one first constructs a general

linear combination of the above set of functions to serve as an ansatz. Then one tries to de-

termine all free coefficients in the ansatz by imposing analytic and physical constraints. This

procedure becomes increasingly computationally expensive at higher loop orders, largely due

to the fact that the number of relevant functions increases exponentially with the weight.

It is hoped that one day a constructive procedure for determining these amplitudes can be

– 2 –



developed that does not require constructing the full weight-2L space as an intermediate

step. A promising candidate in this respect is the Wilson loop Operator Product Expansion

(OPE) [41, 42, 43] and the Pentagon OPE program [44, 45, 46, 47, 48, 49, 50] which pro-

vides finite-coupling expressions for the amplitudes as an expansion around (multi-)collinear

kinematics. The main challenge in this framework is to resum the infinite series around these

kinematics; there has been progress recently in this direction at weak coupling [51, 52, 53].

Another potential constructive approach could involve the Amplituhedron [54, 55] description

of the multi-loop integrand. Perhaps one can extend the methods of ref. [56] for reading off

the branch-point locations, in order to enable reading off the entire function.

To date, six- and seven-point amplitudes have been computed in the cluster bootstrap

program through the study of so-called hexagon and heptagon functions. Both helicity con-

figurations of the six-point amplitude have been determined through five loops [15], while the

MHV seven-point amplitude has been determined at symbol level through three loops [12].

The seven-point NMHV amplitude has not yet received attention in the bootstrap program,

but it has been calculated through two loops using slightly different methods [57]. Surpris-

ingly, bootstrapping the seven-point remainder function has thus far proven to be conceptually

simpler (i.e. requiring the imposition of fewer constraints) than bootstrapping its six-point

counterpart. The collinear limit of the seven-point remainder function must be nonsingu-

lar and a well-defined hexagon function. This requirement is so restrictive that it entirely

determines the two-loop heptagon remainder function, up to an overall scale. It similarly

determines the three-loop remainder function, once the full implications of dual superconfor-

mal symmetry are taken into account [12]. The corresponding hexagon remainder function

symbols may then be obtained by taking a collinear limit.

In a recent breakthrough [15], the classic work of Steinmann [58, 59] on the compatibil-

ity of branch cuts in different channels has been used to supercharge the hexagon function

bootstrap program. The Steinmann relations dramatically reduce the size of the functional

haystack one must search through in order to find amplitudes, putting higher-loop amplitudes

that were previously inaccessible within reach. In this paper we reformulate the heptagon

bootstrap of ref. [12] to exploit the power of the Steinmann relations. With their help, we are

able to fully determine the symbol of the seven-point three-loop NMHV and four-loop MHV

amplitude in planar N = 4 SYM, using only a few simple physical and mathematical inputs.

In a separate paper [60], we will investigate various kinematical limits of these amplitudes in

more detail, including the multi-Regge limit [29, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71], the

OPE limit [41, 42, 43, 44, 45, 46, 47, 48], and the self-crossing limit [72, 73]. In this paper,

we study one of the simpler limits, where the NMHV seven-point amplitude factorizes on a

multi-particle pole.

This paper is organized as follows. In section 2 we begin by reviewing the general structure

of seven-particle MHV and NMHV (super)amplitudes, and different schemes for subtracting

their infrared divergences. Section 3 discusses the essential ingredients of the amplitude

bootstrap for constructing heptagon functions, which are believed to describe the nontrivial

kinematical dependence of these amplitudes. Section 4 focuses on the additional physical
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constraints that allow us to single out the MHV or NMHV amplitude from this space of

functions.

Our main results, including the analysis of the general space of heptagon symbols, and the

determination of the three-loop NMHV and four-loop MHV amplitude symbols, are presented

in section 5. Section 6 describes a sample kinematical limit, the behavior of the NMHV

amplitude as a multi-particle Mandelstam invariant vanishes. Finally, section 7 contains our

conclusions, and discusses possible avenues for future study.

Many of the analytic results in this paper are too lengthy to present in the manuscript.

Instead, computer-readable files containing our results can be downloaded from [74].

2 Seven-Particle Scattering Amplitudes

2.1 MHV: The Remainder Function

In planar N = 4 SYM, n-particle amplitudes are completely characterized by the color-

ordered partial amplitudes An, which are the coefficients of specific traces Tr(T a1T a2 · · ·T an)

in the color decomposition of the amplitudes. The MHV helicity configuration has precisely

two gluons with negative helicity and (n−2) with positive helicity (in a convention where all

particles are outgoing). The MHV amplitude is encoded in the remainder function Rn, which

is defined by factoring out the BDS ansatz ABDS
n [27] (reviewed in appendix A):

AMHV
n = ABDS

n exp [Rn] . (2.1)

The BDS ansatz captures all the infrared and collinear divergences [75, 76, 77] in the pla-

nar amplitude, so the remainder function is infrared finite. It is also invariant under dual

conformal transformations [16, 17, 18, 19, 21]. Moreover, since the BDS ansatz accounts for

collinear factorization to all orders in perturbation theory [27], the n-point remainder function

smoothly tends to the (n−1)-point remainder function in its collinear limits, a fact that will

prove to be an important ingredient in the bootstrap program.

In the definition (2.1), Rn is the finite-coupling (or all-loop) remainder function. Here we

will be interested in its perturbative expansion. For any function F of the coupling, we denote

the coefficients of its perturbative expansion with a superscript according to the definition

F =

∞∑
L=0

g2LF (L) , (2.2)

where g2 = g2
YMN/(16π2), gYM is the Yang-Mills coupling constant, and N is the number of

colors. Elsewhere in the literature, the coupling constant a = 2g2 is often used. The L-loop

contribution to the remainder function, R
(L)
n , is expected to be a weight-2L iterated integral.

The remainder function vanishes for the four- and five-particle amplitudes, because dual

conformally invariant cross ratios cannot be formed with fewer than six external lightlike

momenta (in other words, the BDS ansatz is correct to all loop orders for n = 4 or 5) [25,

26, 28]. The first nontrivial case, the six-point remainder function, has been successfully
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computed at two loops [38], three loops [10, 30, 57], four loops [78] and recently five loops [15].

At seven points, the remainder function has been computed at two loops [57, 79, 80, 81] and

its symbol has been computed at three loops [12]. The symbol of the four-loop seven-point

MHV remainder function R
(4)
7 is one of the main results of this paper.

2.2 NMHV: The Ratio Function and R-invariants

Beyond the MHV case, scattering amplitudes in SYM theory are most efficiently organized

by exploiting the (dual) superconformal symmetry [31] of the theory, as reviewed in ref. [82].

In a nutshell, one starts by packaging the on-shell particle content of the theory into a

single superfield Φ with the help of four Grassmann variables ηA, whose index transforms in

the fundamental representation of the SU(4) R-symmetry group. In other words, all external

states, gluons G±, fermions ΓA and Γ̄A, and scalars SAB, can be simultaneously described by

the superfield

Φ = G+ + ηAΓA + 1
2!η

AηBSAB + 1
3!η

AηBηCεABCDΓ̄D + 1
4!η

AηBηCηDεABCDG
− , (2.3)

which allows us to combine all n-point amplitudes into a superamplitude An(Φ1, . . . ,Φn).

Expanding the superamplitude in the Grassmann variables separates out its different

helicity components. The MHV amplitude is contained in the part of AMHV
n with 8 powers

of Grassmann variables, or Grassmann degree 8. Specifically, the MHV amplitude discussed

in the previous subsection is given in the MHV superamplitude by the term

AMHV
n = (2π)4δ(4)

( n∑
i=1

pi
) ∑

1≤j<k≤n
(ηj)

4(ηk)
4AMHV

n (1+... j−... k−... n+) + . . . , (2.4)

where we have shown only the pure-gluon terms explicitly. Similarly, the terms of Grassmann

degree 12 make up the NMHV superamplitude. Since NMHV amplitudes in this theory have

the same infrared-divergent structure as MHV amplitudes, the two superamplitudes can be

related by

ANMHV
n = AMHV

n Pn , (2.5)

where the infrared-finite quantity Pn is called the NMHV ratio function and has Grassmann

degree 4. On the basis of tree-level and one-loop amplitude computations, it was argued in

ref. [31] that Pn is dual conformally invariant.

At tree level, the dual conformal symmetry is enhanced to dual superconformal sym-

metry, and the ratio function can be written as a sum of dual superconformal invariants or

‘R-invariants’ [31, 32]. These quantities, which carry the dependence on the fermionic vari-

ables, are algebraic functions of the kinematics and can be written as Grassmannian contour

integrals [83]. From this representation it is also possible to prove their invariance under ordi-

nary superconformal transformations [84, 85], or in other words their Yangian invariance [86].
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As shown in ref. [83], R-invariants are most easily expressed in terms of the momentum

supertwistors Zi defined by1 [87]

Zi = (Zi |χi) , Zα,α̇i = (λαi , x
βα̇
i λiβ) , χAi = θαAi λiα . (2.6)

Their fermionic components χi are associated with the fermionic dual coordinate θi in the

same way that the bosonic twistors Zi are associated with the bosonic dual coordinates xi.

Differences between color-adjacent dual coordinates xi and θi are related to the external

momenta pi and supermomenta qi, respectively:

pαα̇i = λαi λ̃
α̇
i = xαα̇i+1 − xαα̇i , qαAi = λαi η

A
i = θαAi+1 − θαAi . (2.7)

Given any set of five supertwistors Za,Zb,Zc,Zd,Ze, we may define a corresponding NMHV

R-invariant as a 5-bracket

[abcde] =
δ0|4(χa〈bcde〉+ cyclic

)
〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉

, (2.8)

in terms of dual conformally invariant bosonic 4-brackets

〈ijkl〉 ≡ 〈ZiZjZkZl〉 = εABCDZ
A
i Z

B
j Z

C
k Z

D
l = det(ZiZjZkZl) , (2.9)

and a fermionic delta function δ0|4(ξ) = ξ1ξ2ξ3ξ4 for the different SU(4) components of ξ.

The original definition of the R-invariants [31, 32] (there denoted Rr;ab) in normal twistor

space corresponds to the special case Rr;ab = [r, a−1, a, b−1, b].

From the definition (2.8), we can see that R-invariants are antisymmetric in the exchange

of any pair of supertwistor indices (hence also invariant under cyclic permutations). They

are also manifestly dual conformally invariant, since they don’t depend on spinor products

〈ij〉. The aforementioned Grassmannian contour integral representation in momentum twistor

space [83] makes the full dual conformal invariance manifest. It also allows one to prove

more transparently the following important identity between R-invariants: Given any six

momentum supertwistors Za,Zb,Zc,Zd,Ze,Zf , their R-invariants are related by [31]

[abcde]− [bcdef ] + [cdefa]− [defab] + [efabc]− [fabcd] = 0 . (2.10)

For n-particle scattering, there exist
(
n
6

)
such equations for the

(
n
5

)
distinct R-invariants;

however, it turns out that only
(
n−1

5

)
are independent. So in the end we are left with

# linearly independent n-particle R-invariants =

(
n

5

)
−
(
n− 1

5

)
=

(
n− 1

4

)
. (2.11)

For example, there are 5, 15, and 35 independent R-invariants relevant for 6-, 7- and 8-particle

NMHV scattering amplitudes, respectively.

1The indices α, α̇ = 1, 2 denote the components of the spinor representation of the Lorentz group SO(3, 1) '
SL(2,C).
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Let us now focus on the seven-particle NMHV superamplitude. For compactness we may

express the corresponding R-invariants in terms of the particle indices that are not present

in the 5-brackets (2.8), for example

[12345] = (67) = (76) , (2.12)

where (by convention) the 5-bracket on the left-hand side of this definition is always ordered,

so ordering on the right-hand side doesn’t matter.

In this notation, the representation for the tree-level ratio function found in ref. [32] may

be rewritten as

P(0)
7 =

3

7
(12) +

1

7
(13) +

2

7
(14) + cyclic . (2.13)

Following the same reference, we find it convenient to use a basis of 15 independent R-

invariants consisting of P(0)
7 together with (12), (14), and their cyclic permutations. (Because

P(0)
7 is totally symmetric, it has no independent cyclic images.) In particular, the remaining

R-invariants (i, i+ 2) are related to this set by

(13) = − (15)− (17)− (34)− (36)− (56) + P(0)
7 , (2.14)

plus the cyclic permutations of this identity.

Beyond tree level, the independent R-invariants are dressed by transcendental functions

of dual conformal invariants, and the ratio function can be put in the form

P7 = P(0)
7 V0 +

[
(12)V12 + (14)V14 + cyclic

]
. (2.15)

As we will review in section 4.2, P7 is symmetric under the dihedral group D7. The component

V0 inherits the full dihedral symmetry of P(0)
7 , whereas V12 and V14 are only invariant under

the flip i→ 3−i and i→ 5−i of their momentum twistor labels, respectively.

The dependence of P7 on the coupling enters only through the functions V0 and Vij .

Their L-loop contributions, V
(L)

0 and V
(L)
ij , like the remainder function, R

(L)
7 , are expected

to be weight-2L iterated integrals. Using the notation introduced in eq. (2.2) we must have

V
(0)

0 = 1 , V
(0)

12 = V
(0)

14 = 0 (2.16)

at tree level. At one loop, these functions become [32]

V
(1)

0 = Li2 (1− u1)− Li2 (1− u1u4)− log u1 log u3 + cyclic ,

V
(1)

12 = −Li2 (1− u6) + Li2 (1− u1u4) + Li2 (1− u2u6) + Li2 (1− u3u6) ,

+ log u1 log u2 − log u3 log u2 + log u4 log u2 + log u1 log u3 + log u3 log u4

+ log u1 log u6 + log u4 log u6 − ζ2 ,

V
(1)

14 = Li2 (1− u1u4) + Li2 (1− u3u6) + log u1 log u3 + log u4 log u3 + log u1 log u6

+ log u4 log u6 − ζ2 .

(2.17)
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See also ref. [88] for a more recent, compact representation of the same amplitude. In the

above relations and everything that follows, the cross ratios ui are defined by,

uij =
x2
i,j+1 x

2
i+1,j

x2
i,j x

2
i+1,j+1

, ui = ui+1,i+4 =
x2
i+1,i+5 x

2
i+2,i+4

x2
i+1,i+4 x

2
i+2,i+5

. (2.18)

The ui are dual conformally invariant combinations of the Mandelstam invariants, see eq. (2.7)

and also eq. (3.1) below.

Finally, the symbol of the two-loop NMHV heptagon has been computed in ref. [57] using

the same choice of independent R-invariants as in eq. (2.15), with the help of an anomaly

equation for the Q̄ dual superconformal symmetry generators. Here we will use the Steinmann

cluster bootstrap to push to three loops: The symbols of the functions V
(3)

0 , V
(3)

12 , and V
(3)

14

constituting the three-loop seven-point NMHV ratio function are another of the main results

of this paper.

2.3 The BDS- and BDS-like Normalized Amplitudes

In the previous sections we mentioned that MHV and NMHV amplitudes have the same

infrared-divergent structure, which is accurately captured by the BDS ansatz. This fact

allows us to define the MHV and NMHV BDS-normalized superamplitudes,

Bn ≡
AMHV
n

ABDS
n

=
AMHV
n

ABDS
n

= exp [Rn] , (2.19)

Bn ≡
ANMHV
n

ABDS
n

=
ANMHV
n

AMHV
n

AMHV
n

ABDS
n

= Pn Bn , (2.20)

where ABDS
n is the superamplitude obtained from the bosonic BDS ansatz by replacing the

tree-level MHV Parke-Taylor factor [89, 90] it contains with its supersymmetrized version [91].

Indeed, normalizations (2.19), (2.20) were found to be more natural for the study of the dual

superconformal symmetry anomaly equation [57].

In what follows, it will prove greatly beneficial to define yet another set of infrared-finite

quantities, using an alternate normalization factor that is compatible with the Steinmann

relations. The BDS ansatz is essentially the exponential of the full one-loop amplitude, which

includes a finite part with nontrivial dependence on Mandelstam invariants involving all

possible numbers of external momenta. Dividing by the BDS ansatz produces a quantity with

altered dependence on three-particle Mandelstam invariants. As we will see, such a quantity

does not satisfy the Steinmann relations. In the case of seven-particle scattering (indeed,

whenever n is not a multiple of four), all the dependence on the three-particle invariants (and

higher-particle invariants) can be assembled into a dual conformally invariant function Yn,

which we may remove from the one-loop amplitude in order to define a BDS-like ansatz,

ABDS-like
n ≡ ABDS

n exp

[
Γcusp

4
Yn

]
, (2.21)
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where

Y6 = −Li2

(
1− 1

u

)
− Li2

(
1− 1

v

)
− Li2

(
1− 1

w

)
, (2.22)

Y7 = −
7∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
, (2.23)

and

Γcusp =
∞∑
L=1

g2LΓLcusp = 4g2 − 4π2

3
g4 +

44π4

45
g6 − 4

(
73π6

315
+ 8ζ2

3

)
g8 +O(g10) , (2.24)

is the cusp anomalous dimension in the normalization of e.g. [45].2 In eq. (2.22), u, v, w are

the three cross ratios for six-point kinematics, defined below in eq. (6.1). The difference

between the BDS- and BDS-like-normalized ansätze for seven-point kinematics is reviewed in

more detail in appendix A. The utility of the BDS-like ansatz was first noticed in the strong

coupling analysis of amplitudes via the AdS/CFT correspondence [92] (see also ref. [93]). At

weak coupling, it was found to simplify the six-point multi-particle factorization limit [11],

self-crossing limit [73] and NMHV Q̄ relations [35], before its role in applying the six-point

Steinmann relations was noticed [15]. We will see its advantages as well in our seven-point

analysis.

When n is a multiple of four it is not possible to simultaneously remove the dependence

on all three-particle and higher-particle Mandelstam invariants in a conformally invariant

fashion [94]. However, for n = 8 it is still possible to separately remove the dependence of all

three-particle invariants, or of all four-particle invariants, giving rise to two different BDS-like

ansätze.

Restricting our attention to the case n - 4, we may thus define the BDS-like-normalized

MHV and NMHV amplitudes as

En ≡
AMHV
n

ABDS-like
n

=
AMHV
n

ABDS
n

ABDS
n

ABDS-like
n

= Bn exp

[
−Γcusp

4
Yn

]
= exp

[
Rn −

Γcusp

4
Yn

]
,

En ≡
ANMHV
n

ABDS-like
n

=
ANMHV
n

ABDS
n

ABDS
n

ABDS-like
n

= Bn exp

[
−Γcusp

4
Yn

]
= Pn En ,

(2.25)

where we have also spelled out their relation to the previously-considered normalizations.

Note that

E(1)
n = −Yn , (2.26)

since Rn starts at two loops.

Because we will focus almost exclusively on heptagon amplitudes in this paper, we will

usually drop the particle index n from of all of its associated quantities in order to avoid

2In particular, Γcusp = γK/2 compared to the normalization of [27] and subsequent papers of Dixon and

collaborators.
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clutter, e.g. P7 → P, E7 → E and E7 → E. In the NMHV case we will instead use subscripts to

denote components multiplying the different R-invariants. For example, the BDS-normalized

and BDS-like-normalized analogs of eq. (2.15) are

B = P(0)B0 +
[
(12)B12 + (14)B14 + cyclic

]
, (2.27)

E = P(0)E0 +
[
(12)E12 + (14)E14 + cyclic

]
. (2.28)

It is important to note that because the R-invariants are coupling-independent, the same

coupling-dependent factor that relates NMHV superamplitude in different normalizations

will also relate the respective coefficient functions of the R-invariants. In other words,

E∗ = B∗ exp

[
−Γcusp

4
Y

]
= E V∗ , (2.29)

where ∗ can be any index, 0 or ij.

Given that in this paper we will be focusing exclusively on symbols, it’s also worth

emphasizing that when expanding eq. (2.25) or equivalently eq. (2.29) at weak coupling, we

may replace Γcusp → 4g2, as a consequence of the fact that the symbol of any term containing

a transcendental constant, such as ζn, is zero. Thus, the conversion between the BDS-like-

normalized quantities F ∈ {E , E,E0, Eij} and the corresponding BDS-normalized quantities

F ∈ {B, B,B0, Bij} at symbol level and at fixed order in the coupling, simply becomes

F (L) =
L∑
k=0

F (k) (−Yn)L−k

(L− k)!
, F (L) =

L∑
k=0

F (k) Y L−k
n

(L− k)!
. (2.30)

In particular, for R7, which sits in the exponent, its analogous conversion to E7 through four

loops is given by

E(2)
7 = R

(2)
7 +

1

2

(
E(1)

7

)2
,

E(3)
7 = R

(3)
7 + E(1)

7 R
(2)
7 +

1

6

(
E(1)

7

)3
, (2.31)

E(4)
7 = R

(4)
7 +

1

2

(
R

(2)
7

)2
+ E(1)

7 R
(3)
7 +

1

2

(
E(1)

7

)2
R

(2)
7 +

1

24

(
E(1)

7

)4
.

In summary, all the nontrivial kinematic dependence of seven-particle scattering can be

encoded in the four transcendental functions R7, B0, B12 and B14 using BDS normalization,

or equivalently E , E0, E12 and E14 using BDS-like normalization. (The other Eij that are

needed are related to E12 and E14 by cyclic permutations.) These functions are all expected

to belong to a very special class of transcendental functions called heptagon functions, whose

definition and construction we turn to in the next section. However, we will see that it is

only the BDS-like-normalized amplitudes that inherit a specific analytic property from the

full amplitudes: they satisfy the Steinmann relations. Taking this restriction into account

hugely trims the space of heptagon functions needed to bootstrap the BDS-like normalized

functions, thus allowing for a far more efficient construction of the amplitude.
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3 The Steinmann Cluster Bootstrap

The heptagon bootstrap approach we use in this paper is a slight refinement of that used in

ref. [12], which in turn is a generalization of the hexagon function bootstrap [10, 11, 13, 30, 34,

78]. We begin this section by reviewing some basics of the bootstrap approach and defining

heptagon functions. Then we express the seven-point Steinmann relations in the language of

cluster A-coordinates. We assume a basic working knowledge of both symbols [38, 39, 95, 96,

97, 98, 99, 100] and momentum twistor notation [87].

3.1 Symbol Alphabet

In the cluster bootstrap program for n-point amplitudes in planar SYM theory, we assume

that the symbol alphabet consists of certain objects known as cluster A-coordinates. These

coordinates have been discussed extensively in the context of scattering amplitudes; see for

example ref. [39]. Here we will only briefly recall that the kinematic data for a scattering

process in planar SYM theory may be specified by a collection of n momentum twistors [87],

each of which is a homogeneous coordinate Zi on P3. The configuration space for SYM theory

is Confn(P3) = Gr(4, n)/(C∗)n−1, and cluster A-coordinates on this space can be expressed

in terms of the Plücker coordinates of 4-brackets 〈ijkl〉, which we defined in eq. (2.9).

Mandelstam invariants constructed from sums of cyclically adjacent external momenta

pi, pi+1, . . . , pj−1 can be expressed nicely in terms of dual coordinates xi satisfying the relation

pi = xi+1 − xi. Using the notation xij = xi − xj , the Mandelstam invariant si,...,j−1 can be

written as

si,...,j−1 = (pi + pi+1 + · · ·+ pj−1)2 = x2
ij =

〈i−1 i j−1 j〉
〈i−1 i〉〈j−1 j〉

. (3.1)

Here we have also shown how to express the Mandelstam invariant si,...,j−1 in terms of Plücker

coordinates and the usual spinor products 〈ij〉 = εαβλ
α
i λ

β
j , see also eq. (2.7). The denominator

factors in eq. (3.1) drop out of any dual conformally invariant quantity and so may be ignored

for our purposes. We will use eq. (3.1) to establish the connection between the cluster A-

coordinates (defined in terms of Plücker coordinates) and the Steinmann relations (formulated

in terms of Mandelstam invariants). More general Plücker coordinates 〈ijkl〉 not of the

form 〈i−1 i j−1 j〉 have more complicated (algebraic) representations in terms of Mandelstam

invariants. (A systematic approach for finding such representations was discussed in the

appendix of ref. [101].)

In this paper we focus on n = 7 where there are a finite number of A-coordinates.

In addition to the Plücker coordinates 〈ijkl〉 there are 14 Plücker bilinears of the form

〈a(bc)(de)(fg)〉 ≡ 〈abde〉〈acfg〉 − 〈abfg〉〈acde〉. A convenient complete and multiplicatively

independent set of 42 dual conformally invariant ratios, introduced in ref. [12], is given in

terms of these building blocks by

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉

, a41 =
〈2457〉〈3456〉
〈2345〉〈4567〉

,
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a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉

, a51 =
〈1(23)(45)(67)〉
〈1234〉〈1567〉

, (3.2)

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉

, a61 =
〈1(34)(56)(72)〉
〈1234〉〈1567〉

,

with aij for 1 < j ≤ 7 given by cyclic permutation of the particle labels; specifically,

aij = ai1
∣∣
Zk→Zk+j−1

. (3.3)

The Steinmann relations, to be reviewed in section 3.4, are expressed simply in terms of

Mandelstam invariants. We therefore note that with the help of eq. (3.1) we can express a1j

quite simply as

a11 =
s23s67s712

s12s71s45
, (3.4)

with the remaining six a1j again given by cyclic permutations. The remaining 35 cluster A-

coordinates do not admit simple representations in terms of Mandelstam invariants because

they involve brackets not of the form 〈i−1 i j−1 j〉.
Finally, it is useful to relate the cross ratios ui, defined in eq. (2.18), to the letters aij .

Eq. (3.4) can alternatively be written as

a11 =
x2

24x
2
61x

2
73

x2
13x

2
72x

2
46

. (3.5)

Combining this equation with cyclic permutations of it, and using eq. (2.18), we find that

a11

a14a15
=
x2

73x
2
46

x2
74x

2
36

= u36 = u2 , (3.6)

plus cyclic permutations of this relation. Note that, although we can define 7 of these cross

ratios ui in seven-point kinematics, an n-point scattering process in this theory only has 3n−15

algebraically independent dual conformal invariants. Thus only 6 of the 7 ui (or a1i) are

algebraically independent. The seven ui obey a single algebraic equation, the condition that

a particular Gram determinant vanishes, which restricts the kinematics to a six-dimensional

surface within the seven-dimensional space of cross ratios. We will not need the explicit form

of the Gram determinant in this paper.

3.2 Integrability

The heptagon bootstrap is based on the working hypothesis that any seven-point L-loop

amplitude in planar N = 4 SYM theory can be expressed as a linear combination of weight-

2L generalized polylogarithm functions written in the 42-letter alphabet shown in eq. (3.2).

Using this alphabet one can write 42k distinct symbols of weight k. Fortunately, relatively

few linear combinations of these 42k symbols are actually the symbol of some function. A

symbol S of the form

S(fk) =
∑

α1,··· ,αk

f
(α1,··· ,αk)
0 (φα1 ⊗ · · · ⊗ φαk

), (3.7)
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where the φαj are letters, corresponds to an actual function only if it satisfies the integrability

condition∑
α1,··· ,αk

f
(α1,··· ,αk)
0 (φα1 ⊗ · · · ⊗ φαk

)︸ ︷︷ ︸
omitting αj⊗αj+1

dlogφαj ∧ dlogφαj+1 = 0 ∀j ∈ {1, 2, . . . , k−1} . (3.8)

A conceptually simple method for determining all integrable symbols of a given weight k is

discussed in appendix B, where the definition of the wedge product appearing in the above

equation is also given. The symbols of physical amplitudes have several additional properties

to which we will now turn our attention.

3.3 Symbol Singularity Structure

Locality requires that amplitudes can only have singularities when an intermediate parti-

cle goes on-shell. In a planar theory the momenta of intermediate particles can always be

expressed as a sum of cyclically adjacent momenta, and thresholds in massless theories are

always at the origin. Hence perturbative amplitudes in planar SYM theory can only have

branch points when the corresponding Mandelstam invariants si,...,j−1 = x2
ij vanish.

When some letter φ appears in the first entry of a symbol it indicates that the corre-

sponding function has branch points at φ = 0 and φ = ∞. Therefore the first entry of a

symbol that corresponds to a physical scattering amplitude must be a ratio of products of

x2
ij [41]. We see from eqs. (3.1) and (3.2) that only the seven a1j are valid first entries. The

remaining 35 cluster A-coordinates contain terms that may be zero (or infinite) without any

intermediate particles going on-shell. There is no possibility of cancellation in a sum over

terms in a symbol since the letters of the alphabet are multiplicatively independent. The

restriction that the first entry of the symbol of any seven-point amplitude must be one of the

seven a1j is called the first-entry condition.

3.4 Steinmann Relations

The classic work of Steinmann provided powerful restrictions on the analytic form of dis-

continuities [58]. Expanding upon his work, Cahill and Stapp found that the generalized

Steinmann relations hold and that double discontinuities vanish for any pair of overlapping

channels [102].3 A channel is labelled by a Mandelstam invariant, but it also corresponds

to an assignment of particles to incoming and outgoing states. Two channels overlap if the

four sets into which they divide the particles – (incoming,incoming), (incoming,outgoing),

(outgoing,incoming) and (outgoing,outgoing) – are all non-empty. Fig. 1 shows a pair of

overlapping channels for the seven-point process, s345 and s234. They overlap because they

divide the seven particles into the four non-empty sets {2}, {3, 4}, {5}, and {6, 7, 1}.
Unlike two-particle invariants, three-particle invariants can cross zero “gently”, without

any other invariants having to change sign. Fig. 1 is drawn for the 3→ 4 configuration with

3The implications of the Steinmann relations for the multi-Regge limit of amplitudes in planar N = 4 SYM

have been analyzed in [29, 61, 103, 104].
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Figure 1. The figure on the left (right) shows the discontinuity of an amplitude in the s345 (s234)

channel due to the respective intermediate states. These two channels overlap, which implies the states

that cross the first cut cannot produce a discontinuity in the second channel (or vice versa).

particles 1, 2 and 3 incoming. Within that configuration, the left panel shows that s345 can be

either negative or positive. As s345 moves from negative to positive, a branch cut opens up,

due to one or more on-shell particles being allowed to propagate between the two blobs. The

discontinuity in the amplitude across the branch cut is given by the sum of all such on-shell

intermediate-state contributions, integrated over their respective phase-space. The same is

true for the s234 discontinuity illustrated in the right panel. However, once one takes the s345

discontinuity, the resulting function cannot have a second discontinuity in the s234 channel,

because it is impossible for states to propagate on-shell simultaneously in both the s345 and

s234 “directions”. Thus we require the Steinmann conditions,

Discsi+1,i+2,i+3

[
Discsi,i+1,i+2F

]
= Discsi+2,i+3,i+4

[
Discsi,i+1,i+2F

]
= 0, (3.9)

to hold for all i = 1, 2, . . . 7.

In contrast, the s234 channel does not overlap the s567 channel (or the s671 channel). For

example, in the right panel of the figure, one can have a second discontinuity, after taking

Discs234 , in the s567 channel, as particle 1 and the particles crossing the s234 cut rescatter into

another set of intermediate states, which then materializes into particles 5, 6 and 7. That is,

the following double discontinuities can be nonvanishing,

Discsi+3,i+4,i+5

[
Discsi,i+1,i+2F

]
6= 0, Discsi+4,i+5,i+6

[
Discsi,i+1,i+2F

]
6= 0, (3.10)

and they provide us with no useful constraints. Also, the “self” double discontinuities are

nonvanishing,

Discsi,i+i,i+2

[
Discsi,i+1,i+2F

]
6= 0, (3.11)

and are not of use to us. A recent analysis of the Steinmann relations, focusing on the

six-point case, can be found in ref. [15].

We will only consider restrictions imposed on the symbol letters aij by the Steinmann

relations on overlapping three-particle cuts, eq. (3.9). If there are any restrictions imposed
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by using two-particle cuts, they are considerably more subtle for generic kinematics. Flipping

the sign of a two-particle invariant generally entails moving a particle from the initial state

to the final state, or vice versa, and other invariants can flip sign at the same time, making

it hard to assess the independence of the two-particle discontinuities.

Because the discontinuities of a symbol are encoded in its first entries, double discon-

tinuities are encoded by the combinations of first and second entries that appear together.

Correspondingly, the Steinmann relations tell us that the symbol of an amplitude cannot

have any terms in which overlapping three-particle Mandelstam invariants appear together

as first and second entries. Eqs. (3.1)–(3.2) imply that this only imposes a constraint on

the letters a1j , since the other letters do not contain three-particle Mandelstam invariants

si−1,i,i+1 ∝ 〈i−2 i−1 i+1 i+2〉. More specifically, we see in eq. (3.4) that each a1i is propor-

tional to a single three-particle invariant si−1,i,i+1, so a first entry of a1i cannot be followed by

a second entry of a1,i+1, a1,i+2, a1,i+5, or a1,i+6, all of which contain a three-particle invariant

involving pi−1, pi, or pi+1. A first entry of a1i can be followed by a second entry of a1,i+3,

a1,i+4, or any aki for k > 1 (subject to the constraint of integrability).

Everything stated thus far about the Steinmann constraint applies to full, infrared-

divergent amplitudes. However, the BDS-like-normalized amplitudes straightforwardly in-

herit this constraint, due to the fact that the BDS-like ansatz, given explicitly in eqs. (A.14)

and (A.15), contains no three-particle invariants; it therefore acts as a spectator when taking

three-particle discontinuities, e.g.

Discsi−1,i,i+1AMHV
7 = Discsi−1,i,i+1

[
ABDS-like

7 E
]

= ABDS-like
7 Discsi−1,i,i+1E . (3.12)

This is no longer true for the BDS-normalized amplitude, which according to eq. (2.25) comes

with an extra factor exp[
Γcusp

4 Yn]. When expanded at weak coupling this factor will produce

powers of Yn. The function Yn is itself Steinmann since Yn = −E(1)
n . However, products of

Steinmann functions are not generically Steinmann functions, because overlapping disconti-

nuities can arise from different factors in the product. Indeed, once we observe that Yn has

a cut in one three-particle channel, and that it is dihedrally invariant, we know it has cuts

in all three-particle channels. Whereas Yn itself is a sum of terms having cuts in overlapping

channels, it is the cross terms in (Yn)2, or higher powers of Yn, that violate the Steinmann

relations. Similarly, the ratio function V∗ = E∗/E , when expanded out perturbatively, con-

tains products of Steinmann functions and therefore does not obey the Steinmann relations.

The lesson here is that the proper normalization of the amplitude is critical for elucidating

its analytic properties.

To summarize, the Steinmann relations require that any BDS-like-normalized seven-point

function F , such as E7 or E7, must satisfy

Disca1i
[
Disca1jF

]
= 0 if j 6= i, i+ 3, i+ 4 . (3.13)

At the level of the symbol, this statement is equivalent to requiring that the symbol of F

contains no first entries a1i followed by second entries a1,i+1, a1,i+2, a1,i+5, or a1,i+6.
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3.5 Absence of Triple Discontinuity Constraints

At the seven-point level, it is interesting to ask whether there could be new constraints on

amplitudes of the following type:

Disca17

[
Disca14

[
Disca11F

]]
?
= 0. (3.14)

The three-particle channels corresponding to a11 and a14 do not overlap, nor do the channels

corresponding to a14 and a17. The channels corresponding to a11 and a17 do overlap, but the

two discontinuities are separated by the a14 discontinuity in between. (An analogous situation

never arises for three-particle cuts in the six-point case, because the only allowed double three-

particle cut in that case involves cutting the same invariant twice.) We have inspected the

symbols of the MHV and NMHV seven-point amplitudes, and we find that eq. (3.14) is

generically non-vanishing. The act of taking the non-overlapping second discontinuity of the

amplitude apparently alters the function’s properties enough that the third discontinuity is

permitted.

3.6 Steinmann Heptagon Functions

We define a heptagon function of weight k to be a generalized polylogarithm function of

weight k whose symbol may be written in the alphabet of 42 cluster A-coordinates, eq. (3.2),

and which satisfies the first entry condition. These functions have been studied in ref. [12],

where it was found that the vector space of heptagon function symbols at weight k = 1, 2, 3,

4, 5 has dimension 7, 42, 237, 1288, 6763, respectively.

In this paper our goal is to sharpen the heptagon bootstrap of [12] by taking advantage

of the powerful constraint provided by the Steinmann relations. We thus define Steinmann

heptagon functions to be those heptagon functions that additionally satisfy the Steinmann

relations (3.13). This corresponds to a restriction on the second entry of their symbols, as

discussed in section 3.4. We stress again that while both BDS-normalized and BDS-like-

normalized amplitudes are heptagon functions, only the BDS-like-normalized ones, E , E0,

and Eij , are Steinmann heptagon functions.

We will see in subsection 5.1 that a drastically reduced number of heptagon functions

satisfy the Steinmann relations. The reduction begins at weight 2, where there are 42 heptagon

function symbols, but only 28 that obey the Steinmann relations. The corresponding 28

functions fall into 4 orbits:

Li2

(
1− a13a14

a17

)
, Li2 (1− a14a16) , log2 a13 , log a13 log a16 , (3.15)

together with their cyclic permutations. This fractional reduction, by one third, is the same

as in the hexagon case [15], where the number of weight-2 functions was reduced from 9 to

6. At higher weight, we will see that the reductions are much more dramatic, and even more

so for heptagon functions than hexagon functions. This reduction in the number of relevant

functions vastly decreases the size of our ansatz, making this version of the bootstrap program

more computationally tractable than its predecessor.
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4 MHV and NMHV Constraints

In appendix B we provide an algorithm for generating a basis for the symbols of weight-k

Steinmann heptagon functions, which serve as ansätze for the MHV and NMHV amplitudes.

We then impose known analytic and physical properties as constraints in order to identify

the amplitudes uniquely. Here we review these properties and the constraints they impose.

4.1 Final Entry Condition

The final entry condition is a restriction on the possible letters that may appear in the final

entry of the symbol of an amplitude. As a consequence of the dual superconformal symmetry

of SYM, the differential of an MHV amplitude must be expressible as a linear combination

of d log〈i j−1 j j+1〉 factors [79]. The differential of a generalized polylogarithm of weight k

factors into linear combinations of weight-(k−1) polylogarithms multiplied by d log φ terms

where φ is the final entry of the symbol. Therefore the final entries of the symbol of an MHV

amplitude must be composed entirely of Plücker coordinates with three adjacent momentum

twistors, 〈i j−1 j j+1〉. In the symbol alphabet (3.2) we have chosen, the final entries can

only be drawn from the set of 14 letters {a2j , a3j}.
The MHV final entry condition we just described can be derived from an anomaly equa-

tion for the Q̄ dual superconformal generators [57]. The same anomaly equation can also be

used to constrain the final entries of the symbol of the NMHV superamplitude E. In partic-

ular, using as input the leading singularities of the N2MHV 8-point amplitude obtained from

the Grassmannian [84], and refining the Q̄ equation so as to act on the BDS-like normalized

amplitude rather than the BDS-normalized one, Caron-Huot has found [105] that only 147

distinct (R-invariant) × (final entry) combinations are allowed in E, namely these 21:

(34) log a21, (14) log a21, (15) log a21, (16) log a21, (13) log a21, (12) log a21,

(45) log a37, (47) log a37, (37) log a37, (27) log a37, (57) log a37, (67) log a37,

(45) log
a34

a11
, (14) log

a34

a11
, (14) log

a11a24

a46
, (14) log

a14a31

a34
, (4.1)

(24) log
a44

a42
, (56) log a57, (12) log a57, (16) log

a67

a26
,

(13) log
a41

a26a33
+ ((14)− (15)) log a26 − (17) log a26a37 + (45) log

a22

a34a35
− (34) log a33 ,

together with their cyclic permutations.4

4.2 Discrete Symmetries

The n-particle superamplitudes An are invariant under dihedral transformations acting on the

external particle labels. The generators of the dihedral group Dn are the cyclic permutation

i→ i+ 1 and the flip permutation i→ n+ 1− i of the particle labels, or equivalently of the

4We thank Simon Caron-Huot for sharing these results with us.
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momentum twistors. For the heptagon a-letters (3.2), these correspond to

Cyclic transformation: ali → al,i+1 ,

Flip transformation:

{
a2i ↔ a3,8−i

ali → al,8−i for l 6= 2, 3 .

(4.2)

MHV and MHV amplitudes differ only in their tree-level prefactors. Hence the functions

En and Rn must remain invariant under spacetime parity transformations. Parity maps

NMHV amplitudes to NMHV ones and therefore acts nontrivially on E0, E12 and E14. In

the language of our symbol alphabet (3.2), a parity transformation leaves the letters a1i and

a6i invariant. The remaining letters transform under parity according to

Parity transformation: a21 ←→ a37, a41 ←→ a51, (4.3)

and the cyclic permutations thereof.

The parity and dihedral symmetries of the (super)amplitude are inherited by its BDS(-

like) normalized counterpart because the BDS(-like) ansätze are also dihedrally invariant.

4.3 Collinear Limit

So far we have primarily focused on the BDS-like normalized amplitude and the Steinmann

functions describing it. However for the study of collinear limits it proves advantageous to

switch, using eq. (2.30), to the BDS-normalized amplitude, since in the limit the former

becomes divergent, whereas the latter remains finite.

In more detail, the BDS ansatz ABDS
n entering eq. (2.1) is defined in such a way that

the n-point BDS-normalized amplitude (or equivalently the remainder function for MHV)

reduces to the same quantity but with one fewer particle:

lim
i+1||i

Rn = Rn−1 ,

lim
i+1‖i

Bn = Bn−1 .
(4.4)

To take one of these collinear limits, one of the si,i+1 must be taken to zero. From eq. (3.1),

we see that this can be accomplished by taking a limit of one of the momentum twistor

variables. In the case of the NMHV superamplitude we also need to specify the limit of the

fermionic part of the supertwistors (2.6). The (MHV degree preserving) 7||6 collinear limit

can be taken by sending

Z7 → Z6 + ε
〈1246〉
〈1245〉

Z5 + ετ
〈2456〉
〈1245〉

Z1 + η
〈1456〉
〈1245〉

Z2 , (4.5)

for fixed τ , and by taking the limit η → 0 followed by ε→ 0.

Of course for bosonic quantities, only the bosonic part Zi → Zi of the supertwistor is

relevant. As noted in ref. [12], in the limit (4.5) the heptagon alphabet (3.2) reduces to the

hexagon alphabet, plus the following 9 additional letters,

η , ε , τ , 1 + τ ,
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〈1235〉〈1246〉+ τ〈1236〉〈1245〉 , 〈1245〉〈3456〉+ τ〈1345〉〈2456〉 ,
〈1246〉〈2356〉+ τ〈1236〉〈2456〉 , 〈1246〉〈3456〉+ τ〈1346〉〈2456〉 ,

〈1235〉〈1246〉〈3456〉+ τ〈1236〉〈1345〉〈2456〉 . (4.6)

Therefore the collinear limits of heptagon functions are not generically hexagon functions. We

say that a heptagon symbol has a well-defined 7||6 limit only if in this limit it is independent

of all 9 of the additional letters (4.6).

We must also take the limit (4.5) of the R-invariants. Since these invariants are anti-

symmetric under the exchange of any pair of twistor indices, the invariants that contain both

indices 6 and 7 will vanish. All other invariants reduce to six-point R-invariants. Denoting

the six-point invariants by

[12345] = (6) (4.7)

and its cyclic permutations (under the six-point dihedral group), and solving the single iden-

tity of type (2.10) among them to eliminate (6), we deduce that

lim
7‖6

B =(1)[B̂17 + B̂67 + B̂0] + (2)[B̂26 − B̂67] + (3)[B̂36 + B̂37 + B̂67 + B̂0]

+ (4)[B̂47 − B̂67] + (5)[B̂56 + B̂67 + B̂0] ,
(4.8)

where the hats denote the collinear limit of the corresponding bosonic functions.

Finally, we should note that in this work we will be focusing on collinear limits of dihe-

drally invariant functions. Therefore it will be sufficient to consider the 7||6 limit shown above,

and the remaining i+1 ‖ i collinear limits will be automatically satisfied as a consequence of

dihedral symmetry.

5 Results

5.1 Steinmann Heptagon Symbols and Their Properties

As defined in section 3.6, a Steinmann heptagon function of weight k is a polylogarithm of

weight k that has a symbol satisfying the following properties:

(i) it can be expressed entirely in terms of the heptagon symbol alphabet of eq. (3.2),

(ii) only the seven letters a1i appear in its first entry,

(iii) a first entry a1i is not followed by a second entry a1j with j ∈ {i+ 1, i+ 2, i+ 5, i+ 6}.

We will frequently use the term ‘Steinmann heptagon symbol’ to mean the symbol of a

Steinmann heptagon function. We begin by investigating how the number of Steinmann

heptagon symbols compares to the number of heptagon symbols reported in ref. [12] through

weight 5.

Table 1 presents the number of Steinmann heptagon symbols through weight 7, computed

using the bootstrapping procedure outlined in appendix B. The total number of Steinmann
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Weight k = 1 2 3 4 5 6 7 7′′

parity +, flip + 4 16 48 154 467 1413 4163 3026

parity +, flip − 3 12 43 140 443 1359 4063 2946

parity −, flip + 0 0 3 14 60 210 672 668

parity −, flip − 0 0 3 14 60 210 672 669

Total 7 28 97 322 1030 3192 9570 7309

Table 1. Number of Steinmann heptagon symbols at weights 1 through 7, and those satisfying the

MHV next-to-final entry condition at weight 7.

symbols through weight 5 can be compared to 7, 42, 237, 1288, and 6763 linearly independent

heptagon symbols at weights 1 through 5, respectively [12]. By weight 5, the size of the

Steinmann heptagon space has already been reduced by a factor of six compared to the size

of the standard heptagon space! (The corresponding reduction factor for hexagon symbols at

weight 5 is only about 3.5.)

The total number of Steinmann heptagon symbols at each weight was calculated without

imposing spacetime parity or dihedral symmetries. The first four rows show the number of

Steinmann heptagon symbols that have the specified eigenvalue under the Z2×Z2 generators of

parity and the dihedral flip symmetry. There are many more parity even (parity +) Steinmann

heptagon functions than parity odd. At each weight there are approximately the same number

of flip + as flip −. Up through weight 7, there are an equal number of flip + and flip − parity

odd functions.

Table 1 has two columns for weight 7. The column 7′′ counts the number of weight 7

symbols that satisfy an additional constraint we call the MHV next-to-final entry condition.

Paired with the MHV final entry condition, which requires the final entry of the symbol to be

a2j or a3j , integrability imposes an additional constraint that prohibits the seven letters a6i

from appearing in the next-to-final entry of any MHV symbol. Symbols satisfying this addi-

tional constraint are useful for bootstrapping the four-loop MHV heptagon, to be discussed

in subsection 5.3 below.

The fact that there are many more parity-even than parity-odd Steinmann heptagon

functions is also true in the hexagon case [15]. In that case, it is possible to give a closed-form

construction of an infinite series of parity-even “K” functions. The K functions apparently

saturate the subspace of Steinmann hexagon functions having no parity-odd letters. This

series of functions can also be repurposed, with appropriate arguments, to describe some, but

not all, of the Steinmann heptagon symbols having no parity-odd letters.

Before concluding this section, let us emphasize that we are here counting integrable sym-

bols, not functions. We expect each such symbol to be completable into a function. However,

there are other functions (with vanishing symbol) obtained by multiplying lower-weight func-
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tions by multiple zeta values. When we impose physical constraints on the full function space,

parameters associated with these additional functions will also have to be determined. On the

other hand, sometimes the function-level constraints are more powerful than the symbol-level

constraints. As first observed in the case of the 3-loop MHV hexagon [10, 30], the number

of n-gon functions obeying additional constraints, such as well-defined collinear limits, may

be smaller than the number of the corresponding symbols. That is, completing a symbol to

a function with proper branch cuts may require adding to it functions of lower weight that

don’t have a well-defined collinear limit, even if the symbol does. We leave the problem of

upgrading our heptagon bootstrap from symbol to function level to a later work.

5.2 The Three-Loop NMHV Heptagon

Once we have constructed the Steinmann heptagon symbol space, we can assemble it into an

ansatz for the seven-particle amplitude and apply the constraints outlined in section 4 to fix

the free parameters. Let us describe the steps of this computation in the NMHV case.

Loop order L = 1 2 3

Steinmann symbols 15× 28 15×322 15×3192

NMHV final entry 42 85 226

Dihedral symmetry 5 11 31

Well-defined collinear 0 0 0

Table 2. Number of free parameters after applying each of the constraints in the leftmost column,

to an ansatz for the symbol of the L-loop seven-point NMHV BDS-like-normalized amplitude. The

first row in column L is equal to the last line of column k = 2L of table 1, multiplied by 15 for the 15

linearly independent R-invariants.

The NMHV amplitude is a linear combination of 15 transcendental functions multiplying

the independent R-invariants. Therefore the initial number of free parameters at L loops,

shown in table 2, is given by 15 times the entry in table 1 that counts the total number of

Steinmann heptagon symbols of weight 2L.5

We then impose the heptagon NMHV final entry condition discussed in subsection 4.1.

Similarly to the NMHV hexagon case [35], the list of allowed final entries in eq. (4.1) can be

translated into relations between the 42 different {k − 1, 1} coproduct components for each

of the 15 functions multiplying the independent R-invariants, for a total of 42×15 = 630

independent objects. Note that eq. (4.1) contains all 21 distinct R-invariants, so in order to

5If we had imposed dihedral symmetry first, we would have had only three independent functions E0, E12

and E14 to parametrize, each with some dihedral symmetry, and there would have been fewer than 3 times the

number of independent Steinmann heptagon symbols in the first line of the table. This part of the computation

is not a bottleneck either way. This alternative procedure would also give rise to a different set of numbers in

the second line of table 2.
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obtain the aforementioned equations we first need to eliminate the dependent R-invariants

with the help of eqs. (2.13) and (2.14).

In principle, one can impose the NMHV final entry equations at L = k/2 loops on the

ansatz of weight-k integrable symbols appearing in the first line of table 2. In practice, we have

found it more efficient to solve these equations simultaneously with the weight-k integrability

equations (3.8), namely the equations imposing integrability on the last two slots of an ansatz

for E. The number of free parameters after imposing this condition (using either method) is

reported in the second line of table 2. We see that the final entry condition is already very

restrictive; out of the 47880 possible NMHV symbols with generic final entry at three loops,

only 226 of them obey the NMHV final entry. Next we impose invariance of E under dihedral

transformations, as discussed in subsection 4.2. The dihedral restriction leads to the small

number of remaining free parameters reported in the third line of table 2.

We then examine the behavior of the amplitude in the collinear limit. To this end, we

recall from subsection 4.3 that it is advantageous to convert to the BDS normalization, since

the BDS-normalized amplitude is finite in the collinear limit, while the BDS-like normalized

one becomes singular. Converting our partially-determined ansatz for E to an equivalent

ansatz for B with the help of eq. (2.30), we then take its collinear limit using eq. (4.5).

Quite remarkably, demanding that the right-hand side of eq. (4.8) be well-defined, namely

independent of the spurious letters (4.6) (and thus also finite), suffices to uniquely fix B

through 3 loops! Even an overall rescaling is not allowed in the last line of table 2, because the

condition of well-defined collinear limits, while homogeneous for BDS-normalized amplitudes,

is inhomogeneous for the BDS-like normalization with which we work. We did not need to

require that the collinear limit (4.8) of the solution agrees with the six-point ratio function

computed at three loops in ref. [11], but of course we have checked that it does agree.

In this manner, we arrive at a unique answer for the symbol of the NMHV heptagon

through three loops. Our results can be downloaded in a computer-readable file from [74]. The

one- and two-loop results match the amplitudes computed in refs. [32] and [57], respectively.

The fact that six-point boundary data is not even needed to fix the symbol through three loops

points to a strong tension between the Steinmann relations, dual superconformal symmetry

(in the guise of the final entry condition), and the collinear limit.

5.3 The Four-Loop MHV Heptagon

For the MHV remainder function at L = k/2 loops, we could in principle start from an ansatz

for E(L)
7 involving all heptagon Steinmann symbols of weight k. As with the NMHV case,

however, it is simpler to impose the MHV final-entry condition discussed in section 4.1 at the

same time as integrability on the last two entries of the symbol. In fact, our initial four-loop

MHV ansatz was constructed using not just the MHV final-entry condition, but also the MHV

next-to-final entry condition discussed in section 5.1.

In the first line of table 3, we reiterate the number of Steinmann heptagon functions with

general final entry. In the second line of the table, we report the number of symbols that

satisfy the MHV final entry condition. Clearly, there are only a few Steinmann heptagon
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Loop order L = 1 2 3 4

Steinmann symbols 28 322 3192 ?

MHV final entry 1 1 2 4

Well-defined collinear 0 0 0 0

Table 3. Free parameter count after applying each of the constraints in the leftmost column to an

ansatz for the symbol of the L-loop seven-point MHV BDS-like-normalized amplitude.

functions at each weight that satisfy even these few constraints. Note that we have not even

imposed dihedral invariance, nor that the symbol have even spacetime parity.

To determine the third line of the table, we convert the ansatz to one for the BDS

normalized amplitude, using eq. (2.30) and the symbol of Y7. We then ask that this quantity

have a well-defined collinear limit. As in the NMHV case, there is a unique solution to this

constraint, this time through four loops, as reported in the last line of table 3; this unique

solution must be the symbol of E(L)
7 . Our results can be downloaded in computer-readable

files from [74]. Again the overall normalization is fixed because the last constraint is an

inhomogeneous one for a BDS-like normalized amplitude. The symbols of the two- and three-

loop seven-point BDS remainder functions R
(2)
7 , R

(3)
7 are known [12, 79]. We have converted

these quantities to the BDS-like normalization with the help of eq. (2.31), and they agree

with our unique solutions. At four loops, when we convert our unique solution for E(4)
7 (which

has 105,403,942 terms) to R
(4)
7 (which has 899,372,614 terms), we find that its well-defined

collinear limit agrees perfectly with the symbol of the four-loop six-point MHV remainder

function R
(4)
6 computed in ref. [78]. Because we did not need to impose dihedral invariance,

nor spacetime parity, we can say that even less input is needed to fix the symbol of the MHV

amplitude through four loops than was needed for the three-loop NMHV amplitude!

Before concluding, let us note that although we used the Steinmann constraint to tightly

constrain the space of symbols through which we had to sift in order to find the four-loop

MHV heptagon, it is possible that the same result could have been obtained (in principle, with

much more computer power), without it. In the second row of table 3 we see, for example,

that at weight 6 there are precisely 2 Steinmann heptagon symbols satisfying the MHV final-

entry condition. Ref. [12] imposed the MHV final-entry condition, without considering the

Steinmann relations, and found 4 different symbols at weight 6: (Y7)3, Y7R
(2)
7 , R

(3)
7 and

one more. Modulo the reducible (product) functions (Y7)3 and Y7R
(2)
7 , heptagon functions

satisfying the MHV final-entry condition automatically satisfy the Steinmann relations as

well, at least at weight 6! We cannot rule out the possibility that the Steinmann constraint

is also superfluous at weight 8 (or, perhaps, even higher), but certainly the complexity of the

computation is significantly reduced if one allows oneself to input this knowledge.
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5.4 Three Loops from Dihedral Symmetry

In this subsection we consider dropping the final entry condition, which derives from dual

superconformal invariance. One motivation for doing this is to check independently the

NMHV final entry conditions detailed in eq. (4.1). Another possible motivation, in the MHV

case, is to try to widen the applicability of the bootstrap approach to the study of (bosonic)

light-like Wilson loops in weakly-coupled conformal theories with less supersymmetry than

N = 4 SYM.

Let us consider adding general L-loop Steinmann heptagon symbols Ẽ(L)
7 (with no re-

strictions on the final entry) to the known answer E(L)
7 and see whether we can preserve

the conditions of dihedral symmetry and good collinear behavior. We can ask this question

through three loops, because we have a complete basis of Steinmann heptagon symbols up to

(and beyond) weight six. Since such symbols appear additively in the BDS-normalized quan-

tity B(L)
7 , we need the Steinmann symbols Ẽ(L)

7 themselves to be well-defined in the collinear

limit. The numbers of Steinmann heptagon symbols obeying the successive conditions of

cyclic invariance, flip symmetry, and well-defined collinear behavior are detailed in table 4.

We find that the first dihedrally invariant Steinmann symbol with well-defined collinear

limits appears at weight six, i.e. at three loops. We denote this symbol by Ẽ7. In fact the

collinear limit of Ẽ7, which we denote by Ẽ6, automatically turns out to possess six-point

dihedral invariance as well. Furthermore the collinear limit of Ẽ6 from six points to five is

vanishing. Therefore the symbol Ẽ7 could be added to that for E(3)
7 (and simultaneously Ẽ6 to

E(3)
6 ) without breaking dihedral symmetry or good collinear behavior either at seven points

or at six points.

Neither Ẽ7 nor Ẽ6 obey the MHV final entry condition, as required to be consistent with

the results of section 5.3. Thus at the three-loop order, Q̄-supersymmetry is really fixing only

a single parameter, after the consequences of the Steinmann relations, dihedral symmetry

and good collinear behavior are taken into account. A different criterion that can be used to

uniquely determine E(3)
7 is that the three-loop remainder R

(3)
6 should have at most a double

discontinuity around the locus u = 0 where u is one of three the cross ratios available at six

points. The double discontinuity is in fact predicted from the original implementation of the

Wilson line OPE [41], which we will not delve into here. We may simply observe that Ẽ6 has

a triple discontinuity and hence we can rule out adding Ẽ7 to E(3)
7 on these grounds.

We may similarly examine the consequences of dihedral symmetry and collinear behavior

for the NMHV amplitude. In this case there are some additional conditions which we can

impose, from requiring the absence of spurious poles. We recall the form of the NMHV ratio

function given in eq. (2.15), or equivalently the form of E given in eq. (2.28). The tree-level

amplitude P(0) obviously possesses only physical poles, but the individual R-invariants have

spurious poles. Requiring that the NMHV amplitude as a whole has no spurious poles leads

us to the following conditions:

Spurious I: E47|〈1356〉=0 = 0 , (5.1)

Spurious II: E23|〈1467〉=0 = E25|〈1467〉=0 . (5.2)
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Loop order L = 1 2 3

Steinmann symbols 28 322 3192

Cyclic invariance 4 46 456

Dihedral invariance 4 30 255

Well-defined collinear 0 0 1

Table 4. Number of linearly independent Steinmann heptagon symbols obeying, respectively: cyclic

invariance, dihedral invariance, and well-defined collinear behavior together with dihedral symmetry.

In table 5 we detail the number of Steinmann symbols obeying the successive conditions

of cyclic symmetry, absence of spurious poles, well-defined collinear behavior, and flip sym-

metry. At weight two, we find a single combination obeying all conditions, which is precisely

the combination B(1) itself, which is therefore determined up to an overall scale by these

conditions. Note that unlike the B(L) for L > 1, the function B(1) obeys the Steinmann

relations.

At weight four, we find no Steinmann symbols obeying all the conditions. This is not in

contradiction with the results of section 5.2: we recall that the quantity E(2) does not exhibit

well-defined, finite collinear behavior; rather it is the (non-Steinmann) function B(2) which

manifests this. The zero in the final row of the L = 2 column in table 5 rather reflects the fact

that there is no Steinmann symbol which could be added to E(2) while preserving the good

collinear behavior of B(2), even if we are willing to abandon the NMHV final entry condition.

At weight six, we find a single Steinmann symbol with all the properties listed in table 5.

It is precisely the same symbol Ẽ7 appearing in table 4 multiplied by the tree-level amplitude

P(0). Hence it only appears as a potential contribution to E
(3)
0 . In other words, the symbols

of E
(3)
12 and E

(3)
14 are uniquely fixed by the constraints of dihedral symmetry, absence of

spurious poles and correct collinear behavior. The appearance of the same ambiguity Ẽ7 in

E
(3)
0 is to be expected since the only additional criterion imposed in table 5, that of spurious-

pole cancellation, cannot constrain potential contributions to E0. Finally, we note that the

addition of Ẽ7 in E
(3)
0 is connected to its addition to E(3)

7 by the NMHV to MHV collinear

limit which relates E7 to E6. Thus dropping the final entry condition from Q̄-supersymmetry

allows only a single potential contribution at weight 6 in all of the heptagon and hexagon

amplitudes.

We conclude that, up to three loops, starting from an ansatz of Steinmann heptagon

functions, all heptagon amplitudes and hence all hexagon amplitudes (by collinear limits)

in planar N = 4 SYM can be determined just by imposing dihedral symmetry and well-

defined collinear limits, combined with the requirement of no triple discontinuity in R
(3)
6 and

no spurious poles in the NMHV amplitudes. These results provide an independent check

of the NMHV final entry conditions (4.1). It would be interesting to investigate whether
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Loop order L = 1 2 3

Steinmann symbols 15× 28 15×322 15× 3192

Cyclic invariant 4 + (2× 28) 46 + (2× 322) 456 + (2× 3192)

Spurious vanishing I 4 + 1 + 28 46 + 19 + 322 456 + 208 + 3192

Spurious vanishing II 4 + 6 46 + 89 456 + 927

Well-defined collinear 1 0 11

Flip invariant 1 0 1

Table 5. Number of Steinmann heptagon symbols entering the NMHV amplitude obeying respectively

cyclic invariance, vanishing on spurious poles, well-defined collinear behavior and flip symmetry.

6

1

2 3

4

5345s 0

A4

7

A5

Figure 2. Factorization of a seven-point amplitude in the limit s345→0. Notice that the collinear

limit p7 ‖ p1 can be taken “inside” the factorization limit.

the ambiguity functions Ẽ7 and Ẽ6 could play a role in the perturbative expansion of any

weakly-coupled conformal theories with less supersymmetry than N = 4 SYM.

6 The Multi-Particle Factorization Limit

One of the kinematic limits we can study using our explicit seven-point results is the multi-

particle factorization limit. In this limit, one of the three-particle invariants goes on shell,

si,i+1,i+2 → 0. Figure 2 shows the limit s345 → 0. In this limit the seven-point NMHV

amplitude factorizes at leading power into a product of four-point and five-point amplitudes,

multiplied by the 1/s345 pole. The seven-point MHV amplitude vanishes at leading power.

Indeed, all supersymmetric MHV amplitudes are required to vanish at leading power when a

three-particle (or higher-particle) invariant goes on shell. This result holds because all possible

helicity assignments for the intermediate state require at least one lower-point amplitude to

have fewer than two negative-helicity gluons; such amplitudes vanish by supersymmetry Ward

identities [106, 107]. For the same reason, MHV tree amplitudes [89] have no multi-particle

poles.
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Before turning to the behavior of the seven-point NMHV amplitude, we recall the multi-

particle factorization behavior of the BDS-like-normalized six-point NMHV amplitude [11].

As s345 → 0, two of the six-point R-invariants become much larger than the rest, and they

become equal to each other. Therefore the singular behavior of the six-point amplitude is

controlled by a single coefficient function, which we denote by U6 and whose limiting behavior

takes an especially simple form.6 Up to power-suppressed terms, the limit of U6 was found

to be a polynomial in log(uw/v), whose coefficients are rational linear combinations of zeta

values, and whose overall weight is 2L. Here, u, v, and w are the three dual conformal

invariant cross ratios for the hexagon, whose expressions in terms of six-point kinematics are

u =
x2

13 x
2
46

x2
14 x

2
36

=
s12 s45

s123 s345
, v =

x2
24 x

2
51

x2
25 x

2
41

=
s23 s56

s234 s123
, w =

x2
35 x

2
62

x2
36 x

2
52

=
s34 s61

s345 s234
. (6.1)

The six-point limit s345 → 0 sends uw/v →∞.

The logarithm of U6, called U in ref. [11], has an even simpler behavior than U6. The L-

loop contribution U (L) is also a polynomial in log(uw/v), but it has only degree L at L loops,

for L > 1. This three-loop result was later found to hold also at four and five loops [15, 35].

Because U (L) has weight 2L, but a maximum of L powers of log(uw/v) for L > 1, every term

in it contains zeta values, and its symbol vanishes. The only exception is the one-loop result,

U (1)(u, v, w)
s345→0−−−−−−→ − 1

2
log2

(uw
v

)
− 2ζ2 , (6.2)

where we have converted the result in ref. [11] to that for expansion parameter g2. The

results for U (L) agree with the perturbative expansion of an all-orders prediction based on

the Pentagon OPE [108, 109].

Ref. [11] also made a prediction for the multi-particle factorization behavior of NMHV

n-point amplitudes, which we can now test at 7 points at the symbol level. Define the

factorization function Fn by

ANMHV
n (ki)→ Aj−i+1(ki, ki+1, . . . , kj−1,K)

Fn(K2, sl,l+1)

K2
An−(j−i)+1(−K, kj , kj+1, . . . , ki−1) ,

(6.3)

as K2 → 0, or in the seven-point case,

ANMHV
7 (ki)

s345→0−−−−−−→ A5(k6, k7, k1, k2,K)
F7(K2, sl,l+1)

K2
A4(−K, k3, k4, k5) , (6.4)

where K = k3 + k4 + k5, K2 = s345. Then F7 was predicted to have the form

[logF7]
(L)
symbol = δL,1

{
1

8ε2

[(
(−s712)(−s34)

(−s56)

)−ε
+

(
(−s45)(−s671)

(−s23)

)−ε]
− 1

2
log2

(
(−s712)(−s34)

(−s56)

/
(−s45)(−s671)

(−s23)

)
6The function U6 can be identified with the function E in refs. [15, 35], but we prefer to adopt a different

notation here to emphasize that this function is not the BDS-like-normalized NMHV superamplitude E6.
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− 1

2
log2

(
x2

73x
2
35x

2
46x

2
62

x2
57x

2
24(x2

36)2

)}
. (6.5)

For simplicity, we have dropped all terms that vanish at symbol level, which kills all terms in

logF7 beyond one loop, and we have converted to the g2 expansion parameter.

We should now convert this prediction to one for the BDS-like normalized amplitude.

Apart from trivial tree-level factors, we have

logF7 = log

(
ANMHV

7

ABDS
5 ABDS

4

)
= log

(
ANMHV

7

ABDS−like
7

)
− log

(
ABDS

5 ABDS
4

ABDS−like
7

)
. (6.6)

So to obtain log(ANMHV
7 /ABDS−like

7 ) we need to add to [logF7](1) the quantity

− M̂ (1)
7 +M

(1)
5 +M

(1)
4 , (6.7)

where M̂7 is given in eq. (A.14), and M
(1)
4 and M

(1)
5 are the four- and five-point MHV ampli-

tudes, for the kinematics shown in fig. 2, and normalized by their respective tree amplitudes.

Adding eqs. (6.6) and (6.7), we find, in terms of dual variables,

log

(
ANMHV

7

ABDS−like
7

)(1)

→ −1

2
log2

(
x2

73x
2
35x

2
46x

2
62

x2
57x

2
24(x2

36)2

)
− 1

2
log2

(
x2

46x
2
72x

2
13

x2
73x

2
24x

2
61

)
− 1

2
log2

(
x2

35x
2
72x

2
61

x2
62x

2
57x

2
13

)
,

(6.8)

at symbol level, and a vanishing contribution to the logarithm beyond one loop. Note that

the first term in eq. (6.8) comes directly out of eq. (6.5), and is the “naive” generalization

of −1
2 log2(uw/v) to the seven-point case. The first term diverges logarithmically as s345 =

x2
36 → 0, while the last two terms are finite in this limit.

The one-loop factorization behavior in eq. (6.8) could have been extracted, of course, from

the one-loop seven-point amplitude. Thus the symbol-level content of the prediction is really

the vanishing of the logarithm beyond one loop. Beyond symbol level, the all-loop-order pre-

diction of ref. [11] is that (up to an additive constant) the first term gets upgraded to the func-

tion appearing in the six-point limit, namely U(x), where x = (x2
73x

2
35x

2
46x

2
62)/(x2

57x
2
24(x2

36)2),

while the last two terms should simply get multiplied by the cusp anomalous dimension.

Now let us test the symbol-level prediction (6.8) by taking the limit s345 → 0 of the

seven-point NMHV amplitude. Referring back to (3.1), we have

s345 = x2
36 =

〈2356〉
〈23〉〈56〉

→ 0. (6.9)

Keeping s23 and s56 generic requires us to take this limit by sending 〈2356〉 → 0. This limit

can be accomplished using the replacement

Z2 → Z3 + a
〈1436〉
〈1456〉

Z5 + b
〈1453〉
〈1456〉

Z6 + ε
〈3456〉
〈1456〉

Z1 (6.10)

where a, b ∈ C are generic and ε is a regulator. In the limit ε → 0, a14 vanishes while the

other aij map into a space of 31 finite letters.
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The map works out to be

a25 →
a11a17

a21a24
, a33 →

a17

a24
, a34 →

a21a24

a17
, a37 →

a11a17

a21
a42 → a24 ,

a46 →
a21a24

a17
, a52 →

a17

a24
, a56 →

a11a17

a21a24
, a63 → −1, a65 → −1, (6.11)

which removes 10 of the 42 letters, leaving a14 and the 31 finite letters.

We also need the limiting behavior of the seven-point R-invariants. Referring back to their

definition (2.8), we see that the invariants (71), (14) and (47) become singular as 〈2356〉 → 0

while all others remain finite. The finite R-invariants are suppressed in the identities (2.10)

in this limit, giving us

(71)s345→0 = (14)s345→0 = (47)s345→0 . (6.12)

The function controlling the behavior of E7 as s345 → 0 is thus given by the sum of functions

multiplying these singular invariants in eq. (2.28), corresponding to the combination

U7 ≡
[
E71 + E14 + E47 + E0

]
s345→0

. (6.13)

Note that from eq. (2.13), the coefficient of E0 receives a 3/7 contribution from (71), and

2/7 + 2/7 from (14) and (47).

Ignoring the tree amplitude, the quantity U7 is the exponential of log(ANMHV
7 /ABDS−like

7 ),

whose prediction is given in eq. (6.8). Using eq. (6.11) to compute U7 from eq. (6.13) in terms

of the letters aij , we find at one, two, and three loops,

U (1)
7 = −1

2
log2

(
a2

14

a11a17

)
− 1

2
log2 a11 −

1

2
log2 a17 , (6.14)

U (2)
7 =

(
U (1)

7

)2

2!
, (6.15)

U (3)
7 =

(
U (1)

7

)3

3!
. (6.16)

Hence U7 exponentiates at symbol level, as predicted by eq. (6.8). Substituting eq. (3.5) for

a11, and its cyclic permutations, into eq. (6.14), we find perfect agreement with eq. (6.8). We

can also express the result in terms of the cross ratios ui:

U (1)
7 = −1

2
log2

(
u1u2

u3u7

)
− 1

2
log2

(
u1u4u5

u3u6

)
− 1

2
log2

(
u2u6u5

u7u4

)
. (6.17)

Once this analysis is repeated at function level, we expect the first term in U (1)
7 to receive

higher-loop zeta-valued contributions, dictated by the six-point function U(x), while the last

two terms simply get multiplied by the cusp anomalous dimension.

The last two terms in eq. (6.14) or eq. (6.17) do not diverge in the factorization limit.

On the other hand, they play an essential role in endowing U7 with the correct behavior
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as p7 and p1 become collinear. Fig. 2 shows that this collinear limit is well away from the

factorization pole, in the sense of color ordering. So it should be possible to take this collinear

limit “inside” the s345 → 0 multi-particle factorization limit, i.e. as a further limit of it.

The p7 ‖ p1 collinear limit takes s2
72 → 0, and hence the cross ratio u5 → 0. Equa-

tion (6.17) shows that the last two terms of U (1)
7 diverge logarithmically in this collinear

limit, while the first term behaves smoothly. Recall that the n-point BDS ansatz smoothly

tends to the (n − 1)-point BDS ansatz in all collinear limits. However, this is not true for

the BDS-like ansatz; that is, Y7 6→ Y6 in collinear limits, rather it diverges logarithmically.

Essentially, the last two terms of eq. (6.14) account for this non-smooth behavior. In the

p7 ‖ p1 collinear limit,

−1

2
log2

(
a2

14

a11a17

)
p7‖p1−−−−→ −1

2
log2

(
uw

v

)
, (6.18)

−1

2
log2 a11 −

1

2
log2 a17 + Y7

p7‖p1−−−−→ Y6 . (6.19)

Thus the last two terms in eq. (6.14) precisely account for the non-smooth collinear behavior

of the BDS-like-normalized amplitude at seven points, within the multi-particle factorization

limit.

7 Discussion

Following the inclusion of the Steinmann relations in the hexagon function bootstrap pro-

gram [15], we have applied these constraints to heptagon symbols, in order to drastically

reduce the number of symbols needed to bootstrap seven-point scattering amplitudes. We

have been able to construct a basis of Steinmann heptagon symbols through weight 7, and

those which further satisfy the MHV final-entry condition at weight 8. In order to apply

the Steinmann relations transparently, we have shifted our focus from the familiar BDS-

normalized amplitudes to BDS-like normalized analogues. The simple conversions (2.30)

and (2.31) between functions in these two normalizations allow us to simultaneously take ad-

vantage of the smaller space of Steinmann heptagon symbols, and utilize the simple behavior

exhibited by BDS-normalized functions near the collinear limit. With these advances, we

have completely determined, in a conceptually simple manner, the symbols of the seven-point

three-loop NMHV and four-loop MHV amplitudes in planar N = 4 SYM theory.

Calculating the symbol of these particular component amplitudes is only the tip of the

Steinmann iceberg. The main limiting factor in applying the bootstrap at higher weight is

the computational complexity resulting from the size of the space of Steinmann heptagon

functions, which still grows close to exponentially, despite its small size relative to the general

heptagon function space. This growth can be especially prohibitive when generating the

general basis of Steinmann heptagon symbols at each higher weight. At the same time,

nearly the entire space of Steinmann heptagon symbols is needed to describe the amplitudes

we have bootstrapped – including derivatives (coproducts) of higher-loop amplitudes. That is,
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the full space of Steinmann heptagon symbols is spanned by the derivatives of our amplitudes

at weights 2 and 3. Only 15 of the 322 Steinmann heptagon symbols are absent from the span

of these derivatives at weight 4. This situation resembles what is observed in the hexagon

function bootstrap [15], where the derivatives of the five-loop six-point amplitude also span

the full weight-2 and weight-3 Steinmann hexagon symbol spaces, while only 3, 12, and 30

symbols are absent from the span of these derivatives at weights 4, 5, and 6. In the hexagon

case, all of these symbols are observed to drop out due to lower-weight restrictions on the

appearance of zeta values (i.e. the zeta values only appear in certain linear combinations with

other hexagon functions, and this leads to symbol-level restrictions at higher weights). We

expect that a similar set of function-level restrictions will explain why a small set of weight-4

Steinmann heptagon symbols are not needed to describe the seven-point amplitude. (Only

386 of the 1030 weight-5 Steinmann heptagon symbols are currently needed to describe the

four-loop MHV and three-loop NMHV amplitudes, but here we expect significantly more of

these symbols to be needed to describe coproducts of yet higher-loop contributions.) No

physical explanation for the restrictions on the occurrence of zeta values at six points has yet

been discerned, indicating that there remains some physics to be discovered.

More generally, the task of upgrading our symbol-level results to full functions will be

left to future work. A full functional representation would be valuable for checking seven-

point predictions in both the near-collinear [43, 44, 45, 46, 47, 48, 49, 50] and multi-Regge

limits [29, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]. An important problem is to generalize

the all-loop results for six-point scattering in the multi-Regge limit [110] to the seven-point

case. The full functional form of the seven-point amplitude could assist the construction of

an all-loop multi-Regge heptagon formula.

Bootstrapping amplitudes with eight or more external legs will require more than a

simple extension of the heptagon bootstrap presented in this work. Both the hexagon and

heptagon bootstrap approaches depend on the assumption that the weight-2L generalized

polylogarithms can be built from a finite symbol alphabet, corresponding to an appropriate set

of cluster A-coordinates. Going to n = 8, we move into a cluster algebra with infinitely many

A-coordinates. It is expected that only a finite number of letters will appear at any finite loop

order, but it is currently unknown how to characterize what sets may appear. In principle,

this information ought to follow from a careful consideration of the Landau singularities of

these amplitudes (see for example refs. [56, 111] for recent related work). There is hope that

patterns may emerge at currently accessible loop orders, which may provide insight into the

letters appearing for n > 7.
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A The BDS and BDS-like Ansätze

The BDS ansatz [27] for the n-particle MHV amplitude (with the Parke-Taylor tree amplitude

scaled out) is given by

Mn ≡
An

A
(0)
n

= exp

[ ∞∑
L=1

aL
(
f (L)(ε)

1

2
M (1)
n (Lε) + C(L)

)]
(A.1)

with

f (L)(ε) = f
(L)
0 + εf

(L)
1 + ε2f

(L)
2 , (A.2)

and where ε is the dimensional regularization parameter in D = 4 − 2ε. Here f
(L)
0 is the

planar cusp anomalous dimension with

f
(L)
0 =

1

4
γ

(L)
K =

1

2
Γ(L)

cusp , (A.3)

according to the definition (2.24). However, note that in the above relation the superscript

L refers to coefficients in the expansion with respect to a = 2g2, and not g2.

For n = 7, the BDS ansatz takes the form

ABDS
7 = A

MHV(0)
7 exp

[ ∞∑
L=1

aL
(
f (L)(ε)

1

2
M

(1)
7 (Lε) + C(L)

)]
. (A.4)

Here we have explicitly factored out 1/2 from the definition of M
(1)
7 (ε) appearing in the orig-

inal BDS paper. The seven-particle one-loop MHV amplitude (again with the tree amplitude

scaled out) appearing in the BDS ansatz is given by

M
(1)
7 (ε) = − 1

ε2

7∑
i=1

(
µ2

−si,i+1

)ε
+ F

(1)
7 (0) +O(ε) (A.5)

where

F
(1)
7 (0) =

n∑
i=1

[
− log

(
−si,i+1

−si,i+1,i+2

)
log

(
−si+1,i+2

−si,i+1,i+2

)
+D7,i + L7,i +

3

2
ζ2

]
(A.6)

with

D7,i = −Li2

(
1−si,i+1 si−1,i,i+1,i+2

si,i+1,i+2 si−1,i,i+1

)
(A.7)
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and

L7,i = −1

2
log

(
−si,i+1,i+2

−si,i+1,i+2,i+3

)
log

(
−si+1,i+2,i+3

−si−1,i,i+1,i+2

)
. (A.8)

Notice that all of the dependence on the three-particle Mandelstam invariants is contained

within F
(1)
7 (0), so we will focus on determining its dependence. We can replace the four-

particle invariants with three-particle invariants in both D7,i and L7,i. The two equations

then become

D7,i = −Li2

(
1− si,i+1si+3,i+4,i+5

si,i+1,i+2si−1,i,i+1

)
, L7,i = −1

2
log

(
si,i+1,i+2

si+4,i+5,i+6

)
log

(
si+1,i+2,i+3

si+3,i+4,i+5

)
.

(A.9)

At this point, it is convenient to switch to the n = 7 dual conformal cross ratios ui,

defined in terms of the Mandelstam variables by

ui = ui+1,i+4 =
si+2,i+3 si+5,i+6,i+7

si+1,i+2,i+3 si+2,i+3,i+4
, (A.10)

where all indices are understood mod 7. We can see from this definition that D7,i can be

expressed simply in the ui variables as D7,i = −Li2 (1−ui−2). Using the dilogarithm identity

Li2(z) + Li2(1−1/z) = −1
2 log2 z, we then rewrite D7,i = Li2 (1−1/ui−2) + 1

2 log2 ui−2, and

express F
(1)
7 (0) as

F
(1)
7 (0) =

n∑
i=1

[
− log

(
si,i+1

si,i+1,i+2

)
log

(
si+1,i+2

si,i+1,i+2

)
+ Li2 (1−1/ui) +

1

2
log2 ui

−1

2
log

(
si,i+1,i+2

si+4,i+5,i+6

)
log

(
si+1,i+2,i+3

si+3,i+4,i+5

)
+

3

2
ζ2

]
.

(A.11)

After some algebra, F
(1)
7 (0) can be shown to be

F
(1)
7 (0) =

n∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

+ log si,i+1 log

(
si,i+1si+3,i+4

si+1,i+2si+2,i+3

)
+

3

2
ζ2

]
. (A.12)

In this form, we have conveniently isolated all of the three-particle invariants in the first two

terms.

Now we would like to factor out the three-particle invariants from F
(1)
7 (0) because this

removes their dependence from M
(1)
7 as well. We define the function

Y7 = −
7∑
i=1

[
Li2

(
1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
(A.13)

so that adding the term Y7 removes the three-particle invariants from M
(1)
7 :

M̂
(1)
7 (ε) ≡ M

(1)
7 (ε) + Y7
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=
7∑
i=1

[
− 1

ε2

(
µ2

−si,i+1

)ε
+ log si,i+1 log

(
si,i+1 si+3,i+4

si+1,i+2 si+2,i+3

)
+

3

2
ζ2

]
. (A.14)

The BDS-like ansatz is defined to be the BDS ansatz with M
(1)
7 replaced by with M̂

(1)
7 , which

does not depend on any three-particle invariant:

ABDS-like
7 = A

MHV(0)
7 exp

[ ∞∑
L=1

aL
(
f (L)(ε)

1

2

(
M

(1)
7 (Lε) + Y7

)
+ C(L)

)]
, (A.15)

Factoring out the BDS ansatz explicitly, we have

ABDS-like
7 = ABDS

7 exp

[ ∞∑
L=1

aL

2

(
f (L)(ε)Y7

)]
. (A.16)

Recall that in the BDS ansatz formulation, the limit ε→ 0 is taken. Since Y7 is independent

of ε, we can set ε→ 0 in eq. (A.2) and rewrite the BDS-like ansatz as simply

ABDS-like
7 = ABDS

7 exp

[
Y7

4

∞∑
L=1

aLΓ(L)
cusp

]
, (A.17)

where we have used the definition (A.3). After introducing Γcusp =
∑∞

L=1 a
LΓ

(L)
cusp, defined in

eq. (2.24), we finally arrive at a simple representation of the BDS-like ansatz as a function of

the BDS ansatz, the cusp anomalous dimension Γcusp, and Y7,

ABDS-like
7 = ABDS

7 exp

[
Γcusp

4
Y7

]
. (A.18)

This result can be generalized to any n for which a suitable BDS-like ansatz exists, see

eq. (2.21).

B A Matrix Approach For Computing Integrable Symbols

We provide here a conceptually simple method for generating a basis of integrable symbols,

given the set of symbol letters on which they depend. This algorithm is iterative, and assumes

that one has seeded the algorithm with a basis at low weight. For general heptagon symbols,

this seed is provided at weight 1 by the first entry condition reviewed in section 3.3. It consists

of the 7 weight-1 symbols corresponding to log a1i. For Steinmann heptagon symbols, the seed

is provided by the 28 weight-2 heptagon symbols of the functions shown in eq. (3.15).

Let B(k) denote a basis of symbols at weight k, and let bk = dimB(k). Let us also denote

the i-th element of B(k) by B
(k)
i . Given B(k), we can make an ansatz for symbols of weight

(k+1) of the form
bk∑
i=1

|Φ|∑
q=1

ciq B
(k)
i ⊗ φq , (B.1)
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where the sum over q runs over all letters in the symbol alphabet Φ, i.e. φq ∈ Φ, and

the ciq are undetermined rational coefficients. The number of letters is denoted by |Φ|.
The quantity (B.1) will be the symbol of some weight-(k+1) function only if it satisfies

the integrability constraints of eq. (3.8) for all j. By construction, these constraints are

automatically satisfied for j = 1, 2, . . . , k − 1, because the elements of B(k) are already valid,

integrable symbols. It therefore remains only to impose integrability in the final two entries

at weight (k+1), i.e. for j = k.

Each B
(k)
i can of course be expressed as

B
(k)
i =

bk−1∑
j=1

|Φ|∑
p=1

fijp B
(k−1)
j ⊗ φp (B.2)

for some known coefficients fijp, so we can rewrite our ansatz as

bk∑
i=1

bk−1∑
j=1

|Φ|∑
p,q=1

ciqfijp B
(k−1)
j ⊗ φp ⊗ φq . (B.3)

Denoting

Fpq =

bk∑
i=1

bk−1∑
j=1

ciqfijp B
(k−1)
j , (B.4)

the quantity (B.2) satisfies integrability in the final two entries only if

|Φ|∑
p,q=1

Fpq d log φp ∧ d log φq = 0 , (B.5)

where the wedge product between two letters φp, φq that are functions of the independent

variables xi is defined as

d log φp ∧ d log φq =
∑
m,n

[
∂ log φp
∂xm

∂ log φq
∂xn

− ∂ log φp
∂xn

∂ log φq
∂xm

]
dxm ∧ dxn . (B.6)

The term in brackets above will be a rational function of the independent variables, which

can be turned polynomial by multiplying with the common denominator, without altering

the equations (B.5). Each independent polynomial factor of the xi times their differentials

must vanish separately, which leads to distinct rational equations for the Fpq. If the number

of linearly independent equations is r, then we may equivalently write eq. (B.5)

|Φ|∑
p,q=1

FpqWpql = 0 , ∀l ∈ {1, 2, . . . , r} , (B.7)

in terms of a rational tensor Wpql. Taking the tensor product of the indices p, q we may

think of W as a |Φ|2 × r matrix, or rather a
(|Φ|

2

)
× r matrix after taking into account its

antisymmetry in p↔ q.
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Since the B
(k−1)
j are elements of the basis B(k−1) of weight-(k−1) symbols, they are

linearly independent. Each term in the sum over j in (B.4) must therefore vanish separately.

In this manner, we finally arrive at the following set of r × bk−1 linear constraints on the

|Φ| × bk unknown coefficients ciq:

bk∑
i=1

∑
p,q

ciqfijpWpql = 0 , ∀j ∈ {1, 2, . . . , bk−1} , l ∈ {1, 2, . . . , r} . (B.8)

We now specialize to the case of interest in this paper by adopting the 42-letter symbol

alphabet presented in eqs. (3.2) and (3.3). There are 132 vanishing linear combinations of

the 861 objects d log φp ∧ d log φq, i.e. there are 132 irreducible weight-2 integrable symbols

(these are in correspondence with elements of the so-called Bloch group B2; see for example

ref. [39]). This means that there are r = 861− 132 = 729 nontrivial integrability constraints

for the heptagon symbol alphabet. In solving the linear constraints (B.8) for the ciq, we are

free to replace W by any matrix which spans the same image as W without changing the

content of the constraints. It is highly advantageous to choose a basis for the image of W

that is as sparse as possible, and which has numerical entries as simple as possible. In our

bootstrap we used a representation of the image of W as a 861× 729 matrix7 with only 1195

nonzero entries having values ±1.

Finally, then, the integrability constraints shown in eq. (B.8) take the form of 729 bk−1

linear equations on the 42 bk unknowns ciq. Finding a basis for the nullspace of this 729 bk−1×
42 bk linear system provides a basis for B(k+1), the integrable symbols at weight k + 1. For

the purposes of the Steinmann heptagon bootstrap, we have further cut down the weight-2

basis yielded by this procedure to only those 28 symbols that satisfy the Steinmann relations

before proceeding to weight 3. We have carried out the large linear algebra problems necessary

for the heptagon bootstrap with the help of the SageMath system [112], which employs the

IML integer matrix library [113]. As a double check, we also fed the weight-7 integrability

constraint matrix into A. von Manteuffel’s FinRed program, which independently generated

a basis for the 9570-dimensional weight-7 Steinmann heptagon space reported in table 1.
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