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Abstract

We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons

in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy

quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics

derived from five-dimensional anti-de Sitter (AdS) space nevertheless determines the form of the

confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-

state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The

confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy

quark in the meson or baryon as expected from Heavy Quark Effective Theory (HQET). This

procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes

predictions for yet unobserved states.
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I. INTRODUCTION

In a series of recent articles [1–4], we have shown that superconformal algebra allows the

construction of relativistic light-front (LF) semiclassical bound-state equations in physical

spacetime which can be embedded in a higher dimensional classical gravitational theory.

This new approach to hadron physics incorporates basic nonperturbative properties which

are not apparent from the chiral QCD Lagrangian; it includes the emergence of a mass scale

and confinement out of a classically scale-invariant theory, the occurrence of a zero-mass

bound state, universal Regge trajectories for both mesons and baryons, and the breaking

of chiral symmetry in the hadron spectrum. This holographic approach to hadronic physics

gives remarkable connections between the light meson and nucleon spectra [2], as well as

specific relations which can be derived for heavy-light hadrons. Remarkably, even though

heavy quark masses break conformal invariance, an underlying dynamical supersymmetry

still holds [3].

Our analysis is based on a procedure developed by de Alfaro, Fubini and Furlan, and Fu-

bini and Rabinovici [1, 2, 5–7]. In our approach, it leads to the natural emergence of a mass
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scale into the Hamiltonian of a theory while retaining essential elements of both conformal

invariance and supersymmetry. In the case of superconformal (graded) algebra, a general-

ized Hamiltonian can be constructed as a linear superposition of superconformal generators

which carry different dimensions; the Hamiltonian thus remains within the superconformal

algebraic structure. This procedure determines a unique form of a quark confinement po-

tential in the light-front Hamiltonian for light mesons and baryons, and it reproduces quite

well significant features of the hadron spectrum and dynamics. The resulting bound-state

equations depend explicitly on orbital angular momentum, and thus chiral symmetry is bro-

ken from the outset in the Regge excitation spectra: The ρ meson and the nucleon have no

chiral partners. A striking feature of the formalism is that the supermultiplets consist of a

meson wave function with internal LF angular momentum LM and a corresponding baryon

wave function with angular momentum LB = LM−1 and identical mass. The lightest meson

state with LM = 0 and total quark spin zero is massless in the chiral limit and is identified

with the pion; it has no supersymmetric partner.

It is not known why the effective theory based on superconformal quantum mechanics

and its light-front holographic embedding captures so well essential aspects of the confine-

ment dynamics of QCD. However, underlying aspects of the superconformal holographic

construction, conformal symmetry and supersymmetry, as well as the LF cluster decomposi-

tion required by the holographic embedding, could help us understand fundamental features

of QCD in its nonperturbative domain.

As it is the case for conformal quantum mechanics [5], where the action remains invari-

ant under conformal transformations, classical QCD in the limit of massless quarks has no

mass scale, but confinement and a mass gap can emerge from its quantum embodiment. The

cluster decomposition of the constituents of baryons corresponding to a quark-diquark struc-

ture is necessary in order to describe baryons in light-front holographic QCD (LFHQCD)

since there is only a single holographic variable [8]. The required LF clustering follows from

the mapping of anti-de Sitter (AdS) equations to QCD bound-state equations in light-front

physics [9], where one identifies the holographic variable z in the AdS classical gravity the-

ory with the boost-invariant transverse separation ζ between constituents in the light-front

quantization scheme [10, 11]. In the case of mesons, ζ2 = b2⊥x(1 − x) is conjugate to the

invariant mass of the qq̄ in the LF wave function; it is the invariant variable of the LF

Hamiltonian theory [12]. The resulting symmetry between mesons and baryons is consis-
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tent with an essential feature of color SU(NC): a cluster of NC − 1 constituents can be in

the same color representation as the anti-constituent; for SU(3) this means 3̄ ∈ 3× 3 and

3 ∈ 3̄× 3̄. Thus, emerging hadronic supersymmetry can be rooted in the dynamics of color

SU(3) [13, 14].

Our basic model describes the confinement of massless quarks [1, 2, 4]. Indeed, for light

quark masses it makes sense to apply superconformal dynamics and to treat the quark

masses as perturbations: The dynamics is then not significantly changed for nonzero quark

mass, and the resulting confinement scale remains universal for the resulting hadronic bound

states [4]. In contrast, in the case of heavy quark masses, we cannot rely on conclusions

drawn from conformal symmetry; however, the presence of a heavy mass need not also break

supersymmetry since it can stem from the dynamics of color confinement [18]. Indeed, as

we have shown in Ref. [3], supersymmetric relations between the meson and baryon masses

still hold to a good approximation even for heavy-light, i.e., charm and bottom, hadrons.

In addition to the constraints imposed by supersymmetry, we will use additional features

imposed by the holographic embedding in order to constrain the specific form of the confine-

ment potential in the heavy-light sector. We will also use the heavy-quark flavor symmetry

of QCD [19] to determine the dependence of the confinement scale on the heavy quark mass

in the heavy mass limit, since this symmetry is compatible with the light-front holographic

approach [20]. Other holographic approaches to the heavy-light sector, including the recent

holographic approach given in Ref. [21], which includes chiral and heavy quark symmetry,

have been been proposed in Refs. [22–27].

Light quark masses are not only essential for approximate conformal symmetry, but they

also guarantee the decoupling of transverse degrees of freedom – expressed through the LF

variable ζ in the hadron LF wave function – from the longitudinal degrees of freedom which

depends on the longitudinal LF momentum fraction x [28]. The holographic mapping derived

from the geometry of AdS space encodes the kinematics in 3+1 physical spacetime, and the

modification of the AdS action – usually described for mesons in terms of a dilaton profile

ϕ(z) – generates the confining LF potential U(z) in the light-front bound-state equations [29].

Since light constituents are present in the heavy-light bound states of mesons or baryons,

the system is still ultrarelativistic; thus the heavy-light bound states need to be described by

relativistic LF bound-state equations. This means that the heavy-light system has properties

common to both the chiral and the heavy-quark flavor sectors [19, 21]. It also suggests that
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we can holographically connect the supersymmetric theory to a modified AdS space; this

will be possible if the separation of the dynamical and kinematical variables also persist, at

least to a good approximation, in the heavy-light domain. As we will show, we can again

derive a unique confinement potential for both mesons and baryons in the heavy-light sector,

even when conformal symmetry is broken by a heavy quark mass. The resulting embedding

leads to a LF harmonic confinement potential for the heavy-light hadrons and thus to Regge

trajectories; however, as we shall show, the confinement scale and Regge slope depends

on the mass of the heavy quark. We will investigate this dependence using Heavy Quark

Effective Theory (HQET) [19]. The procedure discussed in this article not only reproduces

the observed data to a reasonable accuracy, but it also allows us to make predictions for yet

unobserved states.

This article is organized as follows: In Sec. II we will briefly review the construction

of the LF Hamiltonian from supersymmetric quantum mechanics [30] using the methods

developed in Refs. [1, 2, 6]. In Sec. III we extend our approach to systems containing

a heavy, charm or bottom, quark. Notably, we discuss the constraints imposed by the

holographic embedding on the supersymmetric potential, which in turn determine the form

of the light front potential. We compare our predictions with experiment in Sec. IV, and

in Sec. V we discuss the constraints on the confinement scale imposed by HQET. Some

final comments are given in Sec. VI. In the Appendix A we give expressions for the LF

wave functions and hadron distribution amplitudes which are compatible with our general

approach. This article is the continuation of Ref. [3].

II. THE SUPERSYMMETRIC LIGHT-FRONT HAMILTONIAN

The light-front Hamiltonian derived in the framework of supersymmetric quantum me-

chanics [30, 31] contains two fermionic generators, the supercharges, Q and Q† with the

anticommutation relations

{Q,Q} = {Q†, Q†} = 0, (1)

and the Hamiltonian H

H = {Q,Q†}, (2)

which commutes with the fermionic generators [Q,H ] = [Q†, H ] = 0, closing the graded

Lie algebra. Since the Hamiltonian H commutes with Q†, it follows that the states |φ〉 and
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Q†|φ〉 have identical non-vanishing eigenvalues. In addition, if |φ0〉 is an eigenstate of Q

with zero eigenvalue, it is annihilated by the operator Q†: Q†|φ0〉 = 0. This implies that the

lowest mesonic state on a given trajectory has no supersymmetric baryon partner [2]. This

shows the special role of the pion in the supersymmetric approach to hadronic physics as a

unique state of zero mass in the chiral limit.

In matrix notation

Q =











0 q

0 0











, Q† =











0 0

q† 0











, (3)

and

H =











q q† 0

0 q†q











, (4)

with

q = − d

dζ
+
f

ζ
+ V (ζ), (5)

q† =
d

dζ
+
f

ζ
+ V (ζ), (6)

where ζ is the LF invariant transverse variable and f is a dimensionless constant. One can

add to to the Hamiltonian (2) a constant term proportional to the unit matrix µ2I

Hµ = {Q,Q†}+ µ2I, (7)

where the constant µ has the dimension of a mass; thus we obtain the general supersymmetric

light-front Hamiltonian derived in Ref. [3]

Hµ =











− d2

dζ2
+

4L2

M
−1

4ζ2
+ UM (ζ) 0

0 − d2

dζ2
+

4L2

B
−1

4ζ2
+ UB(ζ)











+ µ2 I, (8)

where LB + 1
2
= LM − 1

2
= f and UM and UB are, respectively, the meson and baryon LF

confinement potentials:

UM(ζ) = V 2(ζ)− V ′(ζ) +
2LM − 1

ζ
V (ζ), (9)

UB(ζ) = V 2(ζ) + V ′(ζ) +
2LB + 1

ζ
V (ζ). (10)
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The superpotential V is only constrained by the requirement that it is regular at the ori-

gin. For the special case V = 0, the Hamiltonian is also invariant under conformal transfor-

mations, and one can extend the supersymmetric algebra to a superconformal algebra [6, 32].

In fact, the use of this procedure in supersymmetric quantum mechanics determines a unique

form for the superconformal potential in (5): It is given by V =
√
λ ζ [1, 2]. Thus, in the

conformal limit µ2 → 0, and we have

UM (ζ) → λ2Mζ
2 + 2 λM(LM − 1), (11)

UB(ζ) → λ2Bζ
2 + 2 λB(LB + 1), (12)

with λM = λB = λ. The Hamiltonian (8) acts on the spinor

|φ〉 =











φM

φB











, (13)

where the upper component φM corresponds to a meson wave function with angular momen-

tum LM and a lower component φB, which corresponds to the leading-twist positive chirality

component of a baryon ψ+ [1, 8] with angular momentum LB = LM − 1. The supersym-

metric framework described here also incorporates a doublet consisting of the non-leading

twist minus-chirality component ψ− of a baryon which has angular momentum LB + 1 and

a its partner tetraquark with angular momentum LT = LB [4]. The tetraquark sector is

discussed in more detail in Ref. [4].

III. EXTENSION TO THE HEAVY-LIGHT HADRON SECTOR

In LF holographic QCD the confinement potential for mesons UM (9) follows from the

dilaton term eϕ(x) in the AdS5 action following Ref. [33]. It is given by [34]

Udil(ζ) =
1

4
(ϕ′(ζ))2 +

1

2
ϕ′′(ζ) +

2LM − 3

2ζ
ϕ′(ζ), (14)

for JM = LM . In the conformal limit a quadratic dilaton profile, ϕ = λζ2 leads to the

potential (11).

The dilaton ϕ is not constrained by the superconformal algebraic structure in the presence

of heavy quark masses, and thus its form and the form of the superpotential V are unknown

a priori. Additional constraints do appear, however, by the holographic embedding which
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can be derived by equating the potential (14), given in terms of the dilaton profile ϕ, with

the meson potential (9) written in terms of the superpotential V . We have:

1

4
(ϕ′)2 +

1

2
ϕ′′ +

2L− 1

2ζ
ϕ′ = V 2 − V ′ +

2L+ 1

ζ
V, (15)

where L = LM − 1.

We shall make the ansatz:

ϕ′(ζ) = 2λζ α(ζ), (16)

V (ζ) = λζ β(ζ). (17)

Then we obtain:

Udil = λ2ζ2α2 + 2Lλα + λζα′, (18)

Ususy = λ2ζ2β2 + 2Lλβ − λζβ ′, (19)

and therefore

λ2ζ2(α2 − β2) + 2Lλ(α− β) + λζ(α′ + β ′) = 0. (20)

Introducing the linear combination

σ(ζ) = α(ζ) + β(ζ),

δ(ζ) = α(ζ)− β(ζ), (21)

it follows that

λ2ζ2σ(ζ)δ(ζ) + 2Lλ δ(ζ) + λζ σ′(ζ) = 0. (22)

This yields

δ(ζ) = − λζ σ′(ζ)

λ2ζ2 σ(ζ) + 2Lλ
, (23)

and therefore:

α(ζ) =
1

2

(

σ(ζ)− λζ σ′(ζ)

λ2ζ2 σ(ζ) + 2Lλ

)

, (24)

β(ζ) =
1

2

(

σ(ζ) +
λζ σ′(ζ)

λ2ζ2 σ(ζ) + 2Lλ

)

. (25)

Using (16) and (24) we obtain upon integration the dilaton profile for a meson with

angular momentum LM = L+ 1

ϕ(ζ) =
∫

dζ

(

λζ σ(ζ)− λ2ζ2 σ′(ζ)

λ2ζ2 σ(ζ) + 2(LM − 1)λ

)

. (26)
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On the other hand, from (17) and (25) it follows that this profile for arbitrary σ(ζ) is

compatible with the SUSY potential

V (ζ) =
1

2

(

λζ σ(ζ) +
λ2ζ2 σ′(ζ)

λ2ζ2 σ(ζ) + 2(LM − 1)λ

)

. (27)

The baryon equations give no further constraints.

In LFHQCD the AdS geometry fixes the nontrivial aspects of the kinematics, whereas

additional deformations of AdS space encodes the dynamical features of the theory [29]. In

particular, the dilaton, which describes the dynamics of confinement for mesons in holo-

graphic QCD, must be free of kinematical quantities and thus must be independent of the

angular momentum LM . This is only possible if the derivative σ′(ζ) = 0 in (26) and (27),

thus σ(ζ) = A with A an arbitrary constant. From (26) and (27) it follows that

ϕ(ζ) =
1

2
λA ζ2 +B, V (ζ) =

1

2
λA ζ. (28)

This result implies that the LF potential in the heavy-light sector, even for strongly broken

conformal invariance, has the same quadratic form as the one dictated by the conformal

algebra. The constant A, however, is arbitrary, so the strength of the potential is not

determined. Notice that the interaction potential (14) is unchanged by adding a constant

to the dilaton profile, thus we can set B = 0 in (28) without modifying the equations of

motion.

The LF eigenvalue equation H|φ〉 = M2|φ〉 from the supersymmetric Hamiltonian (8)

leads to the hadronic spectrum

Mesons: M2 = 4λQ (n+ L) + µ2,

Baryons: M2 = 4λQ (n+ L+ 1) + µ2,

(29)

where, as we will see below, the slope constant λQ = 1
2
λA can depend on the mass of the

heavy quark. The constant term µ contains the effects of spin coupling and quark masses.

This term has been derived for light hadrons in Ref. [4], yielding very satisfactory results, as

well as giving clear evidence for the universality of the confinement scale λ for light quarks.

More generally, we can allow for a small breaking of the supersymmetry due to the different

light quark masses in the meson or nucleon, µ2
M ≃ µ2

B ≃ µ2. We shall discuss a possible

extension for heavy quarks in the Appendix A, but we will initially treat their masses as

unconstrained constants in a fit to all the heavy-light trajectories.
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IV. COMPARISONS WITH DATA
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FIG. 1. Heavy-light mesons and baryons with one charm quark: D = qc̄, Ds = sc̄, Λc = udc,

Σc = qqc, Ξc = usc. In (a) and (c) s = 0 and in (b) and (d) s = 1, where s is the total quark spin

in the mesons or the spin of the quark cluster in the baryons. The data is from Ref. [35].

In Figs. 1 and 2 we display confirmed data for the heavy-light mesons and baryons

containing one charm or one bottom quark together with the trajectory fit from (29). The

internal spin s in these figures refers to the total quark spin in the mesons or the spin of

the diquark cluster in the baryons [4]. The results presented in Figs. 1 and 2 constitute

a test of the linearity of the trajectories predicted by the SUSY holographic embedding,

and it allows us to determine the dependence of the slope λQ on the heavy quark mass

scale. The trajectory intercepts are fixed by the lowest state in each trajectory, but are

determined later by the model in the Appendix A. Unfortunately the data for heavy-light
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hadrons are sparse, compared with those for light hadrons. Only the D/Λc trajectory, Fig. 1

(a) provides an independent test for the predicted harmonic potential. Thus, future data

on heavy-light hadrons will be essential to test the assumptions stated in Sec. I for the light

front holographic model described here.
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FIG. 2. Heavy-light mesons and baryons with one bottom quark: B = qb̄, Bs = sb̄, Λc = udb,

Σb = qqb, Ξc = usb. In (a) and (c) s = 0 and in (b) and (d) s = 1, where s is the total quark spin

in the mesons or the spin of the diquark cluster in the baryons. The data is from Ref. [35].

In Fig. 3 the fitted values for
√

λQ are presented for the different trajectories. In the

abscissa we indicate the lowest mass meson for that meson-baryon trajectory. The triangles

indicate the fitted values, and the horizontal lines show the mean over all channels of hadrons

containing the same heavy-light meson. For comparison, we also give the corresponding

values for a fit to the much more abundant data for light hadrons [4]. It is obvious that the

dispersion of the data is significantly smaller for the case where the model is approximately
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FIG. 3. The fitted value of
√

λQ for different meson-baryon trajectories, indicated by the lowest

meson state on that trajectory.

constrained by conformal symmetry, as compared to the case where it is strongly broken by

heavy quark masses, and only supersymmetry remains as a constraint.

All of the results for the charmed hadrons are collected in Table I; the predictions for

bottom hadrons are summarized in Table II. The slopes for charm hadrons are definitely

larger than those for the light hadrons, but they agree within ±10% for all charm hadrons.

The agreement of the data with the theoretical predictions from (29) is of the same order

as for light hadrons. The average deviation is 55 MeV, but the data are rather sparse.

The model, however, makes predictions for higher orbital (and radial) excitations with an

accuracy of approximately ±100 MeV. The values for the mean of the modulus of deviation

between theoretical and experimental values is 55 MeV, the standard error is 72 MeV; this

deviation is comparable to that obtained for light hadrons [3, 4]. We have added in Table

I the predicted missing superpartners and all mesons with angular momentum LM ≤ 2 and

baryons with LB ≤ 1.

We have omitted the Σc and the Σb baryons from the figures and the tables, since it is

not clear whether they should be included in the same trajectories with the pseudoscalar or

the vector meson, as will be discussed in more detail at the end of the Appendix A.
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TABLE I. Charmed Hadrons. The quark spin s is the total quark spin of the meson or the diquark

cluster, λQ is the fitted value for the trajectory and ∆M is the difference between the observed

and the theoretical value according to (29). The lowest lowest lying meson mass determines de

value of µ2 in (29) for each trajectory. We have added predictions, if only one superpartner has

been observed and for LM ≤ 2, LB ≤ 1.

status particle I(JP ) quark spin n,L
√

λQ ∆M

content [GeV] [MeV]

obs D(1869) 1
2(0

−) cq̄ 0 0, 0 0.655 0

obs D1(2400)
1
2(1

+) cq̄ 0 0, 1 0.655 139

obs Λc(2286) 0(12
+
) cqq 0 0, 0 0.655 4

obs Λc(2595) 0(12
−
) cqq 0 0, 1 0.655 -36

obs Λc(2625) 0(32
−
) cqq 0 0, 1 0.655 -6

obs Λc(2880) 0(52
+
) cqq 0 0, 2 0.655 -59

pred D2(2630 )
1
2(2

−) cq̄ 0 0, 2 0.655 ?

pred D2(2940 )
1
2(3

+) cq̄ 0 0, 3 0.655 ?

obs D∗(2007) 1
2(1

−) cq̄ 1 0, 0 0.736 0

obs D∗
2(2460)

1
2(2

+) cq̄ 1 0, 1 0.736 -29

obs Σc(2520) 1(32
+
) cqq 1 0, 0 0.736 28

pred D∗
3(2890 )

1
2(3

−) cq̄ 1 0, 2 0.736 ?

pred Σc(2890 ) 1(52
−
) cqq 1 0, 1 0.736 ?

pred Σc(2890 ) 1(32
−
) cqq 1 0, 1 0.736 ?

pred Σc(2890 ) 1(12
−
) cqq 1 0, 1 0.736 ?

obs Ds(1958) 0(0−) cs̄ 0 0, 0 0.735 0

obs Ds1(2460) 0(1+) cs̄ 0 0, 1 0.735 23

obs Ds1(2536) 0(1+) cs̄ 0 0, 1 0.735 73

obs Ξc(2467)
1
2(

1
2

+
) csq 0 0, 0 0.735 31

obs Ξc(2575)
1
2(

1
2
+
) csq 0 0, 0 0.735 113

obs Ξc(2790)
1
2(

1
2

−
) csq 0 0, 1 0.735 -67

obs Ξc(2815)
1
2(

3
2

−
) csq 0 0, 1 0.735 -41

pred Ds2(2856 ) 0(2−) cs̄ 0 0, 2 0.735 ?

obs D∗
s(2112) 0(1−)? cs̄ 1 0, 0 0.766 0

obs D∗
s2(2573) 0(2+)? cs̄ 1 0, 1 0.766 -29

obs Ξc(2646)
1
2(

3
2

+
) csq 1 0, 0 0.766 28

obs D∗
s3(3030 ) 0(3−)? cs̄ 1 0, 2 0.766 0

pred Ξc(3030 )
1
2(

5
2
−
) csq 1 0, 1 0.766 ?

pred Ξc(3030 )
1
2(

3
2

−
) csq 1 0, 1 0.766 ?

pred Ξc(3030 )
1
2(

1
2

−
) csq 1 0, 1 0.766 ?
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TABLE II. Bottom Hadrons. The notation is the same as for Table. I.

status particle I(JP ) quark spin n,L
√

λQ ∆M

content [GeV] [MeV]

obs B(5279) 1
2 (0

−) bq̄ 0 0, 0 0.963 0

obs B1(5721)
1
2 (1

+) bq̄ 0 0, 1 0.963 101

obs Λb(5620) 0(12
+
) bqq 0 0, 0 0.963 1

obs Λb(5912) 0(12
−
) bqq 0 0, 1 0.963 -28

obs Λc(5920) 0(32
−
) bqq 0 0, 1 0.963 -20

pred B2(5940 )
1
2 (2

−) cq̄ 0 0, 2 0.963 ?

obs B∗(5325) 1
2 (1

−) bq̄ 1 0, 0 1.13 0

obs B∗
2(5747)

1
2 (2

+) bq̄ 1 0, 1 1.13 -45

obs Σ∗
b(5833) 1(32

+
) bqq 1 0, 0 1.13 44

pred B∗
3(6216 )

1
2 (3

−) cq̄ 1 0, 2 1.13 ?

pred Σb(6216 ) 1(52
−
) cqq 1 0, 1 1.13 ?

pred Σb(6216 ) 1(32
−
) cqq 1 0, 1 1.13 ?

pred Σb(6216 ) 1(12
−
) cqq 1 0, 1 1.13 ?

obs Bs(5367) 0(0−) bs̄ 0 0, 0 1.11 0

obs Bs1(5830) 0(1+) bs̄ 0 0, 1 1.11 16

obs Ξb(5795)
1
2(

1
2

+
) bsq 0 0, 0 1.11 -16

pred Bs2(6224 ) 0(2−) bs̄ 0 0, 2 1.11 ?

pred Ξb(6224 )
1
2(

1
2
−
) bsq 0 0, 1 1.11 ?

pred Ξb(6224 )
1
2(

3
2

−
) bsq 0 0, 1 1.11 ?

obs B∗
s (5415) 0(1−)? bs̄ 1 0, 0 1.16 0

obs B∗
s2(5840) 0(2+)? bs̄ 1 0, 1 1.16 -55

obs Ξb(5945)
1
2(

3
2

+
) bsq 1 0, 0 1.16 55

pred B∗
s3(6337) 0(3−)? bs̄ 1 0, 2 1.16 ?

pred Ξb(6337 )
1
2(

5
2

−
) bsq 1 0, 1 1.16 ?

pred Ξb(6337 )
1
2(

3
2

−
) bsq 1 0, 1 1.16 ?

pred Ξb(6337 )
1
2(

1
2
−
) bsq 1 0, 1 1.16 ?

V. THE SCALE DEPENDENCE OF λQ FROM HEAVY QUARK EFFECTIVE

THEORY (HQET)

It has been known for a long time [36], and has been formally proved in HQET [19],

that in the case of masses of heavy mesons MM , the product
√
MM fM approaches, up to

logarithmic terms, a finite value

√

MM fM → C, (30)
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a relation which can also be derived using the light-front holographic approach [20]. In the

present holographic framework this means that the confinement scale λQ has to increase

with increasing quark mass. Indeed, using the results of the Appendix A, we can write the

decay constant fM (A9) expressed through the wave function (A4)

fM =
1

√

∫ 1
0 dx e

−m2

Q
/λ(1−x)

√
2NCλ

π

∫ 1

0
dx e−m2

Q
/2λ(1−x)

√

x(1 − x), (31)

where, for simplicity, we consider the case where m1 = 0; the heavy quark mass is m2 = mQ.

òò òò

òò

òò
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Q

FIG. 4. The fitted value of λQ vs. the meson massMM . The solid line is the square root dependence

(36) predicted by HQET.

We introduce ν2 ≡ m2
Q/λ and use the saddle-point method to evaluate the integral

of the numerator for large values of ν2. One expands the numerator around the value

x0 =
1
ν2

+O
(

1
ν4

)

, where the integrand is maximal and obtains:

e−
1

2
ν2/(1−x)

√

x(1− x) = e−ν2/2−log ν−1/2+O( 1

ν ) e
1

4
(x−x0)2 (m4+O(ν2)). (32)

This Gaussian integral yields:

∫ 1

0
dx e−

1

2
ν2/(1−x)

√

x(1− x) =
e−ν2/2

√
e ν2

π

ν2

(

1 + erf
(

1

2

))

. (33)

The integral in the denominator of (31) can be performed analytically

∫ 1

0
dx e−ν2/(1−x) =

∫ ∞

1

dy

y2
e−ν2 y = e−ν2 − ν2 Γ

(

0,
1

ν2

)

= e−ν2
(

1

ν2
+O

(

1

ν4

))

. (34)
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Thus in the large mQ limit:

fM =

√

6

e

(

1 + erf
(

1

2

))

λ3/2

m2
Q

. (35)

In the limit of heavy quarks the meson mass equals the quark mass. From the HQET

relation (30) it follows that

λQ = const mQ, (36)

where the constant in (36) has the dimension of mass. This corroborates our statement

that the increase of λQ with increasing quark mass is dynamically necessary. In Fig. 4 we

show the value of λQ for the π, K, D, and B mesons as function of the meson mass MM .

From the difference of the values of
√
MM fM for the D and B mesons (see Appendix A,

Table III) we must conclude that, in this region, we are still far away from the heavy quark

regime. It is nevertheless remarkable that the simple functional dependence (36) derived in

the heavy quark limit predicts for the c quark a value
√
λc = 0.653 GeV – after fixing the

proportionality constant in (36) at the B meson mass, which is indeed at the lower edge of

the values obtained from the fit to the trajectories (0.655 to 0.766 GeV). It makes no sense

to apply HQET below the mass of the MD. Indeed, there is no sign of an increase of
√
λ

between the π and K mass.

VI. SUMMARY AND CONCLUSIONS

In this article we have extended light-front holographic QCD to heavy-light hadrons by us-

ing the embedding of supersymmetric quantum mechanics in a modified higher dimensional

space asymptotic to AdS. Remarkably, this embedding not only yields supersymmetric rela-

tions between mesons and baryons, but it also determines the superconformal potential and

thus the effective potential in light-front holographic QCD. If one introduces for mesons the

breaking of the maximal symmetry of AdS5 by a dilaton term, as it is usually done, one

finds that only a quadratic dilaton profile is compatible with the supersymmetric potential;

thus, a harmonic LF potential again emerges, as is the case for light quark hadrons. This

implies linear trajectories not only for light hadrons, but also for the heavy-light mesons and

baryons. Although the experimental data are sparse, the existing data are not in contradic-

tion with this linearity; however, future data on heavy-light hadrons will be critical to test

the dynamical assumptions described here.
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In our approach, the heavy quark influences the transverse degrees of freedom only in-

directly by modifying the strength of the harmonic potential; this modification cannot be

determined from supersymmetry. However, the dependence of the confinement scale on the

heavy quark mass can be calculated in HQET, and it is in agreement with the observed

increase. Indeed, HQET is compatible with the light front holographic approach to hadron

physics [20].
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Appendix A: Wave functions and distribution amplitudes

As mentioned above, the additional term µ2 in Eq. (29) for light hadrons was given in [4]

in terms of the internal spin and the quark masses of the constituents. The spin interaction

term has the simple form 2λ s, where s is the quark spin of the meson or the quark spin of

the diquark cluster in the baryon, respectively. There is, however a problem with the cluster

spin assignment of the Σc and Σb, as will be explained at the end of this appendix.

In order to estimate the influence of the quark masses and also to evaluate the decay

constants fM , which play a crucial role in Sec. V, we need to have a good description of the

wave functions of the hadrons. We found for a hadron with LF angular momentum L and

radial excitation number n [8]:

ψ
(0)
n,L =

1

N

√

x(x− 1) ζLLL
n(|λ|ζ2) e−|λ|ζ2/2, (A1)

with normalization

N =

√

(n + L)!

n! π
|λ|(L+1)/2. (A2)

Here LL
n are the associated Laguerre Polynomials, and ζ =

√

x1(1− x1) |b⊥1| for mesons and

ζ =
√

x1

1−x1
| (x2b⊥2 + x3b⊥3) | for baryons; b⊥i is the transverse distance of quark i from the

impact line defined by
∑n

i=1 b⊥i = 0.

LFHQCD gives us no hints on the longitudinal dynamics, so we have constructed the

wave function for hadrons with light quarks of mass mi by the principle, that the wave

17



function is determined by the invariant mass of the constituents

n
∑

i=1

k2⊥i +m2
i

xi
, (A3)

where k⊥i is the transverse momentum of the constituent i. This leads to the wave function

for hadrons with small quark masses:

ψ
(m)
n,L =

1

Nm

e−
1

2λ
∆m2

ψ
(0)
n,L, (A4)

with

∆m2 =
n
∑

i=1

m2
i

xi
δ
(

n
∑

i=1

xi − 1
)

. (A5)

The normalization condition
∫ 1
0 dx1 · · · dxn δ

(

∑n
i=1 xi − 1

)

∫

d2b⊥ |ψ(0)
n,L|2 = 1 implies

N2
m =

∫ 1

0
dx1 · · · dxn δ

(

n
∑

i=1

xi − 1
)

e−
1

λ
∆m2

. (A6)

It is certainly not realistic to assume that these wave functions, derived under the assump-

tion of small quark masses, can be simply extrapolated to heavy-light hadrons. But on the

other hand, the embedding of the supersymmetric theory into modified AdS demands that

the quark masses enter only indirectly through the confining (transverse) dynamics, namely

by a change of the confinement scale λ. We therefore apply, in an exploratory way, the

procedure developed for light quarks [8] to determine also the masses of hadrons containing

a heavy quark.

According to [4] the set of constants µ2 in (29) are given in first approximation by:

µ2 = 2λ s+∆M2[m1, · · · , mn], (A7)

where the first term is the spin term discussed above and

∆M2[m1, · · · , mn] =
∫

2πζdζ
∫

dx1 · · · dxn ψ(ζ, x1, · · · , xn)2
n
∑

i=1

m2
i

xi
δ
(

n
∑

i=1

xi − 1
)

, (A8)

where ψ is the normalized ground state wave function (A4) with n = 2 for mesons and n = 3

for baryons.

Since λQ has been determined in the fit to the trajectories and the light quark masses

are known from the fits to light hadrons [8], the only free parameter in these formulæ is the

effective heavy quark mass, mQ. For hadrons containing a charm quark, the best fit to the

8 ground states of the trajectories yields mc = 1547 MeV, for the bottom quark mass one
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TABLE III. Leptonic decay constants. Second row: the phenomenological values; third row: the-

oretical values obtained from (A11) with the unmodified wave function (A4) and the fitted heavy

quark masses mc = 1547, mb = 4922 MeV; last row: theoretical values obtained with the modified

wave function with the scale factor α = 1
2 in (A12). The fitted masses are mc = 1327, mb = 4572

MeV.

decay const. [MeV] fK fD fDs fB fBs

fDs

fD

fBs

fB

phenomenology 155 212 249 187 227 1.17 1.22

unmodified w.f. 152 127 159 81 117 1.25 1.44

modified w.f. - 199 216 194 229 1.09 1.18

obtains correspondingly mb = 4922 MeV. The quality of the fit is worse than that to the

trajectories, the standard deviation is 95 MeV.

A more severe test for the adequacy of the wave functions are the leptonic decay constants.

The leptonic decay constant of a pseudoscalar mesonM samples the light-front wave function

at small distances and is a very sensitive test for the wave function. Its exact computation

is given in terms of the valence light-front wave function [37, 38]

fM = 2
√

2NC

∫ 1

0
dx φ(x), (A9)

where

φ(x) =
∫

d2k⊥

16π3
ψ(x,k⊥), (A10)

is the distribution amplitude (DA). Since φ(x) = ψ(x,b⊥ = 0)/
√
4π, we can write fM in

terms of the LFWF at zero transverse impact distance:

fM =

√

2NC

π

∫ 1

0
dxψ(x,b⊥ = 0), (A11)

which is identical with the result first obtained by van Royen and Weisskopf [39].

The decay constants fM of the heavy-light mesons are not directly observable, since the

leptonic decay rates also depend on the matrix elements of the weak decay of heavy quarks.

There are, however, many phenomenological results, notably from QCD sum rules and lattice

calculations, which give a fairly consistent picture. We present in Table III, second row, the

results form [35], Leptonic decays of charged pseudoscalar mesons. For completeness we have

also included the K meson.
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The results for the decay constants obtained from (A11) with the wave function (A4)

are displayed in Table III, third row, “unmodified w.f.”. Though qualitative features are

reproduced, the magnitude of the decay constants is grossly underestimated with increasing

heavy quark mass. This is due to the fact that the heavy quark carries most of the longitu-

dinal momentum, as it is formally expressed through the xi dependent exponent ∆m
2 (A5)

in (A4). If the heavy quark mass m2 increases, then x1 is pushed to very small values; this

suppresses the decay constant fM . Since this suppression is evidently too strong, an easy

remedy is to multiply the heavy quark mass in the exponential (A5) of the wave function

(A4) by a factor α < 1; thus we modify

e
− 1

2λ

m2

Q

xQ → e
−α2

2λ

m2

Q

xQ , (A12)

in the LF wave function for the heavy quark with mass mQ and longitudinal momentum xQ.

The result for α = 1
2
is shown in Table III, last row, “modified w.f.”. The improvement

from errors between 40% and 60% to errors between 3% and 8% is dramatic, and, most

important, there is no sign of an increasing discrepancy with increasing quark mass. Since

the quantity α is mass independent, it does not affect the conclusions from HQET, drawn

in Sec. V, notably the relation (36); only the value of mQ in (35) has to be multiplied by

α = 1
2
. The values for the quark masses, obtained from a fit to the data with this modified

wave function are: mc = 1.327 GeV and mb = 4.572 GeV. The fit is slightly worse than that

with the unmodified wave function (A4), the standard deviation is 125 MeV.

In Fig. 5 we show the distribution amplitudes (5) for the chiral case and for the heavy

pseudoscalar mesons; the dotted lines for the heavy mesons correspond to the unmodified

wave function (A4), the solid ones are obtained from the modified wave function with the

scale factor α = 1
2
in (A12).

The increasing discrepancy between the longitudinal momentum of the light constituents

and that of the heavy quark, with increasing quark mass, could provide a plausible expla-

nation of why the Σc and Σb do not fit on the trajectories for a pseudoscalar meson. In this

case a scalar diquark cluster can be formed only by the heavy and a light quark, whereas the

cluster formed of two light quarks has isopin 1 and hence quark spin 1. The trajectories for

the pseudoscalar mesons are characterized by s = 0, hence they are matched to baryons of

scalar diquarks. Due to the increasing difference between the longitudinal momenta, the for-

mation of a heavy-light cluster becomes less and less probable with increasing heavy quark
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mass. This is also observed: the mass difference δM between the Σ∗
b , which must contain a

spin 1 cluster, and the Σb is δM = 20 MeV; in contrast, the Σ∗
c(2520), which must contain a

spin 1 cluster, and the Σc(2455) is δM = 65 MeV.
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